The present invention pertains generally to the field of magnetic treatment of fluids and/or gases, and more specifically to a method and apparatus for indirect magnetic treatment of fluids and gases, that are based primarily on the mixing between directly magnetized fluids/gases (fluids/gases that are treated using direct magnetic or electromagnetic field of certain geometry and flux density) and normal non-magnetized fluids/gases to obtain new mixed or indirectly-magnetized fluids/gases that have better performance than the directly magnetized fluids/gases and normal non-magnetized fluids/gases.
Magnetohydrodynamics (MHD) (magnetofluiddynamics or hydromagnetics) is the scientific discipline that studies the dynamics of electrically conducting fluids under the effect of magnetic fields. MHD is derived from “magneto” meaning magnetic field, and “hydro” meaning liquid, and “dynamics” meaning movement or motion. The field of MHD was initiated by Hennes Alfvén in 1942, for which he received the Nobel Prize in Physics in 1970.
The idea of MHD is that magnetic fields can induce currents in a moving electrically-conductive fluid, which create mechanical forces on the fluid, and also change the magnetic field itself. The set of equations which describe MHD are a combination of the familiar Navier-Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism. Research studies indicate that magnetohydrodynamic effects are responsible for the magnetic treatment of fluids and gases.
All previous applications of magnetic treatment of fluids and gases focused on the direct application of magnetic or electromagnetic fields of various flux densities and variable geometries on the moving fluid or gas, where the entire or the totality of the fluid or gas should pass directly through the magnetic or the electromagnetic field in order to be treated. This direct treatment fact is the hidden obstacle for the limited popularity of the magnetic treatment since it leads to effective treatment only in the initial phases of installation of magnetic treatment devices, and generally ineffective treatment in the later stages.
It is therefore an object of the present invention to provide a method and apparatus for indirect magnetic treatment of fluids and gases that overcomes the drawbacks of direct magnetic treatment of fluids and gases.
There is provided a method of indirect treatment of fluids or gases, the method comprising: providing a first fluid or gas; applying a direct magnetic or electromagnetic field of certain flux densities and geometries on the first fluid or gas to obtain the directly magnetized fluid/gas; providing a second normal non-magnetized fluid/gas; and mixing the first directly magnetized fluid/gas with the second normal non-magnetized fluid/gas to obtain a third mixed or indirectly-magnetized fluid/gas that is also treated and more effective than the first directly magnetized fluid/gas and the second normal non-magnetized fluid/gas.
This means that according to the present invention, the first fluid/gas is the directly magnetized fluid/gas that undergoes direct magnetic or electromagnetic treatment, while the second fluid/gas is the normal non-magnetized fluid/gas that does not pass through any direct magnetic or electromagnetic field. In the third mixed or indirectly-magnetized fluid/gas, the second normal non-magnetized fluid/gas becomes treated indirectly from the first directly magnetized fluid/gas, and the third mixed or indirectly-magnetized fluid/gas becomes totally treated in an indirect manner. In other words, the first directly magnetized fluid/gas serves as a magnetizer or a magnetic treating agent for magnetizing the second normal non-magnetized fluid/gas
In the sense of the present invention, the term “directly magnetized” or “directly treated” or simply “treated” referring to fluids and/or gases particularly means that fluid(s) and/or gas(es) are treated or magnetized, respectively, using direct magnetic or electromagnetic field of certain geometry and flux density, which may be provided, for example, by a device or unit producing said respective field. Furthermore, the term “normal non-magnetized” or “normal”, respectively, which refers to fluids and/or gases, particularly means that the respective fluid(s) and/or gas(es) is not magnetized or does or did not pass through any direct magnetic or electromagnetic field. Additionally, the term “mixed” or “indirectly-magnetized” referring to fluids and/or gases particularly means that fluid(s) and/or gas(es) that becomes magnetically treated in an indirect manner by the directly magnetized fluid/gas that serves as a magnetizer or a magnetic treating agent. Besides, the term “indirect magnetic fluid/gas treatment” particularly means that a normal fluid and/or gas is treated or magnetized, respectively, without being the object of direct magnetic or electromagnetic field (as it is the case with regard to the “directly magnetized” fluid and/or gas), but by being (for example mixed with and thus) magnetized by a “directly magnetized” fluid and/or gas.
Preferably, the mixing between the first directly magnetized fluid/gas and second normal non-magnetized fluid/gas is carried out in according with a predetermined mixing ratio, where the majority of mixture is of the second normal non-magnetized fluid/gas.
Preferably, the treatment unit that is used for the production of the directly magnetized fluid/gas can be either a permanent magnet setup or an electromagnetic setup using a coil and a controlled current source. The magnetic or electromagnetic field in the treatment unit can be of any geometry (one-dimensional, two-dimensional, or three-dimensional magnetic fields according to the desired flux density values of Bx, By, and Bz); the nature of magnetic field can be in the attraction form or in the repulsion form (in case of permanent magnet setup); The required angle between the magnetic field and the direction of fluid/gas flow can be of any angle like 90, 0, 180 degrees or any other required angle.
Preferably, the process of applying magnetic or electromagnetic fields of certain flux densities and geometries on the directly magnetized fluid/gas within the treatment unit is carried out while the fluid/gas is in circulation.
Preferably, the production process of the directly magnetized fluid/gas can be achieved using the “inline pre-treatment and post-treatment sensors configuration” that comprises of: first, filling the normal non-magnetized fluid/gas in the treatment vessel from the normal fluid main supply tank; and second, performing a circulation process of a controlled flow through the treatment unit that outputs its flow back to the treatment vessel. In this configuration, a group of required sensors (that may be application and fluid dependent) are installed before and after the treatment unit that sends its sensory data to the control box in order to trace the changes in the physical and chemical quantities of the directly magnetized fluid/gas with time before and after the treatment unit for analysis purposes.
Alternatively, the production process of the directly magnetized fluid/gas can be also achieved using the “in-tank sensors configuration” that comprises of: first, filling the normal non-magnetized fluid/gas in the treatment vessel from the normal fluid main supply tank; and second, performing a circulation process of a controlled flow through the treatment unit that outputs its flow back to the treatment vessel. In this configuration, a group of required sensors (that may be application and fluid dependent) are installed in the treatment vessel that the sends its sensory data to the control box in order to trace the changes in the physical and chemical quantities of the directly magnetized fluid/gas with time for the fluid/gas in the treatment tank.
Alternatively, the production process of the directly magnetized fluid/gas can be also achieved using the “parallel flow configuration” that comprises of: first, filling the normal non-magnetized fluid/gas in the treatment vessel from the normal fluid main supply tank; and second, performing a circulation process of a controlled flow where the treatment vessel simultaneously receives a first controlled flow through the treatment unit and a second controlled flow directly from the treatment vessel.
Alternatively, the production process of the directly magnetized fluid/gas can be also achieved using the “single-cycle configuration” that comprises of: first, filling the normal non-magnetized fluid/gas in the normal fluid vessel from the normal fluid main supply tank; and second, performing a controlled flow to a second treatment vessel that receives a controlled flow through the treatment unit.
Preferably, the mixing process can be achieved using the bottom configuration that comprises of: first, depositing the first directly magnetized fluid/gas in the bottom of a mixing vessel; and second depositing the second normal non-magnetized fluid/gas on the top of the first directly magnetized fluid/gas. This process might be also repeated many times (alternative bottom configuration).
Alternatively, the mixing process can also be achieved using the top configuration that comprises of: first, depositing the second normal non-magnetized fluid/gas in the bottom of a mixing vessel; and second, depositing the first directly magnetized fluid/gas on the top of the second normal non-magnetized fluid/gas. This process might be also repeated many times (alternative top configuration).
Alternatively, the mixing process can also be achieved using the parallel flow two-tank configuration that comprises of: providing a first vessel for receiving the first directly magnetized fluid/gas; providing a second vessel for receiving the second normal non-magnetized fluid/gas; and providing a third vessel for receiving the third mixed or indirectly-magnetized fluid/gas that is in connection with the first and second vessels for simultaneously receiving a first controlled flow of the first directly magnetized fluid/gas and a second controlled flow of the second normal non-magnetized fluid/gas.
Alternatively, the mixing process can also be achieved using the parallel flow one-tank configuration that comprises of: providing an inline magnetic treatment unit for applying the magnetic or electromagnetic field of certain flux densities and geometries on the second normal non-magnetized fluid/gas to yield the first directly magnetized fluid/gas instantaneously; and providing a first vessel for normal non-magnetized fluid/gas in connection with the treatment unit and with a second vessel for the mixed or indirectly-magnetized fluid/gas; where the treatment unit receives from the first vessel a controlled flow of the second normal non-magnetized fluid/gas and applies the magnetic or electromagnetic field on the second fluid/gas; and where the second vessel simultaneously receives a first controlled flow of the first directly magnetized fluid/gas from the treatment unit and a second controlled flow of the second normal non-magnetized liquid from the first vessel.
Alternatively, the mixing process can also be achieved using the series flow one-tank configuration that comprises of: providing a first vessel for receiving the second normal non-magnetized fluid/gas; providing a second smaller vessel for receiving the first directly magnetized fluid/gas, and providing a third vessel for receiving the mixed or indirectly-magnetized fluid/gas, where the second small vessel receives a controlled flow of the second normal non-magnetized fluid/gas from the first vessel and outputs a flow of mixed or indirectly-magnetized fluid/gas for the third vessel comprising the first directly magnetized and second normal non-magnetized fluid/gas.
As a further aspect of the invention, there are provided apparatuses for the production of directly magnetized fluid/gas that include inline pre-treatment and post-treatment sensors configuration as shown in
As a further aspect of the invention, there are provided apparatuses for the mixing processes that include bottom configuration as shown in
As another aspect of the invention, there is provided a method of treating a fluid/gas, the method comprising using a first directly magnetized fluid/gas as a magnetizer or a magnetic treating agent for magnetizing the second normal non-magnetized fluid/gas.
Preferably, using the first directly magnetized fluid/gas as a magnetizer or a magnetic treating agent for magnetizing the second normal non-magnetized fluid/gas comprises mixing the first and second fluid/gas in accordance with a predetermined mixing ratio.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
In accordance with a first aspect of the present invention, there is, as an example, provided a method for indirect magnetic fluid/gas treatment where the normal fluid/gas is magnetically treated without being the object of direct magnetic or electromagnetic field.
The method of indirect magnetic fluid/gas treatment may comprise one, more or all the following steps:
It is to be noted that the previously mentioned treatment process have one, more or all of the following controlling parameters that are fluid/gas dependent and application dependent:
The principal characteristics of the present invention may comprise one, more or all of:
Application Case
The method and apparatus in accordance with the present invention were applied in the treatment of diesel fuel. In this example, a pair of rectangular NdFeb magnet setup of the size 15*10*6 cm for each magnet was used in the magnetic treatment setup shown in
Although the above description of the application case contains many specificities, these should not be construed as limitations on the scope of the invention but is merely representative of the presently preferred embodiments of this invention. The embodiments) of the invention described above is (are) intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2,740,584 | May 2011 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/059164 | 5/16/2012 | WO | 00 | 11/19/2013 |