Method and apparatus for inexpensively monitoring and controlling remotely distributed appliances

Information

  • Patent Grant
  • 8549131
  • Patent Number
    8,549,131
  • Date Filed
    Tuesday, August 21, 2012
    12 years ago
  • Date Issued
    Tuesday, October 1, 2013
    11 years ago
Abstract
A method and associated apparatus are described that enables unattended, remotely distributed appliances, such as vending machines, utility meters, thermostats and kitchen appliances (ovens, washing machines, refrigerators, etc.) to be connected inexpensively to each other and to a centrally located server. The apparatus 1) uses relatively simple “personality” modules to adapt the apparatus to the application in combination with a sophisticated core module that provides the intelligence needed to process data locally, to format that data and to transfer it to a remote server and 2) uses existing Internet-based communication links, thereby avoiding the costly proprietary links used with current state-of-the-art solutions.
Description
FIELD OF THE INVENTION

This invention relates to both wire-based and wireless communication systems and, in particular, to such systems used to collect data from unattended devices and to control the configuration and operating parameters of such devices.


BACKGROUND OF THE INVENTION

Unattended devices such as vending machines and utility meters all require periodic servicing. Vending machines need to be serviced, on a routine basis, often daily, regardless of their need to be replenished, to collect the cash deposited into the machines and to check their inventories. Many businesses have widely dispersed points of sale that must currently be monitored by employees who periodically travel to these sites to collect receipts and replenish stock. Others depend on customers to report the need for service ore maintenance or for information updates. Utility meters have to be read periodically, usually once each month. These activities take a significant amount of effort and represent significant expense to the vending machine operators and utility companies. This expense could be greatly reduced by monitoring such devices remotely. Vending machines would need to be serviced only when the inventory actually needs to be replenished, the cash container is nearing capacity or the machine is malfunctioning. Meters could be read without requiring someone's physical presence at the site.


Similarly, the ability to control devices such as thermostats from remote locations would enable building managers and utility companies to manage energy consumption dynamically, thereby moderating demand and substantially reducing the cost to the consumer. Building managers can control the environments and monitor security in dusters of buildings much more efficiently if this can be done remotely. Other devices, such as kitchen appliances and cash registers can also benefit from remote monitoring and control by, for example, enabling manufacturers to monitor malfunctions and schedule repairs or by providing real-time cash-flow information, Appliance manufacturers can improve customer satisfaction by monitoring their installed appliances and dispatch service personnel even before the customer is aware of a problem. Another area in which remote monitoring can be useful is in a home and building automation. Such capability would allow travelers or home caretakers to check the temperature in their living rooms and to adjust the heating or air-conditioning accordingly so that it will be comfortable when they arrive home and to open or close drapes or turn on or off the lights remotely to give the appearance of an occupied house or to ensure that their house plants receive the correct amount of sun.


Current techniques to provide such remote monitoring and control capabilities typically rely on proprietary radio-frequency networks, often with limited range, thereby still requiring personnel to travel physically to the site to drive a specially equipped van to within a few hundred yards of the site, or to use private radio frequencies or third-party communication links. Other techniques rely on the presence of a personal computer at the site to provide a communication link between the device of interest and the remote location. In addition, these current techniques require expensive communication hardware, thereby greatly limiting their use in price-sensitive applications. They are also typically tailored to specific applications.


SUMMARY OF THE INVENTION

A three-level architecture is disclosed whereby remotely distributed, unattended appliances such as vending machines, utility meters, thermostats and ordinary household appliances can be inexpensively monitored and controlled from a central site. The apparatus needed to implement the first level, the device level, consists of:

    • a. a relatively simple and inexpensive device communication module (DCOM) that is tailored to each application and used to convert between the data protocol native to the appliance (e.g., DEX, the data-exchange protocol used in many vending machines or the electrical pulses found in utility meters) to a special protocol used for connecting one or more DCOMs over a local-area network to a module, called the cluster communications module (CCOM), capable of communicating both with the DCOMs and with a central server over the Internet;
    • b. a CCOM, serving as a master of the aforementioned local-area network and accommodating a plug-in core modules (CM):
    • c. a CM that is implemented with any one of three Internet access formats, one (the CM-T) having a 56 Kbaud telephony interface, a second (the CM-E) having an Ethernet interface for accessing the Internet over a cable or digital subscriber loop (DSL) and a third (the CM-G) having a GSM/GPRS (Global System for Mobile communication/General Packet Radio Services) interface for accessing the Internet using either of those mechanisms;
    • d. a CM that, additionally, contains both a digital signal processor (DSP) chip for modulating and demodulating and otherwise processing communication signals, a central processing unit (CPU) for data formatting and processing, a flash memory for storing data processing programs and a random-access memory for storing received data


The second level of the architecture, the server level, features a centrally located server, accessible over the Internet by a plurality of CCOMs and by a plurality of users equipped with standard personal computers or handheld Internet access devices. The server implements application-specific data mining, formatting and user interface programs that enable users to access, in an accessible format, that information that is most useful to them. Its database is updated from its associated CCOMs either periodically, on an event-driven basis or on demands relayed to the CCOMs by the server.


The third level in the disclosed architecture, the user level, comprises a plurality of users, each equipped with an Internet access device, such as a personal computer or standard handheld device such as a Palm Pilot or an IPAQ, and running application-specific programs providing user-readable access to relevant information stored in the server. In addition, depending on the application, users are able to send commands through the server to individual CCOMs and, through them, to individual DCOMs, to control such things as item pricing, set points on thermostats and other switch settings.


Advantages include cost savings from reducing or eliminating entirely the need to send personnel to customer sites on a regular basis. Such cost savings can be realized with automatic, remote monitoring, enabling necessary data to be read at a central location, possibly requiring a worker's physical presence only when someone breaks or needs to be replenished. Vending machine companies and utilities are two examples of businesses that can realize substantial benefits through remote monitoring. The cost of the enabling apparatus can be made low enough to be paid for by the cost-savings. The need to customize devices for specific applications and the need to travel to within a certain radio transmission range of the controlled device can be eliminated.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates the three levels of the inventive system architecture along with the communication links connecting them.



FIGS. 2
a-2c show a flowchart describing a procedure whereby data is transferred from a device to a central server where it can be accessed by a authenticated user.



FIGS. 3
a-3c show a flowchart describing a procedure whereby commands are transferred from a user through a central server to a specific device or subset of devices.



FIG. 4 is a block diagram of a generic device communications module along with insets showing some of the available options.



FIG. 5 is a block diagram of a duster communications module also showing some of the available options.



FIG. 6
a is a block diagram of a core module having a GSM/GPRS interface.



FIG. 6
b is a block diagram of a core module having an Ethernet interface



FIG. 6
c is a block diagram of a core module having a telephonic interface.



FIG. 7 shows a typical handheld computer display in a vending machine application.



FIG. 8 shows a typical handheld computer display in an electrical metering application.





DESCRIPTION OF THE INVENTION

As illustrated in FIG. 1, the present invention is based on a three-level architecture: device level, server level and user level. The device level is composed of the physical entities (100-106) being monitored or controlled remotely (e.g., vending machines, utility meters, thermostats, etc.) The user level is composed of the interfaces (e.g., 129, 130; which may be Palm Pilots or PCs, etc.) through which the user communicates with the system. The server level refers to the central computing facility (128) to which data is transmitted and stored and from which control signals are sent to the devices and formatted information is sent to the user. Communication between the device and server levels and between the server and user levels takes place over the Internet using standard Internet protocols and procedures.


The inventive apparatus at the device level consists of embedded hardware that links the appliance with the Internet. The basic hardware building block is a relatively simple, customizable board, called a device communication module (DCOM). Each DOOM (107-112) contains a power converter and logic to provide physical and electrical interfaces to the appliance or appliances of interest. It communicates with one or more associated appliances using physical connections (e.g., serial RS232 or RS485 lines, TTL ports, power line carrier (PLC) links) and communication protocols (e.g., X.10 commands in home automation applications, the DEX protocol in vending machine applications) particular to that device. The DCOMs in turn use a dedicated, bi-directional, communications protocol, the DCOM/CCOM protocol (DCP), to communicate with a module (119-121) centrally located at the same site, called a duster communication module (CCOM), over a local-area network (LAN) using any of several physical links (113-118), for example, ISM-band RF links, RS-485 links or power-line carrier (PLC) links, depending on the nature of, and facilities at, the site in question. The DCP supports both a master/slave and a peer-to-peer communications mode, the latter used primarily in those environments in which multiple CCOMs are present and, for reliability purposes, it is advantageous to allow each DCOM to communicate with an alternate CCOM should it not be able to reach its primary CCOM. The DCOM contains sufficient processing power to convert data received from its associated appliance into a format appropriate for communication over the DCP and for converting commands received from the CCOM into appropriate control signals back to the appliance. Since each DCOM module contains only that logic needed to convert between the physical- and link-level appliance and DCP protocols and to serve as a slave on the LAN, it can be very small, of the order of two to three square inches, and sufficiently inexpensive to be incorporated into appliances such as thermostats without prohibitively increasing their cost.


In many applications, each CCOM supports a plurality Of DCOMs, in some cases as many as 64 or more. In some applications, however, when devices cannot be efficiently clustered, a CCOM may be able to support only one DCOM. In those applications, the functionality of the DCOM is integrated onto the CCOM (122), thereby eliminating the need for the DCOM as a separate module. In other applications in which large numbers of DCOMs are deployed in a area in which the distance between some of the DCOMs and their associated CCOM may exceed the range of a single LAN, relay communication modules (RCOMs, not shown in FIG. 1) can be inserted between a cluster of DCOMs and the CCOM. Their function is simply to collect data from each of their associated DCOMs and relay that information to the CCOM. Each CCOM, in turn, can be located within range of a plurality of RCOMs, thereby significantly increasing the number of DCOMs that can be supported by one CCOM.


Each CCOM communicates over the Internet (127) using any one of three wide-area network (WAN) access methods: In installations in which a telephone line is readily available, it may use a telephony link (123). In installations having cable access to the Internet, it may use an Ethernet link (124). When neither of these two access methods is convenient, it uses a GSM/GPRS link (125-126).


A flowchart of the procedure for transferring data from a device to a central server, where it can then be accessed by an authenticated user, is shown in FIG. 2. Steps 201 through 205 (FIG. 2a) are executed by the DCOM, steps 211 through 215 (FIG. 2b) by the CCOM and steps 221 through 225 (FIG. 2c) by the server.


Data generated by the device is periodically collected by the DCOM in response to some sort of triggering mechanism, typically a clock tick or in response to a command received from a user of the system. The DCOM then formats and stores the data (201) for subsequent retrieval. In response to a query from a CCOM (202), it reformats the data for transmission over the LAN used to communicate between the CCOM and its associated DCOMs (203). Alternatively, in some applications, the DOOM periodically initiates the transfer without an explicit query. In either case, the DCOM checks to determine if a successful transmission was acknowledged (204). If it was not, it retries the transmission, and, if several such retries are unsuccessful and if its configuration tables indicate that a backup CCOM is available, attempts to transfer the data to that CCOM (205).


The CCOM, on receiving new data from a DOOM similarly reformats the data for temporary storage (211) and waits for a request for data from the server (212). Like the DOOM, the CCOM can be programmed to initiate data transfers to the server on a periodic basis if the application so requires. In either event, the CCOM formats the data and transfers it to its associated server (213) and checks for the acknowledgement of a successful transfer (214). If none is received, it attempts a retransmission (215). If more than one WAN channel is available, some of the retry attempts are made using these alternative channels.


The server, on receiving the data, again reformats it (221), this time for storage in a database that can be accessed using application-specific programs. When a user application attempts to get access to the database (222), the access privileges of the user are first authenticated using standard authentication procedures (223). If the user is determined not to have the requisite access privileges for the type of access it is attempting, an “access denied” message is returned (224), Otherwise, the data is formatted as appropriate to the specific inquiry using an application-specific program and made available to the user (225).


The procedure for sending commands from a user to a CCOM or DCOM is illustrated in the flowchart in FIG. 3. Here, steps 311 through 216 (FIG. 3a) are those implemented in the server, 321 through 326 (FIG. 3b) those implemented in the CCOM and 331 and 332 (FIG. 3c) those implemented in the DCOM.


User-initiated commands received by the server are first parsed (311) to determine the nature of the command. The server then determines if the user issuing the command in fact has the authority to do so (312). If it does not, an “access denied” response is returned to the user (313). If the user has the privileges needed to issue the command, the command is formatted for WAN transmission to the designated CCOM (314) and relayed on to it, If the transmission is not successful (315) and the command is destined for a DCOM, it checks its configuration tables to determine if the DCOM can be accessed through another CCOM and, if so, attempts to use that backup link (316), If its configuration tables indicate that an alternative WAN is available, the server may also attempt to reach the CCOM in question through that means as well.


The CCOM on receiving the command parses it (321) to determine, among other things, whether it is addressed to the CCOM or to one of its associated DCOMs (322). In the former case, it executes the command and generates a “command executed” message to be returned, using the previously described data transfer procedure, back to the server (323). In the latter case, I formats the command and transmits it to the designated DOOM or DOOMS (324). If a successful transfer is not acknowledged (325), it attempts to retransmit it and, if still unsuccessful, attempts to use an alternative LAN link if one is available (326). In any event, it generates an error message indicating the number of retries attempted, the LANs used and the eventual success or lack thereof in transmitting the command to its destination.


On receiving a command, the DOOM parses and executes it (331) and creates an appropriate “command executed message (332) to be returned to the server, and from there made available to the user, again using the previously described data transmission procedure. Command execution by a DOOM may entail relaying that command to one or more of its associated devices to, for example, control the set points on a thermostat or to switch on or off some subset of those devices for purposes of energy consumption management. In such applications, a DOOM is in effect a gateway to its associated devices, allowing them to be controlled remotely and at the same time providing a means for collecting information (e.g., the rate at which energy is being consumed at any given time) pertaining to those devices. Furthermore, the DOOM can be programmed to issue commands to its associated devices autonomously, executing stored or down-loaded algorithms for changing device settings based, for example, on current energy consumption rates and user profiles.


One embodiment of the DOOM is illustrated in FIG. 3. It consists of five basic sections: The microcontroller section (400), the LAN section (401), the device interface section (402), the service interface section (403) and the power section (404). The Microcontroller section is implemented in one preferred embodiment of the invention with Rabbit Semiconductor's model 2000 microcontroller supported by 128 Kbytes of static random access memory and 256 Kbytes of read-only memory. It is used to control signal flow on the DOOM and for first-level data aggregation, compression and protocol conversion. It can be programmed to support any device-specific communication protocol such as the DEX protocol for vending machine applications and the X.10 command-link protocol. It stores behavioral parameters that control the way in which this data collection and processing is executed. These parameters can be modified based on commands relayed to the DCOM from its associated CCOM.


The DCOM communicates with a centrally located CCOM over local-area network (LAN). In the embodiment shown in FIG. 4, the LAN is a low-power ISM-band radio-frequency link. The DCOM communicates over that link using rf transceiver 407 (e.g., Atmel Corporation's model RF211 transceiver) and SMA connector 408, which is connected to a half-wave antenna (not shown). This section is augmented, in the preferred embodiment, with rf microcontroller 406 (e.g., the ATmega32), used to offload microcontroller 400 by implementing the analog-to-digital and digital-to-analog conversion and other modulation functions needed to support rf transceiver 407. In other embodiments in which rf communication is impractical, other physical LAN links, such as Blue Tooth, power-line carrier (PLC), the HPNA (Home Phoneline Networking Alliance) protocol, or Ethernet links (including IEEE standard 802.11 a & b wireless Ethernet) can be supported using different implementations of LAN section 401.


Data is received from and commands relayed to its associated device or devices through the device interface section 402, implemented in the embodiment shown in FIG. 4 with RS-485 port 414 and transceiver 413. In applications in which the device does not convey data through an RS-485 interface, this section is replaced by an interface section tailored to the device in question. Virtually any convenient physical link, including RS-232 and TTL links, can be supported through an appropriately modified device interface section 402.


Service section 403 is implemented with RS-232 transceiver 409 and male DB-9 connector 410 wired in the data terminal equipment (DTE) mode. It is used for on-site diagnostics and configuration purposes. In addition, in some applications in which data is presented by the device over an RS-232 link, this section can be used as the device interface section.


Power section 404 consists of a switching DC-to-DC regulator (411) and a power connector appropriate to the device. In some applications (e.g., some vending machine applications), data signals may also be transferred through the same connector that is used for power, in which case, an alternative power section such as 405 containing, in addition to the combined power and signal connector 417 and the switching regulator 416, a set of opto-couplers 415 used to provide electrical isolation between the DCOM and its associated device.


The RCOM is similar to a DCOM, and in fact can be identical to it, but with the microcontroller program enhanced so as to support its role both as a DCOM and as a relay between other DCOMs and a CCOM. In applications in which the RCOM is used purely as a relay, however, it can be implemented as a stripped down version of the DCOM, with, for example, sections 405 and 405 in FIG. 4 removed entirely. When serving as an rf-LAN relay, it time-multiplexes its communication activity, alternately communicating with its associated DCOMs and its associated CCOM.


The CCOM is implemented on a carrier board that contains a power converter and a local-area network interface enabling the CCOM to serve either as a LAN master or as a LAN peer and thereby communicate individually with each of its associated DCOMs. (In some applications in which only a single appliance is located at a site, the DCOM's device interface can be integrated directly onto the CCOM carrier board, thereby eliminating the need for a separate DCOM board.) The programmable computing, signal processing and communication logic that enable the data collected from the DCOMs to be processed and relayed over the Internet to the server level and the commands received from the server to be transferred to the DCOMs is implemented on a plug-in module, called the core module (CM), that is appliance independent. In this way, the amount of custom work needed to interface to different appliances is kept to a minimum, thereby significantly reducing the cost of the apparatus. The complexity associated with formatting, processing and storing data and supporting various communication protocols is implemented on the CM and does not need to be physically modified to support different applications.


The CCOM carrier board (FIG. 5) is similar in structure to the DCOM with the DCOM's microcontroller 400 replaced by connector 500 into which the appropriate core module can be plugged to give it both processing power and Internet access. It contains three basic interface sections: LAN section 501 (containing microcontroller 509, rf transceiver 510 and rf connector 511), service section 502 (comprising RS-232 transceiver 507 and DB-9 male connector 508) and power section 503 (containing switching regulator 512 and power connector 513). In applications in which a RS-485-based LAN is used rather than an rf LAN, LAN section 501 is replaced by alternative LAN section 504 consisting of a RS-485 transceiver 505 and connector 506. Each of these sections is identical to its DCOM counterpart. Moreover, in applications in which clustering is not feasible thereby requiring each device to have its own Internet access, the CCOM is implemented with the appropriate DCOM device interface (e.g., RS232 interface 403 or RS-485 interface 402).


The major difference between the CCOM and the DCOMs is in the core module itself. There are three versions of the CM, depending on its method of communicating with the Internet: the CM-G (FIG. 6a) is used for GSM/GPRS (Global System for Mobile communication/General Packet Radio Services) Internet access, the CM-E (FIG. 6b) for Ethernet access over a cable or digital subscriber loop (DSL) and, the CM-T (FIG. 6c) is used for telephonic access using a 56-Kbaud modem. The three core modules are identical except for the communications interface. Each CM contains a central processing unit 600 running a real-time kernel and having external address and data buses (603) to which both read-only (501) and random-access (602) memories are connected, an oscillator (604), a power regulator (605) and a connector (606) to mate with the corresponding connector (500) on the CCOM carrier board. Read-only memory 601 is used to store both the operating system code and the application code used to aggregate, compress, format and analyze the data received from the devices associated with each DCOM as well as the commands to be relayed to those devices. Random access memory 602 is used for buffering data transferred to and from the central server and for storing intermediate values calculated in processing and formatting that data.


In one preferred embodiment of the core module, the microprocessor is implemented with an Analog Devices Athena processor. An Athena chip includes a 32-bit, 39 MHz ARM7 processor core, a 16-bit, 78 MHz integrated digital signal processor (DSP), and 512 Kbytes of internal shared random-access memory. It also includes 24 Kbytes of DSP code and 16 Kbytes of IDSP data memory. The DSP implements low-level data formatting and encoding and decoding operations associated with the serial digital data stream, thereby freeing up the microprocessor for higher-level operations. These higher-level operations include data aggregation and formatting for transfer to the central server and parsing and distributing control information received from the central server. Behavioral parameters that control the nature of the data to be collected by the DCOMs are also stored in the core module's random access memory and, when modified on command from the central server, are relayed to the appropriate DCOM(s), thereby enabling these parameters to be changed dynamically.


In addition to the above, the CM-G also contains analog-to-digital (AD) and digital-to-analog (DA) converters 608 connected to the microprocessor through its serial I/O bus 607. The AD and DA converters are implemented with Analog Devices' Pegasus chip in one preferred embodiment of the CM-G. This chip also implements the Gaussian-filtered minimum shift keying (GMSK) modulation and demodulation required for communication over wireless GSM/GPRS channels. Radio-frequency modulation and demodulation, amplification and filtering take place in rf-modem 609. The modern output is connected through rf connector 610 to a half-wave antenna (not shown).


The core module CM-E (FIG. 6b) is used in installations, such as hose having cable or digital subscriber loop (DSL) access, requiring Ethernet communication capability. In this module, AD/DA converters 608 and rf modem 609 are omitted and Ethernet controller and transceiver 611 and RJ-44 connector 612 are added to the microprocessor's address and data bus 603. One preferred embodiment of the CM-E uses the Realtek RTL8019AS. with its fully integrated 10Base-T Ethernet controller and transceiver, to implement this function. The CM-G's rf connector 610 is replaced in the CM-E with RJ-44 connector 512 for connection to a 10Base-T Ethernet cable.


A block diagram of the CM-T core module used for 56-Kbaud telephonic applications is shown in FIG. 6c. In this case, the logic represent by blocks 608, 609 and 610 in the CM-G block diagram are replaced, on the microprocessor's serial bus, by codec 613, AD and DA converters 614 and RJ-11 connector 615. Those telephony digital signal processing functions that cannot be implemented in the DSP associated with microprocessor 600 are implemented in voice-band codec 613 and DA/AD converters 614. One preferred embodiment of the CM-T module uses Analog Devices' AD1803 for codec 613 and the Claire's CPC510 for the DA/AD converters 614.


The server level is implemented with standard, off-the-shelf servers running software modules including: communications modules that support virtually all wireless access devices using standard cable and wireless communication protocols (e.g., IP, HTTP, XML); processing modules that enable information to be presented to the user in a visually consistent manner and in multiple languages; a system management module to enable users and operators to specify system configurations and behavioral parameters such as alert and alarm triggers; and customization modules particularized to the data collection and distribution requirements of each application. Data received from the CCOMs can be archived on the server and subsequently mined to discern appliance usage trends for operations management and prediction purposes.


The user level in the architecture encompasses the set of interfaces that enable a user of the system to gain access to the collected, aggregated and formatted data and to issue behavioral commands to any subset of the CCOMs and DCOMs comprising the system of interest. All standard user Internet access devices are supported (e.g., personal computers, laptops, Palm-based systems, WindowsCE-based hand-held computers, etc.). Depending on the application and on the Internet access device being used, software applications can be run on the user device providing even greater data access and control capability. Again, depending on the application, the user has the ability to issue commands that are relayed by the server to a specific CCOM, and through it to a specific DCOM or set of DCOMs, thereby setting various appliance parameters such as item pricing in a vending machine or set points in a thermostat.


A typical user level display if shown in FIG. 7. In this case, the application involves the maintenance of a set of vending machines and the display is shown on a Compaq Corporation's IPAQ hand-held computer. This particular screen shows the state of the four vending machines at one particular installation, including the number and dollar value of the products sold at that location since it was last serviced and the current inventory of each of the vending machines there, as well as the distance between that location and the user. Users can request other menu-driven displays, for example, an aggregation of the inventory needs of all vending machines in a given area, depending upon their needs and objectives.


Other applications, of course, require different information to be displayed at the user level. FIG. 8, for example, shows a typical display for a metering application. This display shows both the current rate of electrical power consumption at a specific site identified by the serial number of the meter and the total consumption at that site since the time that meter was last reset. Other screens can be selected to show similar information aggregated across any subset of DCOM-equipped meters.

Claims
  • 1. A system for communicating appliance data, the system comprising: a cluster communications module, including: a core module;a first local area network LAN) communication device coupled to the core module; anda wide area network (LAN) communication device coupled to the core module,wherein the core module transmits and receives data through the first LAN communication device via a first communications protocol and transmits and receives data through the WAN communication device via a second communications protocol; anda device communications module communicatively coupled to an appliance, the device communications module including: a microprocessor;a second LAN communication device coupled to the microprocessor; anda device interface coupled between the microprocessor and the appliance and being adapted to transmit data to and receive data from the appliance via a third communications protocol;wherein the cluster communications module is communicatively coupled to the device communications module.
  • 2. The system of claim 1, wherein the cluster communications module is communicatively coupled to the device communications module by the first LAN communication device communicating with the second LAN communication device via the first communications protocol.
  • 3. The system of claim 1, wherein the second communications protocol is selected from the group consisting of at least: telephony protocol, Ethernet protocol, global system for mobile ((GSM) protocol, general packet radio services (GPRS) protocol, and radio frequency (RF) protocol.
  • 4. The system of claim 1, wherein the first communications protocol is selected from the group consisting of at least: radio frequency (RF) protocol, and Ethernet protocol.
  • 5. The system of claim 1, wherein the device interface is coupled to at least one of a vending machine, a thermostat, a switch, a utility meter, and a kitchen appliance.
  • 6. A device communications module communicatively coupled to an appliance, comprising: a microcontroller;a local area network (LAN) communication device coupled to the microcontroller; anda device interface coupled between the microcontroller and the appliance and being adapted to transmit data to and receive data from the appliance,wherein the device communications module is adapted to communicate with at least one of another device communications module and a cluster communications module via the LAN communication device.
  • 7. The device communications module of claim 6, further comprising a service interface coupled to the microcontroller.
  • 8. The device communications module of claim 7, wherein the service interface is configured to be used as a second device interface for coupling to a second appliance.
  • 9. The device communications module of claim 6, further comprising a power device coupled to the microcontroller.
  • 10. The device communications module of claim 6, wherein the LAN communication device is adapted to communicate via radio frequency (RF).
  • 11. The device communications module of claim 6, wherein the LAN communication device is selected from the group consisting of a Bluetooth device, a power-line, carrier, a phone line protocol, and an Ethernet link.
  • 12. The device communications module of claim 6, further comprising a transceiver for receiving and forwarding messages.
  • 13. The device communications module of claim 6, wherein the LAN communication device is a wireless communication device.
  • 14. A cluster communications module, comprising: a core module;a local area network (LAN) communication device coupled to the core module; anda wide area network (WAN) communication device coupled to the core module,wherein the core module transmits and receives data through the LAN communication device via a first communications protocol and transmits and receives data through the WAN communication device via a second communications protocol, andwherein the cluster communications module is adapted to communicate with at least one of a device communications module and another cluster communications module via the LAN communication device.
  • 15. The cluster communications module of claim 14, wherein the core module further comprises: a central processing unit;at least one memory;at least one data bus coupled to the central processing unit;an oscillator coupled to the central processing unit; anda power regulator coupled to the central processing unit,wherein the at least one memory further comprises: a read-only memory (ROM) in communication with the at least one data bus; anda random access memory (RAM) in communication with the at least one data bus.
  • 16. The cluster communications module of claim 14, further comprising: a microcontroller;a second local area network (LAN) device coupled to the microcontroller; anda device interface coupled between the microcontroller and an appliance and being adapted to transmit data to and receive data from the appliance.
  • 17. The cluster communications module of claim 14, wherein the second communications protocol is selected from the group consisting of at least: telephony protocol, Ethernet protocol, global system for mobile (GSM) protocol, general packet radio services (GPRS) protocol, and radio frequency (RF) protocol.
  • 18. The cluster communications module of claim 14, wherein the first communications protocol is selected from the group consisting of at least: radio frequency (RE) protocol, and Ethernet protocol.
  • 19. A communications module, comprising: a core module;a microprocessor;a local area network (LAN) communication device coupled to the core module;a wide area network (WAN) communication device coupled to the core module; anda device interface coupled between the microprocessor and an appliance and being adapted to transmit data to and receive data from the appliance via a first communications protocol,wherein the core module transmits and receives data through the LAN communication device via a second communications protocol and transmits and receives data through the WAN communication device via a third communications protocol.
  • 20. The communications module of claim 19, wherein the LAN communications device is adapted to communicate with another communications module.
  • 21. The communications module of claim 19, wherein the WAN communications device is adapted to communicate with a server.
  • 22. The communications module of claim 19, wherein the device interface is coupled to at least one of a vending machine, a thermostat, a switch, a utility meter, and a kitchen appliance.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/372,408, filed Feb. 13, 2012, now U.S. Pat. No. 8,407,333, issued Mar. 6, 2013, which is a continuation of U.S. patent application Ser. No. 12/490,867, filed Jun. 24, 2009, now U.S. Pat. No. 8,140,667, issued Mar. 20, 2012, which is a continuation of U.S. patent application Ser. No. 12/243,452, filed Oct. 1, 2008, now U.S. Pat. No. 7,752,309, issued Jul. 6, 2010, which is a continuation of U.S. patent application Ser. No. 10/298,300, filed Nov. 18, 2002, now U.S. Pat. No. 7,444,401, issued Oct. 28, 2008, the entireties of which are hereby incorporated by reference herein. Additionally, U.S. patent application Ser. No. 12/490,925, filed Jun. 24, 2009, now U.S. Pat. No. 7,792,946, issued Sep. 7, 2010, and U.S. patent application Ser. No. 12/490,957, filed Jun. 24, 2009, now U.S. Pat. No. 7,783,738, issued Aug. 24, 2010, are continuations of U.S. patent application Ser. No. 12/243,452, filed Oct. 1, 2008, now U.S. Pat. No. 7,752,309, issued Jul. 6, 2010, which is a continuation of U.S. patent application Ser. No. 10/298,300, filed Nov. 18, 2002, now U.S. Pat. No. 7,444,401, issued Oct. 28, 2008, the entireties of which are hereby incorporated by reference herein.

US Referenced Citations (268)
Number Name Date Kind
1788618 Cover Jan 1931 A
3254660 Ray Jun 1966 A
3593957 Dolter Jul 1971 A
3705385 Batz Dec 1972 A
4093997 Germer Jun 1978 A
4120031 Kincheloe et al. Oct 1978 A
4291375 Wolf Sep 1981 A
4388690 Lumsden Jun 1983 A
4414633 Churchill Nov 1983 A
4442492 Karlsson et al. Apr 1984 A
4465970 Dimassimo et al. Aug 1984 A
4516213 Gidden May 1985 A
4542469 Brandberry et al. Sep 1985 A
4591988 Klima et al. May 1986 A
4707852 Jahr et al. Nov 1987 A
4727900 Dooling et al. Mar 1988 A
4792946 Mayo Dec 1988 A
4803632 Frew et al. Feb 1989 A
4833618 Verma et al. May 1989 A
4868566 Strobel et al. Sep 1989 A
4881070 Burrowes et al. Nov 1989 A
4940976 Gastouniotis et al. Jul 1990 A
4967996 Sonoda et al. Nov 1990 A
5056107 Johnson et al. Oct 1991 A
5075792 Brown et al. Dec 1991 A
5079715 Venkataraman et al. Jan 1992 A
5239575 White et al. Aug 1993 A
5251480 Brunson et al. Oct 1993 A
5267587 Brown Dec 1993 A
5298894 Cerny et al. Mar 1994 A
5381136 Powers et al. Jan 1995 A
5434911 Gray et al. Jul 1995 A
5438329 Gastounioulis et al. Aug 1995 A
5451938 Brennan Sep 1995 A
5459459 Lee, Jr. Oct 1995 A
5481259 Bane Jan 1996 A
5493287 Bane Feb 1996 A
5519387 Besier et al. May 1996 A
5525898 Lee et al. Jun 1996 A
5553094 Johnson et al. Sep 1996 A
5590179 Shincovich et al. Dec 1996 A
5594740 LaDue Jan 1997 A
5594776 Dent Jan 1997 A
5617084 Sears Apr 1997 A
5631554 Briese et al. May 1997 A
5666655 Ishikawa et al. Sep 1997 A
5673252 Johnson et al. Sep 1997 A
5708195 Kurisu et al. Jan 1998 A
5714931 Petite Feb 1998 A
5748104 Argyroudis et al. May 1998 A
5751797 Saaden May 1998 A
5801643 Williams et al. Sep 1998 A
5815086 Ivie et al. Sep 1998 A
5852658 Knight et al. Dec 1998 A
5877703 Bloss et al. Mar 1999 A
5892758 Argyroudis Apr 1999 A
5907491 Canada et al. May 1999 A
5924051 Provost et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5940009 Loy et al. Aug 1999 A
5963146 Johnson et al. Oct 1999 A
5963557 Eng Oct 1999 A
5971011 Price Oct 1999 A
5979863 Lousberg Nov 1999 A
5986573 Franklin et al. Nov 1999 A
5994892 Turino et al. Nov 1999 A
6006212 Schleich et al. Dec 1999 A
6028522 Petite Feb 2000 A
6028855 Hirsch Feb 2000 A
6031455 Grube et al. Feb 2000 A
6031466 Leshets et al. Feb 2000 A
6044062 Brownrigg Mar 2000 A
6058374 Guthrie et al. May 2000 A
6060994 Chen May 2000 A
6069571 Tell May 2000 A
6081204 Lavoie et al. Jun 2000 A
6150955 Tracy et al. Nov 2000 A
6152173 Makowan Nov 2000 A
6163276 Irving et al. Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6195018 Ragle et al. Feb 2001 B1
6218953 Petite Apr 2001 B1
6233327 Petite May 2001 B1
6246677 Nap et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6288641 Casais Sep 2001 B1
6317051 Cohen Nov 2001 B1
6333975 Brunn et al. Dec 2001 B1
6373399 Johnson et al. Apr 2002 B1
6405047 Moon Jun 2002 B1
6424270 Ali Jul 2002 B1
6430268 Petite Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6470903 Reyman Oct 2002 B2
6493377 Schilling et al. Dec 2002 B2
6512463 Campbell et al. Jan 2003 B1
6528957 Luchaco Mar 2003 B1
6538577 Ehrke et al. Mar 2003 B1
6560543 Wolfe et al. May 2003 B2
6564159 Lavoie et al. May 2003 B1
6577961 Hubbard et al. Jun 2003 B1
6618578 Petite Sep 2003 B1
6624750 Merman et al. Sep 2003 B1
6628207 Hemminger et al. Sep 2003 B1
6628764 Petite Sep 2003 B1
6633781 Lee Oct 2003 B1
6653945 Johnson et al. Nov 2003 B2
6657552 Belski et al. Dec 2003 B2
6675071 Griffin, Jr. et al. Jan 2004 B1
6677861 Henry et al. Jan 2004 B1
6701956 Berger Mar 2004 B1
6710721 Holowick Mar 2004 B1
6747557 Petite Jun 2004 B1
6798352 Holowick Sep 2004 B2
6836737 Petite et al. Dec 2004 B2
6847300 Yee et al. Jan 2005 B2
6891838 Petite May 2005 B1
6914533 Petite Jul 2005 B2
6914893 Petite Jul 2005 B2
6931445 Davis Aug 2005 B2
6946972 Mueller et al. Sep 2005 B2
6954701 Wolfe Oct 2005 B2
6954814 Leach Oct 2005 B1
6978210 Suter et al. Dec 2005 B1
6980079 Shintani et al. Dec 2005 B1
7008239 Basinger et al. Mar 2006 B1
7009530 Zigdon et al. Mar 2006 B2
7012546 Zigdon et al. Mar 2006 B1
7042368 Patterson et al. May 2006 B2
7053767 Petite et al. May 2006 B2
7054271 Brownrigg May 2006 B2
7061924 Durrant et al. Jun 2006 B1
7072945 Nieminen et al. Jul 2006 B1
7079810 Petite Jul 2006 B2
7088239 Basinger et al. Aug 2006 B2
7089125 Sonderegger Aug 2006 B2
7099781 Heidl et al. Aug 2006 B1
7103511 Petite Sep 2006 B2
7111817 Teti et al. Sep 2006 B2
7117051 Landry et al. Oct 2006 B2
7124184 Chung et al. Oct 2006 B2
7137550 Petite Nov 2006 B1
7142107 Kates Nov 2006 B2
7248181 Patterson et al. Jul 2007 B2
7256704 Yoon et al. Aug 2007 B2
7263073 Petite Aug 2007 B2
7272635 Longitn et al. Sep 2007 B1
7292143 Drake et al. Nov 2007 B2
7295128 Petite Nov 2007 B2
7301456 Han Nov 2007 B2
7315257 Patterson et al. Jan 2008 B2
7342504 Crane et al. Mar 2008 B2
7349766 Rodgers Mar 2008 B2
7353280 Chiles et al. Apr 2008 B2
7356614 Kim et al. Apr 2008 B2
7363031 Aisa Apr 2008 B1
7385524 Orlosky Jun 2008 B1
7397907 Petite Jul 2008 B2
7417557 Osterloh et al. Aug 2008 B2
7423985 Hill Sep 2008 B1
7424527 Petite Sep 2008 B2
7443313 Davis et al. Oct 2008 B2
7444401 Keyghobad et al. Oct 2008 B1
7453373 Cumeralto et al. Nov 2008 B2
7468661 Petite et al. Dec 2008 B2
7478108 Townsend et al. Jan 2009 B2
7480501 Petite Jan 2009 B2
7526539 Hsu Apr 2009 B1
7533693 Colton et al. May 2009 B2
7650425 Davis Jan 2010 B2
7697492 Petite Apr 2010 B2
7739378 Petite Jun 2010 B2
7746246 Salser Jun 2010 B2
7752309 Keyghobad et al. Jul 2010 B2
7756086 Petite Jul 2010 B2
7783738 Keyghobad et al. Aug 2010 B2
7792946 Keyghobad et al. Sep 2010 B2
7843379 Menzer et al. Nov 2010 B2
7880641 Parris et al. Feb 2011 B2
7962101 Vaswani et al. Jun 2011 B2
7980317 Preta et al. Jul 2011 B1
8109131 Winter Feb 2012 B2
8140667 Keyghobad et al. Mar 2012 B2
8249042 Sparr et al. Aug 2012 B2
8351409 Albert et al. Jan 2013 B2
20010010032 Ehlers et al. Jul 2001 A1
20010024163 Petite Sep 2001 A1
20010048030 Sharood Dec 2001 A1
20020013679 Petite Jan 2002 A1
20020019725 Petite Feb 2002 A1
20020031101 Petite Mar 2002 A1
20020051546 Bizjak May 2002 A1
20020062392 Nishikawa May 2002 A1
20020067717 Raschke Jun 2002 A1
20020073183 Yoo Jun 2002 A1
20020089802 Beckwith Jul 2002 A1
20020130768 Che et al. Sep 2002 A1
20020169643 Petite Nov 2002 A1
20020190956 Klein Dec 2002 A1
20030009515 Lee Jan 2003 A1
20030018733 Yoon Jan 2003 A1
20030018776 Yoon et al. Jan 2003 A1
20030036810 Petite Feb 2003 A1
20030046377 Daum Mar 2003 A1
20030074109 Jeong Apr 2003 A1
20030107485 Zoratti Jun 2003 A1
20040010561 Kim et al. Jan 2004 A1
20040054747 Breh et al. Mar 2004 A1
20040129312 Cuzzo et al. Jul 2004 A1
20040139210 Lee et al. Jul 2004 A1
20040158333 Ha et al. Aug 2004 A1
20040183687 Petite Sep 2004 A1
20050067022 Istre Mar 2005 A1
20050078631 Cornwell Apr 2005 A1
20050096753 Arling May 2005 A1
20050104747 Silic et al. May 2005 A1
20050121880 Santangelo Jun 2005 A1
20050159823 Hayes Jul 2005 A1
20050190784 Stine Sep 2005 A1
20050195768 Petite Sep 2005 A1
20050195775 Petite Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050203647 Landry Sep 2005 A1
20060028355 Patterson et al. Feb 2006 A1
20060041655 Holloway Feb 2006 A1
20060098576 Brownrigg May 2006 A1
20060158347 Roche et al. Jul 2006 A1
20060201550 Blyth et al. Sep 2006 A1
20060218266 Matsumoto et al. Sep 2006 A1
20060273896 Kates Dec 2006 A1
20070059986 Rockwell Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070091825 Budampati et al. Apr 2007 A1
20070284293 Pitchford et al. Dec 2007 A1
20070293221 Hwang et al. Dec 2007 A1
20070298779 Wolman et al. Dec 2007 A1
20080061769 Junk et al. Mar 2008 A1
20080095403 Benhammou Apr 2008 A1
20080109090 Esmaili et al. May 2008 A1
20080149180 Parris et al. Jun 2008 A1
20080186898 Petite Aug 2008 A1
20080189056 Heidl et al. Aug 2008 A1
20080281534 Hurley Nov 2008 A1
20080291054 Groft Nov 2008 A1
20090058676 Orlosky Mar 2009 A1
20090068947 Petite Mar 2009 A1
20090133887 Garcia et al. May 2009 A1
20090153357 Bushman et al. Jun 2009 A1
20090215424 Petite Aug 2009 A1
20090243840 Petite Oct 2009 A1
20090255346 Hendey et al. Oct 2009 A1
20090287838 Keyghobad et al. Nov 2009 A1
20100017465 Brownrigg Jan 2010 A1
20100039984 Brownrigg Feb 2010 A1
20100194582 Petite Aug 2010 A1
20100250054 Petite Sep 2010 A1
20100265909 Petite Oct 2010 A1
20100312881 Davis Dec 2010 A1
20100329232 Tubb et al. Dec 2010 A1
20110018762 Walley et al. Jan 2011 A1
20110044276 Albert et al. Feb 2011 A1
20110140909 Olson et al. Jun 2011 A1
20120106518 Albert et al. May 2012 A1
20120305084 Ball et al. Dec 2012 A1
20130094537 Hui et al. Apr 2013 A1
20130107772 Splitz et al. May 2013 A1
20130109319 Splitz et al. May 2013 A1
Foreign Referenced Citations (14)
Number Date Country
1185838 Jun 1998 CN
2305333 Apr 1997 GB
6300606 Oct 1994 JP
07231363 Aug 1995 JP
2000285356 Oct 2000 JP
2008198044 Aug 2008 JP
2012507090 Mar 2012 JP
2012527706 May 2012 JP
9810299 Mar 1998 WO
9810394 Mar 1998 WO
2008087911 May 2010 WO
2010051287 May 2010 WO
2010135587 Nov 2010 WO
2011159403 Dec 2011 WO
Non-Patent Literature Citations (100)
Entry
Keyghobad, Seyamak; Examiner Interview Summary Record for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; mailed Dec. 7, 2009; 3 pages.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; mailed Sep. 14, 2009; 12 pages.
Keyghobad,Seyamak; Non-Final Rejection for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; mailed May 1, 2009; 5 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; mailed Jul. 19, 2010; 9 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; mailed Jun. 28, 2010; 10 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; mailed Jun. 24, 2010; 10 pgs.
Keyghobad,Seyamak; Non-Final Rejection for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; mailed Dec. 23, 2009; 17 pgs.
Keyghobad, Seyamak; U.S. Patent Application Entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances| under U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; 33 pages.
Keyghobad, Seyamak; U.S. Patent Application Entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances under U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; 33 pgs.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed May 18, 2006; 14 pages.
Keyghobad, Seyamak; Non-Final Rejection or U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Jun. 6, 2007; 33 pages.
Keyghobad, Seyamak; Certificate of Correction for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Mar. 31, 2009; 1 page.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Jul. 14, 2008; 6 pages.
Splitz, David. E.; U.S. Patent Application Entitled: Systems and Methods for Time-Based Hailing of Radio Frequency Devices assigned U.S. Appl. No. 13/283,526, filed Oct. 27, 2011, 51 pages.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002, mailed Oct. 8, 2008; 1 pg.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008 mailed Jun. 16, 2010; 1 pg.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; mailed Aug. 18, 2010; 1 pg.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; mailed Aug. 4, 2010; 1 pg.
Keyghobad, Seyamak; U.S. Patent Application Entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances under U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; 33 pgs.
Keyghobad, Seyamak; U.S. Patent Application Entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances under U.S. Appl. No. 12/490,867, filed Jun. 24, 2009; 33 pgs.
Keyghobad, Seyamak; Non Final Rejection for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, mailed Oct. 4, 2010; 13 pgs.
Keyghobad, Seyamak; Non Final Rejection for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, mailed Mar. 21, 2011; 9 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,867, filed Jun. 24, 2006, mailed Sep. 7, 2011; 6 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, mailed Nov. 2, 2011; 17 pgs.
Ball, Marty Scott; U.S. Patent Application Entitled: Valve Meter Assembly and Method under U.S. Appl. No. 13/149,720, filed May 31, 2011; 56 pgs.
Keyghobad, Seyamak; U.S. Patent Application Entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances under U.S. Appl. No. 13/372,408, filed Feb. 13, 2012; 34 pgs.
Splitz, David; PCT Application entitled: Systems and Methods for Dynamic Squelching in Radio Frequency Devices having serial No. PCT/US12/022060, filed Jan. 20, 2012, 39 pgs.
Splitz, David; PCT Application entitled: Systems and Methods for Time-Based Hailing of Radio Frequency having serial No. PCT/US11/058260, filed Oct. 28, 2011, 51 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012, mailed Jul. 27, 2012; 11 pgs.
Keyghobad, Seyamak; Supplemental Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012; 7 pgs.
Young et al. “Real-Time Intranet-Controlled Virtual Instrument Multiple-Circuit Power Monitoring,” IEEE Transactions on Instrumentation and Measurement, Jun. 2000. vol. 49, No. 3, p. 570. [Accessed Dec. 29, 2001] http://ieeexplore.ieee.org/xpls/abs—all.jsp?
De Almeida et al. “Advanced Monitoring Technologies for the Evaluation of Demand-Side Management Programs,” IEEE Transactions on Power Systems, Aug. 1994. vol. 9, No. 3. [Accessed Dec. 29, 2011] http://ieeexplore.ieee.org/xpls/abs—all.jsp?arnumber=336086.
Dolezilek. “Microprocessor Based Relay Information Improves the Power System,” Rural Electric Power Conference, May 1999. p. B5/1-B5/9. [Accessed Dec. 29, 2011] http://ieeexplore.ieee.org/xpls/abs—all.jsp? arnumber=768685.
Gehami et al. “Electronic Control System I Salient Feature in Substation,” Transmission & Distrubition, Mar. 1991. vol. 43, No. 3, p. 48. [Accessed Dec. 29, 2011—ProQuest].
Horlent. “New Metering and Reading Techniques Based on a Modular Design Concept,” 10th International Conference on Electricity Distribution, May 1989. vol. 5, p. 455-459. [Accessed Dec. 29, 2011—IEEExplore].
“In Brief,” Land Mobile Radio News, Jan. 16, 1998. vol. 52, No. 3, p. 1. [Accessed Dec. 29, 2011—ProQuest] http://proquest.umi.com/pqdweb?did=25435781&sid=1&Fmt=3&clientId=31810&RQT=309&VName%20=PQD.
“Landis & Gyr Utilities: Service Partnership Helps Utilities Use Available Resources More Effectively,” www.landisgyr.com/utilities/e/fr—press1—e.htm (archived Feb. 6, 1998) http://web.archive.org/web/19980206060801/http://www.landisgyr.com/utilities.
Tamarkin. “Automated Meter Reading”, Sep.-Oct. 1192, vol. 50, No. 5/ [Accessed Dec. 29, 2011] http://www.usc|corp.com/news/Automatic—Power—reading.pdf.
ANSI; “Protocol Specification for ANSI Type 2 Optical Port”, American National Standard, ANSI C.12.18-2006, 11 pgs.
Federal Communications Commission; “Understanding the FCC Regulations for Low-Power, Non-Licensed Transmitters”, Office of Engineering and Technology; Oct. 1993; 34 pgs.
Semtech; “TN1200.4, Calculating Radiated Power and Field Strength for Conducted Power Measurements”, Semtech Corporation, Camarillo, CA, 2007, 9 pgs.
RFM; “HX 2000 Datasheet: 916.5 MHz: Hybrid Transmitter”, RF Monolithics, Inc., Dallas, TX, USA, 1998; 2 pgs.
General Electric; “GEH-5081 kV Meter Product Manual”, Nov. 1997, 137 pgs.
General Electric; “kV RSX—RS232/RS485 Communications Options: Instructions Manual”; Mar. 1999, 33 pgs.
Orfield; “Badger® ORION® System Helps Lemmon, South Dakota Reduce Read Time, Billing Cycles”, Badger Connect Publication, 2004, 2 pgs.
AMCO; “Pit Water-Meter Transponder (PWT)”; AMCO Automated Systems, LLC; PDB-14611; Sep. 2002; 2 pgs.
AMCO; “Short-Range Programmer (SRP) VRT”; AMCO Automated Systems, LLC; PDB-14555.1; Sep. 2002; 2 pgs.
AMCO; Remote Water-Meter Transponder (RWT); AMCO Automated Systems, LLC; PDB-14610; Sep. 2002; 2 pgs.
Article entitled: “Remote Meter Reading”, http://www.meter.co.uk/RMR.html; accessed on Jul. 30, 2012, 2 pgs.
Article entitled: “Datamatic, Badger Connect for AMR Solutions”, http://www.datamatic.com/badger—partnership.html; accessed on Jul. 27, 2012, 1 pg.
Article entitled: “OET Exhibits List”, https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500&calledFromFrame=N&application—id=194044&fcc—id=; 2 pgs.
Keyghobad, Seyamak; Examiner Interview Summary Record for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Feb. 5, 2008; 2 pages.
Keyghobad, Seyamak; Requirement for Restriction/ Election for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Feb. 27, 2006; 17 pages.
Keyghobad,Seyamak; U.S. Patent Application entitled: Method and Apparatus for Inexpensively Monitoring and Controlling Remotely Distributed Appliances under U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; 40 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; mailed Mar. 22, 2010; 8 pages.
Hyland; U.S. Patent Application Entitled: Infrastructure Monitoring Devices, Systems and Methods under U.S. Appl. No. 13/101,235, filed May 5, 2011; 28 pgs.
Hyland; International Search Report and Written Opinion for serial No. PCT/US2009/062247, filed Oct. 27, 2009, mailed Dec. 18, 2009; 2 pages.
Splitz, David E.; U.S. Patent Application Entitled: Systems and Methods for Dynamic Squelching in Radio Frequency Devices assigned U.S. Appl. No. 13/339,655, filed Dec. 29, 2011; 50 pgs.
Keyghobad, Seyamak; Non-final office action for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; mailed Dec. 23, 2009; 12 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; mailed Aug. 2, 2010; 6 pgs.
Keyghobad, Seyamak; Non-final Office Action for U.S. Appl. No. 13/372,408, filed Feb. 23, 2012; mailed May 25, 2012; 17 pgs.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, mailed Feb. 29, 2012; 1 pg.
Splitz, David; International Search Report and Written Opinion for serial No. PCT/US11/58260, filed Oct. 28, 2011, mailed Feb. 7, 2012, 3 pgs.
Splitz, David; International Search Report and Written Opinion for serial No. PCT/US12/22060, filed Jan. 20, 2012, mailed Mar. 29, 2012, 8 pgs.
Hyland; International Search Report and Written Opinion for serial No. PCT/US11/035374, filed May 5, 2011, mailed Sep. 13, 2011; 7 pgs.
Hyland; PCT Application Entitled: Infrastructure Monitoring Devices, Systems, and Methods having serial No. PCT/US11/35374, filed May 5, 2011, 24 pgs.
Hyland; PCT Appplication entitled: Infrastructure Monitoring Devices, Systems, and Methods having serial No. PCT/US10/35666, filed May 20, 2010; 31 pgs.
Hyland; International Search Report and Written Opinion for serial No. PCT/US10/035666, filed May 20, 2010, mailed Jul. 16, 2010, 2 pgs.
Hyland; PCT Application entitled: Infrastructure Monitoring System and Method having serial No. PCT/US09/62247, filed Oct. 27, 2009, 30 pgs.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, mailed Oct. 18, 2012; 44 pgs.
Hyland; U.S. Provisional Patent Application entitled: Infrastructure Monitoring Devices, Systems, and Methods, having U.S. Appl. No. 61/355,468, filed Jun. 16, 2010; 31 pgs.
Hyland; U.S. Provisional Patent Application entitled: Water Supply Infrastructure Monitoring System and Method, having U.S. Appl. No. 61/108,770, filed Oct. 27, 2008, 11 pgs.
Hyland; U.S. Provisional Patent Application entitled: Water Supply Infrastructure Monitoring System and Method, having U.S. Appl. No. 61/180,600, filed May 22, 2009, 14 pgs.
Hyland; U.S. Patent Application entitled: Infrastructure Monitoring System and Method, having U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, 30 pgs.
Hyland; U.S. Application entitled: Infrastructure Monitoring Devices, Systems, and Methods, having U.S. Appl. No. 12/784,300, filed May 20, 2010, 32 pgs.
Keyghobad, Seyamak; Requirement for Restriction/ Election for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Feb. 9, 2006; 11 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012; mailed Nov. 1, 2012; 18 pgs.
European Search Report for serial No. EP2433440, filed Nov. 18, 2011, mailed Nov. 21, 2012, 6 pgs.
Mexico Office Action for serial No. MX/A/2011/01283, filed May 20, 2010, mailed Nov. 21, 2012, 3 pgs.
Hyland; International Search Preliminary Report on Patentability for serial No. PCT/US11/035374, filed May 5, 2011, mailed Dec. 19, 2012; 5 pgs.
Patterson, Tim; Request for Ex Parte Reexamination under U.S. Appl. No. 90/012,468, filed Sep. 6, 2012; 52 pgs.
Patterson, Tim; Request for Ex Parte Reexamination under U.S. Appl. No. 90/012,449, filed Aug. 23, 2012; 51 pgs.
Radix Corporation; “Automatic Meter Reading”, 2 pgs.
Transparent Techcnologies; “Model M1A: Utility Radio Transmitter; M1A Operating Instructions”; 7 pgs.
Trace; “Pit Water-Meter Transponder”; User Guide; 16 pgs.
Hyland; International Preliminary Report on Patentability for serial No. PCT/US2009/062247, filed Oct. 27, 2009, mailed May 3, 2011, 7 pgs.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; mailed Oct. 26, 2007; 36 pages.
Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, mailed Mar. 21, 2013, 3 pgs.
Mexico Office Action for serial No. MX/a/2011/01283, filed May 20, 2010, mailed May 9, 2013, 4 pgs.
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 13/283,526, filed Oct. 27, 2011, mailed Jun. 18, 2013, 67 pgs.
Hyland; International Preliminary Report on Patentability for serial No. PCT/US10/035666, filed May 20, 2010, mailed May 22, 2011, 6 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, mailed Apr. 10, 2013, 80 pgs.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012, mailed Mar. 6, 2013, 1 pg.
Japenese Office Action for serial No. 2011-533427, filed Oct. 27, 2009, mailed Apr. 30, 2013, 14 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 12/784,300, filed May 20, 2010, mailed May 29, 2013, 71 pgs.
Hyland; European Search Report for serial No. EP09824079.9, filed Oct. 27, 2009, mailed May 8, 2012; 38 pages.
Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, mailed Mar. 21, 2013, 4 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2012/015236, filed Dec. 19, 2012, mailed Jun. 13, 2013, 4 pgs.
Hyland, Gregory;Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, mailed Jul. 18, 2013, 6 pgs.
Hyland, Gregory E., Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, mailed Jul. 31, 2013; 57 pgs.
Related Publications (1)
Number Date Country
20120311170 A1 Dec 2012 US
Continuations (4)
Number Date Country
Parent 13372408 Feb 2012 US
Child 13590954 US
Parent 12490867 Jun 2009 US
Child 13372408 US
Parent 12243452 Oct 2008 US
Child 12490867 US
Parent 10298300 Nov 2002 US
Child 12243452 US