Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
The present disclosure generally relates to vertebral stabilization, and, more specifically, devices and methods to inhibit adjacent level kyphosis and/or adjacent level failure such as proximal junctional failure.
Adjacent level failure is a failure of a vertebral column that may follow a less serious condition of adjacent level kyphosis, which is an increased posterior convexity of the vertebral column as viewed from the side. Adjacent level kyphosis and failure, particularly proximal junction kyphosis (PJK) and proximal junction failure (PKF), are known complications for patients who undergo spinal surgery (e.g., spinal fusion surgery). To straighten a distracted spine (e.g., scoliosis), it is known to use vertebral osteosynthesis equipment including, but not limited to, anchoring members for anchoring to the vertebrate (e.g., pedicle screws and/or lamina hooks), connecting rods, and connectors for connecting the rods to the anchoring members, to form a rigid posterior instrumentation construct. However, a spine of the patient who underwent spinal surgery using conventional posterior instrumentation may experience increased loading on vertebral segments adjacent to the instrumentation. The increased load in the adjacent segments may result in adjacent level kyphosis and/or even failure, which may require a repeat, revisionary surgery.
The prevalence and consequences of PJK and PJF are not fully understood. However, different authors have reported the prevalence of PJK following spinal deformity fusion surgeries as ranging from 20% to 39%. The prevalence of PJF has been reported to range between 1.4% and 35%. The cost of revision surgery following PJF has been estimated to be about $77,000.
The systems, methods, and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
The present disclosure provides instruments and methods for inhibiting adjacent junctional failure such as proximal junctional failure in a patient having posterior spinal instrumentation. An embodiment of the method can comprise the steps of creating a first transverse bore through a spinous process of a vertebral body of a spine, superior and adjacent an uppermost instrumented vertebral body. A second transverse bore is created through a spinous process of the uppermost instrumented vertebral body. An optional third transverse bore may be created through a spinous process of a vertebral body inferior and adjacent the uppermost instrumented vertebral body;
A tensioning band is threaded through the first, second and third bores, and proximally retracted to bias the upper and lower spinous processes together and also to bias all involved spinous processes in an inferior direction. The tension band is locked with respect to the spine to maintain tension.
The locking step may comprises attaching a connector to the posterior instrumentation and locking the tension band to the connector. Alternatively the locking step comprises attaching a connector to the spine and locking the tension band to the connector.
The tension band may have first and second ends, and both the first and second ends exit the first transverse bore and are locked under tension to a connector secured with respect to the spine. The spinal instrumentation may include a left rod and a right rod, and the tension band is secured to the connector at a point that is medial to the left and right rods.
The creating a first transverse bore step may comprise locating opposing jaws of a bone punch on opposing sides of the spinous process, and punching the first transverse bore. The method may additionally comprise the step of inserting a liner into at least the first transverse bore, prior to the threading a tension band step. The inserting a liner step may comprise inserting a grommet into at least the first transverse bore.
The stabilization or force distribution system of the present invention seeks to modify the forces across the UIV and UIV-1 junction, possibly supplementing the interspinous and supraspinous ligament complexes above the upper instrumented level. In one implementation of the invention, the spinous process of the uppermost and the lowermost of the selected group of three vertebral bodies centered on UIV will be biased towards each other, and all three will be biased in an inferior direction and held in place by locking such as to the posterior instrumentation.
Also disclosed herein are embodiments of a method of inhibiting proximal junctional failure in a patient having posterior spinal instrumentation, comprising the steps of creating a first transverse bore through a spinous process of a vertebral body of a spine, superior and adjacent an uppermost instrumented vertebral body, a second transverse bore through a spinous process of the uppermost instrumented vertebral body, and a third transverse bore through a spinous process of a vertebral body inferior and adjacent the uppermost instrumented vertebral body, threading a tension band having a first end and a second end through the first, second and third bores, extending the tension band inferiorly of the third transverse bore, under tension, and locking the tension band with respect to the spine.
In some embodiments, the locking can comprise attaching a connector to the posterior spinal instrumentation and locking the tension band to the connector. In some embodiments, the locking can comprise attaching a connector to the spine and locking the tension band to the connector. In some embodiments, the tension band has first and second ends, and both the first and second ends exit the first transverse bore and are locked under tension to a connector secured with respect to the spine. In some embodiments, the posterior spinal instrumentation can include a left rod and a right rod, and the tension band is secured to the connector at a point that is medial to the left and right rods.
In some embodiments, the creating a first transverse bore step can comprise locating opposing jaws of a bone punch on opposing sides of the spinous process, and punching the first transverse bore. In some embodiments, the method can further comprise inserting a liner into at least the first transverse bore, prior to the threading a tension band step. In some embodiments, the inserting the liner can comprise inserting a grommet into at least the first transverse bore.
In some embodiments, the tension band can extend through the first bore in a first direction, the second bore in a second direction generally opposite the first direction, and the third bore in the first direction, wherein the first end of the tension band is located one a first side of the spinous process and where the second end of the tension band is located on a second side of the spinous process. In some embodiments, the second end of the tension band can extend through the first bore in the first direction. In some embodiments, the method can further comprise extending a second tension band having a first end and a second end through the first bore, the second bore, and the third bore. In some embodiments, the second tension band can extend through the first bore in the second direction, the second bore in the first direction, and the third bore in the second direction, wherein the first end of the second tension band is located on the second side of the spinous process and the first end of the second tension band is located on the first side of the spinous process. In some embodiments, the second end of the second tension bands can extend through the first bore in the second direction.
Also disclosed herein are embodiments of a system of inhibiting proximal junctional failure in a patient having posterior spinal instrumentation, the system comprising at least one tension band having a first end and a second end, at least one connector configured to be attached to the patient's spine or the posterior spinal instrumentation, wherein the at least one tension band is configured to pass through a plurality of transverse bores in at least two vertebrae of the patient's spine, wherein the first end of the at least one tension band and the second end of the at least one tension band are locked under tension in the at least one connector.
In some embodiments, the system can further comprise a bone punch configured to create the plurality of transverse bores. In some embodiments, the system can comprise a plurality of connectors and wherein the first end of the at least one tension band is locked under tension in a first of the plurality of connectors and the second end of the at least one tension band is locked under tension in a second of the plurality of connectors. In some embodiments, the first of the plurality of connectors and the second of the plurality of connectors can be configured to be located on opposite transverse sides of the patient's spine. In some embodiments, the at least one tension band can comprise a first tension band and a second tension band each having a first end and a second end, and wherein the at least one connector comprises a first connector and a second connector, wherein the first end and the second end of the first tension band are locked under tension in the first connector, and wherein the first end and the second end of the second tension band are locked under tension in the second connector.
In some embodiments, the first connector and the second connector can be configured to be located on opposite transverse sides of the patient's spine.
Further disclosed herein are embodiments of a kit which can include the system/equipment discussed herein.
Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted, depending upon the desired clinical result. For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the embodiments have been described herein. It is to be understood that not necessarily any or all such advantages may be achieved in accordance with any particular embodiment of the invention disclosed herein. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein. No individual aspects of this disclosure are essential or indispensable.
All of these embodiments are intended to be within the scope of the present disclosure. Further features and advantages of the embodiments will become apparent to those skilled in the art in view of the Detailed Description which follows when considered together with the attached drawings and claims, the invention not being limited to any particular preferred embodiment(s) disclosed.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings and appendices, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Disclosed herein are embodiments of systems, methods, assemblies, and devices which can be incorporated into spinal deformity surgery. Advantageously, tension can be applied onto a patient's spine which can prevent the need for further corrective surgery (e.g., revision surgery). The disclosed techniques and equipment can be used with previously installed spinal equipment, as well as during new surgical procedures. Further, modifications can be made to previously installed spinal equipment in order to incorporate the below disclosed techniques. Advantageously, the disclosed systems can keep the integrity of the supra and intra spinous ligament and focus on anchorage through the spinous process.
Spinal deformity surgery commonly involves implantation of multilevel spinal fusion instrumentation to reshape and rigidly constrain a section of the spine. Post-surgery, a patient may experience an increase in spinal stiffness and an increased loading within spinal segments adjacent to the end of the instrumentation. The increased load in the adjacent segments may result in adjacent level kyphosis or failure, which may require revision surgery. Thus, vertebral osteosynthesis equipment which is configured to distribute the increased loading within adjacent segments to other segments would be desirable to minimize the occurrence of or reduce the severity of adjacent level kyphosis and/or failure.
With reference to
Thus, in accordance with one aspect of the present disclosure, a selected group of two or three or more adjacent vertebral bodies can be secured together in a manner that distributes forces experienced at the junction between an instrumented vertebral body and an adjacent uninstrumented vertebral body. For example, if the superior most instrumented vertebral body UIV is T10, the three vertebral bodies T9-T11 will preferably be stabilized as described herein. However, more or less vertebral bodies can be stabilized as well. For example T9-T10, T10-T11, T8-T12, T8-T11, or T9-T12. In some embodiments, two, three, four, five, six, seven, eight, nine, or ten vertebral bodies can be stabilized together. In some embodiments, more than two, three, four, five, six, seven, eight, nine, or ten vertebral bodies can be stabilized together. In some embodiments, less than three, four, five, six, seven, eight, nine, or ten vertebral bodies can be stabilized together. In one implementation, the spinous process of the uppermost and the lowermost of the selected group of three vertebral bodies centered on UIV (or LIV) will be biased towards each other, and all three will be biased in an inferior direction and held in place by locking to the posterior instrumentation. This may be accomplished using any of a variety of customized clamps or fixtures, or, as described in greater detail below, by weaving one or two or more flexible tension bands through and or around the spinous process of the involved vertebral bodies.
With reference to
In one example, as shown in
With reference to
In the construct illustrated in
With reference to
The second conduit 213 is separate from the first conduit 211 and is not in communication therewith. In alternate embodiments, they may be connected. It can be rectilinear between the opening 218 for insertion therein of the one or two or more tension band wires 120 and/or 122 and the opening 213 opposite that conduit 211. The latter may be formed at an angle such as about 45° relative to a length of the connector 140 defined jointly by said first portion 210 and second portion 212, such that the opening 218 emerges on a side of the second portion 212 substantially opposite the first portion 210, or remote from said first portion 210. In some embodiments, where a single connector 140 is used, the connector 140 can contain an additional conduit so that each tension band 120/122 is in a separate conduit. U.S. Pat. No. 9,314,275, issued Apr. 19, 2016, describes the connector in greater detail and is hereby incorporated by reference in its entirety herein.
Each of the connecting rod conduit 211 and tension band conduit 213 has a central longitudinal axis which extends approximately in parallel with the side walls of the respective conduit. The longitudinal axis of the second conduit 213 may be oriented relative to the longitudinal axis of the first conduit 211 such that when the connector is mounted to a posterior rod, the longitudinal axis of the second conduit 213 extends at an angle of no more than about 25°, preferably no more than about 15°, and more preferably within about 5° of the straight line between the closest opening of second conduit 213 and the spinous process bore from which the tension band exits, typically the first transverse bore. The point at which the tension band enters the connector is typically at a point that is medial to the left and right posterior fusion rods, and preferably within about 1.0 inches or 0.75 inches or 0.5 inches of the sagittal plane of the spine.
Referring to
Although the vertebrae 170, 172, and 174 are referred to as top, middle, and bottom vertebrae, it will be appreciated that the vertebrae 172 and 174 may be two vertebrae on which the connecting rods 132 are mounted, and the vertebra 170 is a UIV+1 vertebra without the connecting rods 132 and most adjacent to the two vertebrae 172 and 174 on which the connecting rods 132 are mounted.
The transverse holes through the spinous process may be formed (e.g., drilled, punched, created) with the aid of a drill guide. The drill guide may guide the drill bit to a point which is approximately centered on the spinous process in the inferior-superior direction. The drill guide may also guide the drill bit to a point adjacent the base of the spinous process.
The edges of the drilled bore may be sufficiently rough to inhibit feeding the free end of the tension band there through. A drill bore liner, having a lumen defined by a tubular wall, may be placed within the bore to facilitate threading the end of the band therethrough. The liner may remain in the bore after threading the band, or may be removed. In some embodiments, the liner is biodegradable. The tubular wall may be provided with a radially outwardly extending annular flange, to seat against the side of the spinous process and retain the liner in position. Alternatively, a temporary tool such as a funnel shaped guide on a handle may be provided, to facilitate introduction of the tension band into the bore.
As shown in
In some embodiments, the tension band may thread past the UIV+1/−1. Thus, the tension bands may extend to UIV+2/−2, UIV+3/−3, etc. In some embodiments, the tension bands may equally extend from UIV (e.g., extend between +2/−2). In alternate embodiments, the tension bands may extend unequally from UIV (e.g., extend between +2/−3).
In some embodiments, vertebrae may be skipped. For example, vertebrae may be skipped if anatomy does not allow band passage. Thus, the tension bands may extend through UIV+1/−1 and move directly to UIV+3/−3. In some embodiments, if a vertebrae is skipped on the + side of UIV, the equivalent UIV—may be skipped as well. In some embodiments, the tension bands may equally extend from UIV. In alternate embodiments, the tension bands may extend unequally from UIV. In some embodiments, the tension bands may extend through the same vertebrae on the positive side of UIV and the negative side of UIV. In some embodiments, the tension bands may extend through different vertebrae on the positive side of UIV as compared to the negative side of UIV.
Referring to
While the above discloses one method for installing tension bands, it will be understood that other methods could be used as well. For example, ends of the tension band could be adhered within the holes in the vertebrae, and thus the tension band may only have one free end for applying tension. In some embodiments, the tension band could be chemically (e.g., glued, cemented, epoxied) or mechanically adhered within the holes in the vertebrae. In some embodiments, the tension band could be attached directly to the vertebrae. In some embodiments, the tension band could be connected with an intermediate component that can fit within the holes in the vertebrae, and the intermediate component can be attached to the vertebrae.
Alternatively, a single passage approach can be used as shown in
Different loop configurations can be used as well, and the described methodology is not so limiting. In some embodiments, the holes 111/113/115 can include separate lumens for each time the band 120 passes through the lumens. In some embodiments, the band may enter the same lumen multiple times.
In some embodiments, one end of the tension band 120 may connected to a left rod and the other to a right rod, for example through the connectors discussed herein.
In some embodiments, one or more of the tension bands can be re-tensioned after a period of time. For example, re-tensioning can occur every month, six months, one year, or two years. This can be done automatically, such as having the connector be configured to be rotated, such as through the use of an electrical connection, or manually through surgery. In some embodiments, the tension bands can be replaced after a period of time. In some embodiments, the tension bands will never have to be re-tensioned or replaced.
Alternate connectors 140 are illustrated in
At least one tension band conduit 213, and preferably a first tension band conduit 213A and a second tension band conduit 213B are provided for receiving the two inferiorly extending free ends of the tension band. At least one and preferably both openings of each tension band conduit 213A and 213B are provided with a tapered opening 230 to facilitate threading a free end of the tension band there through.
In the illustrated embodiment, a single locking screw 220 is configured to compress both tension band ends, extending through respective conduits 213A and 213B. Alternatively, a separate locking screw 220A and 220B (not illustrated) may be provided for each of the tension band conduits 213A and 213B respectively.
Each of the tension band conduits 213A and 213B, and the rod conduit 211 has a central longitudinal axis. All three of the central longitudinal axes extend approximately in parallel to each other, and preferably deviate from parallel by no more than about 15°, no more than about 10°, and in many embodiments no more than about 5° or 2° so that when mounted on a rod, the longitudinal axis of the tension band conduits extend in a generally inferior-superior direction in alignment with the inferiorly extending ends of the tension bands following exit from the spinous process aperture. The connector may be attached to the rod such that the tension band conduits are on the medial side of the rod, to allow the tension bands to provide a downward and medial bias on the connected spinous processes. In an embodiment (not illustrated) configured to lock to a cross bar, the longitudinal axes of the conduit 211 may be modified accordingly, but the longitudinal axes of the tension band conduits will preferably maintain the inferior-superior orientation to avoid bending the tension band.
For example, the direction of the tension band conduits 213A/213B can be cranio caudal. Additionally, the connector 240 can have a dual independent locking mechanism for the rods and the bands.
Further, in the side mounting embodiment, a lateral opening 232 is provided in the sidewall 230, to allow the connector 240 to be advanced laterally onto the rod. This allows the surgeon to position the device on the rod once the construct is in place.
A circumferentially extending projection from the body such as an axially extending lip 234 is located adjacent longitudinal recess 217, to enable the rod to be entrapped within longitudinal recess 217 by distal advance of the locking screw 216. This construct enables attachment of the connector 240 after the rod has been fully secured to one or more bones screws to complete the posterior instrumentation.
Punching
As shown in
Accordingly, there are a number of options to introduce the tension band through the spinous process. For example, the tension band can extend directly through the bone, or through a grommet 312 such as discussed above. The grommet can be incorporated into the punching instrument so that the grommet 312 remains after punching, or can be introduced after the punch hole is formed.
System Kit
The above-described equipment/components can be included in a kit. The equipment may be contained within a container, such as a bag, box, etc., or may be separate and loose. The kit can include, for example, one or more tension bands (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) and one or more of any of the connectors discussed above (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10). The connectors can all be the same, or there can be a variety of connectors. The kit can further include liners, bone punches, or grommets as discussed above. No particular equipment is required, and some kits may include more or less equipment. In some embodiments, alcohol swabs, betadine, cloth, or other equipment can further be included, and the discussion herein should not be so limited.
Implementing Systems and Terminology
Implementations disclosed herein provide systems, methods and apparatus for limiting flexion of vertebrae and/or inhibiting adjacent level kyphosis or adjacent level failure by way of a vertebral osteosynthesis equipment comprising a tension band.
As used herein, “distal” refers to the end of a tool positioned closest to the patient during use, and “proximal” refers to the end of a tool positioned closest to the operator (e.g., a physician). Stated differently, the relative positions of components of a tool are described herein from the vantage point of the operator.
It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
From the foregoing description, it will be appreciated that inventive tensioning systems, kits, and methods of use are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount. If the stated amount is 0 (e.g., none, having no), the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.
The disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4382438 | Jacobs | May 1983 | A |
5006984 | Steele | Apr 1991 | A |
5011484 | Breard | Apr 1991 | A |
5163440 | DeLuca et al. | Nov 1992 | A |
5209752 | Ashman et al. | May 1993 | A |
5224035 | Yamashita et al. | Jun 1993 | A |
5251127 | Raab | Oct 1993 | A |
5291901 | Graf | Mar 1994 | A |
5305203 | Raab | Apr 1994 | A |
5312405 | Korotko et al. | May 1994 | A |
5366455 | Dove | Nov 1994 | A |
5413116 | Radke et al. | May 1995 | A |
5514180 | Heggeness | May 1996 | A |
5609634 | Voydeville | Mar 1997 | A |
5667506 | Sutterlin | Sep 1997 | A |
5748767 | Raab | May 1998 | A |
5785663 | Sarvazyan | Jul 1998 | A |
6015409 | Jackson | Jan 2000 | A |
6086590 | Margulies | Jul 2000 | A |
6213958 | Winder | Apr 2001 | B1 |
6277120 | Lawson | Aug 2001 | B1 |
6282437 | Franck et al. | Aug 2001 | B1 |
6302888 | Mellinger et al. | Oct 2001 | B1 |
6364849 | Wilcox | Apr 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6409684 | Wilk | Jun 2002 | B1 |
6443953 | Perra et al. | Sep 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6565519 | Benesh | May 2003 | B2 |
6585666 | Suh et al. | Jul 2003 | B2 |
6711432 | Krause et al. | Mar 2004 | B1 |
6715213 | Richter | Apr 2004 | B2 |
6716213 | Shitoto | Apr 2004 | B2 |
6746449 | Jones et al. | Jun 2004 | B2 |
6786930 | Biscup | Sep 2004 | B2 |
7066938 | Slivka et al. | Jun 2006 | B2 |
7338526 | Steinberg et al. | Mar 2008 | B2 |
7509183 | Lin | Mar 2009 | B2 |
7534263 | Burdulis | May 2009 | B2 |
7542791 | Mire et al. | Jun 2009 | B2 |
7570791 | Frank et al. | Aug 2009 | B2 |
7606613 | Simon et al. | Oct 2009 | B2 |
7611522 | Gorek | Nov 2009 | B2 |
7618451 | Fitz et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7635367 | Groiso | Dec 2009 | B2 |
7639866 | Pomero et al. | Dec 2009 | B2 |
7660623 | Hunter et al. | Feb 2010 | B2 |
7674293 | Kuiper et al. | Mar 2010 | B2 |
7715602 | Richard | May 2010 | B2 |
7763054 | Clement et al. | Jul 2010 | B2 |
7824413 | Varieur et al. | Nov 2010 | B2 |
7835778 | Foley et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7862593 | Clement et al. | Jan 2011 | B2 |
7918887 | Roche | Apr 2011 | B2 |
7953471 | Clayton et al. | May 2011 | B2 |
7974677 | Mire et al. | Jul 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
7996061 | Mollard et al. | Aug 2011 | B2 |
7996064 | Simon et al. | Aug 2011 | B2 |
8000926 | Roche et al. | Aug 2011 | B2 |
8036441 | Frank et al. | Oct 2011 | B2 |
8038716 | Duggal et al. | Oct 2011 | B2 |
8046050 | Govari et al. | Oct 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083778 | Clement et al. | Dec 2011 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8142842 | Nicholas et al. | Mar 2012 | B2 |
8196825 | Turner et al. | Jun 2012 | B2 |
8211109 | Groiso | Jul 2012 | B2 |
8211153 | Shaolian et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241296 | Wasielewski | Aug 2012 | B2 |
8246680 | Betz et al. | Aug 2012 | B2 |
8265790 | Amiot et al. | Sep 2012 | B2 |
8270253 | Roche et al. | Sep 2012 | B1 |
8275594 | Lin et al. | Sep 2012 | B2 |
8308772 | Clement et al. | Nov 2012 | B2 |
8308775 | Clement et al. | Nov 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8357111 | Caillouette et al. | Jan 2013 | B2 |
8357166 | Aram et al. | Jan 2013 | B2 |
8372075 | Groiso | Feb 2013 | B2 |
8377073 | Wasielewski | Feb 2013 | B2 |
8394142 | Berg et al. | Mar 2013 | B2 |
8398681 | Augostino et al. | Mar 2013 | B2 |
8400312 | Hotokebuchi et al. | Mar 2013 | B2 |
8414592 | Quirno | Apr 2013 | B2 |
8442621 | Gorek et al. | May 2013 | B2 |
8457930 | Schroeder | Jun 2013 | B2 |
8465527 | Clement | Jun 2013 | B2 |
8494805 | Roche et al. | Jul 2013 | B2 |
8506632 | Ganem et al. | Aug 2013 | B2 |
8532806 | Masson | Sep 2013 | B1 |
8535337 | Chang et al. | Sep 2013 | B2 |
8549888 | Isaacs | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8562653 | Alamin | Oct 2013 | B2 |
8588892 | Hladio et al. | Nov 2013 | B2 |
8636776 | Rosenberg et al. | Jan 2014 | B2 |
8672948 | Lemaitre | Mar 2014 | B2 |
8685093 | Anderson et al. | Apr 2014 | B2 |
8690888 | Stein et al. | Apr 2014 | B2 |
8705829 | Frank et al. | Apr 2014 | B2 |
8718820 | Amiot et al. | May 2014 | B2 |
8740941 | Thramann | Jun 2014 | B2 |
8758357 | Frey | Jun 2014 | B2 |
8775133 | Schroeder | Jul 2014 | B2 |
8777877 | Stein et al. | Jul 2014 | B2 |
8784339 | Stein et al. | Jul 2014 | B2 |
8801786 | Bernard et al. | Aug 2014 | B2 |
8814877 | Wasielewski | Aug 2014 | B2 |
8814915 | Hess et al. | Aug 2014 | B2 |
8845689 | Douget | Sep 2014 | B2 |
8852237 | Kalfas et al. | Oct 2014 | B2 |
8855389 | Hoffman et al. | Oct 2014 | B1 |
8864764 | Groiso | Oct 2014 | B2 |
8870889 | Frey | Oct 2014 | B2 |
8900316 | Lenz | Dec 2014 | B2 |
8911448 | Stein | Dec 2014 | B2 |
8926673 | Clement et al. | Jan 2015 | B2 |
8945133 | Stein et al. | Feb 2015 | B2 |
8956416 | McCarthy | Feb 2015 | B2 |
8974467 | Stone | Mar 2015 | B2 |
8983813 | Miles et al. | Mar 2015 | B2 |
8998962 | Birch | Apr 2015 | B2 |
9011448 | Roche et al. | Apr 2015 | B2 |
9034037 | Fiere et al. | May 2015 | B2 |
9039772 | Park et al. | May 2015 | B2 |
9056017 | Kotlus | Jun 2015 | B2 |
9066701 | Finley et al. | Jun 2015 | B1 |
9066734 | Schoenfeld et al. | Jun 2015 | B2 |
9078755 | Mahfouz | Jul 2015 | B2 |
9101492 | Mangione et al. | Aug 2015 | B2 |
9107706 | Alamin | Aug 2015 | B2 |
9115998 | Proulx et al. | Aug 2015 | B2 |
9119572 | Gorek et al. | Sep 2015 | B2 |
9119671 | Kast | Sep 2015 | B2 |
9125680 | Kostrzewski et al. | Sep 2015 | B2 |
9144440 | Aminian | Sep 2015 | B2 |
9144470 | Proulx et al. | Sep 2015 | B2 |
9168153 | Bettenga | Oct 2015 | B2 |
9173661 | Metzger et al. | Nov 2015 | B2 |
9180015 | Fitz et al. | Nov 2015 | B2 |
9192412 | Meyrat et al. | Nov 2015 | B2 |
9198678 | Frey et al. | Dec 2015 | B2 |
9232955 | Bonin, Jr. et al. | Jan 2016 | B2 |
9233001 | Miles et al. | Jan 2016 | B2 |
9237952 | Kurtz | Jan 2016 | B2 |
9248023 | Ries et al. | Feb 2016 | B2 |
9250620 | Kotlus | Feb 2016 | B2 |
9278010 | Gibson et al. | Mar 2016 | B2 |
9283048 | Kostrzewski et al. | Mar 2016 | B2 |
9289221 | Gelaude et al. | Mar 2016 | B2 |
9289270 | Gielen et al. | Mar 2016 | B2 |
9295482 | Fitz et al. | Mar 2016 | B2 |
9295497 | Schoenfeld et al. | Mar 2016 | B2 |
9295561 | Ball et al. | Mar 2016 | B2 |
9301768 | Buza et al. | Apr 2016 | B2 |
9308050 | Kostrzewski et al. | Apr 2016 | B2 |
9308091 | Lang | Apr 2016 | B2 |
9314275 | Clement et al. | Apr 2016 | B2 |
9314343 | Parisi et al. | Apr 2016 | B2 |
9320547 | Augostino | Apr 2016 | B2 |
9320604 | Miles et al. | Apr 2016 | B2 |
9326780 | Wong et al. | May 2016 | B2 |
9339277 | Jansen et al. | May 2016 | B2 |
9345492 | Stein et al. | May 2016 | B2 |
9358051 | Sournac et al. | Jun 2016 | B2 |
9358130 | Livorsi et al. | Jun 2016 | B2 |
9358136 | Stein et al. | Jun 2016 | B2 |
9364370 | Kühnel | Jun 2016 | B2 |
9381085 | Axelson et al. | Jul 2016 | B2 |
9387015 | Taylor | Jul 2016 | B2 |
9392953 | Gharib | Jul 2016 | B1 |
9393052 | Berg et al. | Jul 2016 | B2 |
9398962 | Steinberg | Jul 2016 | B2 |
9402726 | Linderman et al. | Aug 2016 | B2 |
9408615 | Fitz et al. | Aug 2016 | B2 |
9408642 | Wong et al. | Aug 2016 | B2 |
9408698 | Miles et al. | Aug 2016 | B2 |
9414940 | Stein et al. | Aug 2016 | B2 |
9433443 | Montello et al. | Sep 2016 | B2 |
9439659 | Schoenefeld et al. | Sep 2016 | B2 |
9439767 | Bojarski et al. | Sep 2016 | B2 |
9439781 | Gibson | Sep 2016 | B2 |
9445913 | Donner et al. | Sep 2016 | B2 |
9452022 | McIntosh et al. | Sep 2016 | B2 |
9452023 | Boillot et al. | Sep 2016 | B2 |
9452050 | Miles et al. | Sep 2016 | B2 |
9452064 | Trautwein et al. | Sep 2016 | B2 |
9468436 | Groiso | Oct 2016 | B2 |
9468502 | Wiebe et al. | Oct 2016 | B2 |
9491415 | Deitz et al. | Nov 2016 | B2 |
9492183 | Wilkinson et al. | Nov 2016 | B2 |
9495483 | Steines et al. | Nov 2016 | B2 |
9495509 | Amiot et al. | Nov 2016 | B2 |
9498260 | Funk et al. | Nov 2016 | B2 |
9504502 | Kuiper et al. | Nov 2016 | B2 |
9510771 | Finley et al. | Dec 2016 | B1 |
9510864 | Devito | Dec 2016 | B2 |
9517134 | Lang | Dec 2016 | B2 |
9517143 | Prevost et al. | Dec 2016 | B2 |
9526514 | Kelley et al. | Dec 2016 | B2 |
9532730 | Wasielewski | Jan 2017 | B2 |
9539031 | Fauth | Jan 2017 | B2 |
9539116 | Claypool et al. | Jan 2017 | B2 |
9539760 | Stahl et al. | Jan 2017 | B2 |
9547897 | Parent et al. | Jan 2017 | B2 |
9549782 | Park et al. | Jan 2017 | B2 |
9554411 | Hall et al. | Jan 2017 | B1 |
9554910 | Vanasse et al. | Jan 2017 | B2 |
9561115 | Elahinia et al. | Feb 2017 | B2 |
9566075 | Carroll | Feb 2017 | B2 |
9579043 | Chien et al. | Feb 2017 | B2 |
9585597 | McCaullet et al. | Mar 2017 | B2 |
9597096 | Aghazadeh | Mar 2017 | B2 |
9597156 | Amiot et al. | Mar 2017 | B2 |
9603613 | Schoenefeld et al. | Mar 2017 | B2 |
9603623 | Brooks et al. | Mar 2017 | B2 |
9603711 | Bojarski et al. | Mar 2017 | B2 |
9610086 | Park et al. | Apr 2017 | B2 |
9615834 | Agmihotri et al. | Apr 2017 | B2 |
9622712 | Munro et al. | Apr 2017 | B2 |
9629723 | Parisi et al. | Apr 2017 | B2 |
9636181 | Isaacs | May 2017 | B2 |
9642633 | Frey et al. | May 2017 | B2 |
9649170 | Park et al. | May 2017 | B2 |
9655729 | Parisi et al. | May 2017 | B2 |
9662214 | Li et al. | May 2017 | B2 |
9668748 | McKinnon et al. | Jun 2017 | B2 |
9668873 | Winslow | Jun 2017 | B2 |
9675471 | Bojarski et al. | Jun 2017 | B2 |
9693831 | Mosnier | Jul 2017 | B2 |
9715563 | Schroeder | Jul 2017 | B1 |
9757072 | Urbalejo | Sep 2017 | B1 |
9782228 | Mosnier et al. | Oct 2017 | B2 |
9788966 | Steinberg | Oct 2017 | B2 |
9827109 | Steinberg | Nov 2017 | B2 |
9848922 | Tohmeh et al. | Dec 2017 | B2 |
9968408 | Casey et al. | May 2018 | B1 |
9987048 | Mosnier et al. | Jun 2018 | B2 |
9993177 | Chien et al. | Jun 2018 | B2 |
10010426 | Kuiper et al. | Jul 2018 | B2 |
10045824 | Mosnier et al. | Aug 2018 | B2 |
10052135 | Berg et al. | Aug 2018 | B2 |
10064656 | Mundis, Jr. | Sep 2018 | B2 |
10064743 | Funk et al. | Sep 2018 | B2 |
10098671 | Augostino | Oct 2018 | B2 |
10188480 | Scholl et al. | Jan 2019 | B2 |
10201320 | Saget | Feb 2019 | B2 |
10219865 | Jansen | Mar 2019 | B2 |
10292770 | Ryan et al. | May 2019 | B2 |
10314657 | Mosnier et al. | Jun 2019 | B2 |
10318655 | Mosnier | Jun 2019 | B2 |
10413365 | Mosnier et al. | Sep 2019 | B1 |
10420615 | Mosnier et al. | Sep 2019 | B1 |
10433893 | Scholl et al. | Oct 2019 | B1 |
10433912 | Mosnier et al. | Oct 2019 | B1 |
10433913 | Mosnier et al. | Oct 2019 | B2 |
10441363 | Mosnier et al. | Oct 2019 | B1 |
10456174 | Mickiewicz | Oct 2019 | B2 |
10456211 | Mosnier et al. | Oct 2019 | B2 |
10463433 | Turner et al. | Nov 2019 | B2 |
20020035321 | Bucholz et al. | Mar 2002 | A1 |
20020038118 | Shoham | Mar 2002 | A1 |
20020045812 | Ben-Haim et al. | Apr 2002 | A1 |
20020068936 | Burkus | Jun 2002 | A1 |
20020103432 | Kawchuk | Aug 2002 | A1 |
20030191383 | Ben-Haim et al. | Oct 2003 | A1 |
20030204189 | O'Neil et al. | Oct 2003 | A1 |
20040120781 | Luca | Jun 2004 | A1 |
20040143243 | Wahrburg | Jul 2004 | A1 |
20040152972 | Hunter | Aug 2004 | A1 |
20040167637 | Biscup | Aug 2004 | A1 |
20040171924 | Mire | Sep 2004 | A1 |
20040172020 | Beaurain et al. | Sep 2004 | A1 |
20040215190 | Nguyen et al. | Oct 2004 | A1 |
20040243148 | Wasuekewski | Dec 2004 | A1 |
20040267279 | Casutt et al. | Dec 2004 | A1 |
20050149050 | Stifter et al. | Jul 2005 | A1 |
20050177239 | Steinberg | Aug 2005 | A1 |
20050182320 | Stifter et al. | Aug 2005 | A1 |
20050182454 | Kaula et al. | Aug 2005 | A1 |
20050203531 | Lakin et al. | Sep 2005 | A1 |
20050203532 | Ferguson et al. | Sep 2005 | A1 |
20050262911 | Dankowicz et al. | Dec 2005 | A1 |
20060015018 | Jutras et al. | Jan 2006 | A1 |
20060015030 | Poulin et al. | Jan 2006 | A1 |
20060036259 | Carl | Feb 2006 | A1 |
20060069324 | Block et al. | Mar 2006 | A1 |
20060074431 | Sutton et al. | Apr 2006 | A1 |
20060136058 | Pietrzak | Jun 2006 | A1 |
20060142657 | Quaid | Jun 2006 | A1 |
20060285991 | McKinley | Dec 2006 | A1 |
20060287627 | Johnson | Dec 2006 | A1 |
20070021682 | Gharib et al. | Jan 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070173818 | Hestad | Jul 2007 | A1 |
20070225731 | Couture et al. | Sep 2007 | A1 |
20080009866 | Alamin | Jan 2008 | A1 |
20080058945 | Hajaj et al. | Mar 2008 | A1 |
20080108991 | von Jako | May 2008 | A1 |
20080177203 | von Jako | Jul 2008 | A1 |
20080255575 | Justis et al. | Oct 2008 | A1 |
20080262549 | Bennett | Oct 2008 | A1 |
20080281332 | Taylor | Nov 2008 | A1 |
20090024164 | Neubardt | Jan 2009 | A1 |
20090076615 | Duggal et al. | Mar 2009 | A1 |
20090157083 | Park et al. | Jun 2009 | A1 |
20090194206 | Jeon et al. | Aug 2009 | A1 |
20090204159 | Justis et al. | Aug 2009 | A1 |
20090248080 | Justis et al. | Aug 2009 | A1 |
20090249851 | Isaacs | Oct 2009 | A1 |
20090254326 | Isaacs | Oct 2009 | A1 |
20090264932 | Alamin | Oct 2009 | A1 |
20100042157 | Trieu | Feb 2010 | A1 |
20100100011 | Roche | Apr 2010 | A1 |
20100191071 | Anderson et al. | Jul 2010 | A1 |
20100191088 | Anderson | Jul 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217336 | Crawford et al. | Aug 2010 | A1 |
20110004309 | Bojarski et al. | Mar 2011 | A9 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110106163 | Hochschuler | May 2011 | A1 |
20110118740 | Rabiner et al. | May 2011 | A1 |
20110137345 | Stoll | Jun 2011 | A1 |
20110172566 | Kawchuk | Jul 2011 | A1 |
20110214279 | Park et al. | Sep 2011 | A1 |
20110224796 | Weiland et al. | Sep 2011 | A1 |
20110257653 | Hughes et al. | Oct 2011 | A1 |
20110257657 | Turner et al. | Oct 2011 | A1 |
20110295159 | Shachar et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110306873 | Shenai et al. | Dec 2011 | A1 |
20120022357 | Chang et al. | Jan 2012 | A1 |
20120027261 | Frank et al. | Feb 2012 | A1 |
20120035611 | Kave | Feb 2012 | A1 |
20120123301 | Connor et al. | May 2012 | A1 |
20120143090 | Hay et al. | Jun 2012 | A1 |
20120150243 | Crawford et al. | Jun 2012 | A9 |
20120165872 | Alamin | Jun 2012 | A1 |
20120172884 | Zheng et al. | Jul 2012 | A1 |
20120203289 | Beerens et al. | Aug 2012 | A1 |
20130079678 | Stein et al. | Mar 2013 | A1 |
20130079679 | Roche et al. | Mar 2013 | A1 |
20130079790 | Stein et al. | Mar 2013 | A1 |
20130131486 | Copf et al. | May 2013 | A1 |
20130345718 | Crawford et al. | Jun 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245631 | Bettenga | Sep 2013 | A1 |
20130253599 | Gorek et al. | Sep 2013 | A1 |
20130268007 | Rezach et al. | Oct 2013 | A1 |
20130303883 | Zehavi et al. | Nov 2013 | A1 |
20140058407 | Tsekos | Feb 2014 | A1 |
20140100579 | Kelman et al. | Apr 2014 | A1 |
20140135658 | Hladio et al. | May 2014 | A1 |
20140180415 | Koss | Jun 2014 | A1 |
20140194889 | Chang et al. | Jul 2014 | A1 |
20140228670 | Justis et al. | Aug 2014 | A1 |
20140228860 | Steines et al. | Aug 2014 | A1 |
20140244220 | McKinnon et al. | Aug 2014 | A1 |
20140257402 | Barsoum | Sep 2014 | A1 |
20140272881 | Barsoum | Sep 2014 | A1 |
20140277149 | Rooney | Sep 2014 | A1 |
20140296860 | Stein et al. | Oct 2014 | A1 |
20140303672 | Tran et al. | Oct 2014 | A1 |
20140316468 | Keiser et al. | Oct 2014 | A1 |
20150057756 | Lang et al. | Feb 2015 | A1 |
20150066145 | Rogers et al. | Mar 2015 | A1 |
20150080901 | Stein | Mar 2015 | A1 |
20150081029 | Bojarski et al. | Mar 2015 | A1 |
20150088030 | Gharib et al. | Mar 2015 | A1 |
20150100066 | Kostrezewski et al. | Apr 2015 | A1 |
20150100091 | Tohmeh et al. | Apr 2015 | A1 |
20150105782 | D'Lima et al. | Apr 2015 | A1 |
20150127055 | Dvorak et al. | May 2015 | A1 |
20150150646 | Pryor et al. | Jun 2015 | A1 |
20150164657 | Miles et al. | Jun 2015 | A1 |
20150182292 | Hladio et al. | Jul 2015 | A1 |
20150223900 | Wiebe et al. | Aug 2015 | A1 |
20150245844 | Kennedy et al. | Sep 2015 | A1 |
20150250597 | Lang et al. | Sep 2015 | A1 |
20150265291 | Wilkinson | Sep 2015 | A1 |
20150305878 | O'Neil et al. | Oct 2015 | A1 |
20150305891 | Bergin et al. | Oct 2015 | A1 |
20150313723 | Jansen et al. | Nov 2015 | A1 |
20150328004 | Mahfouz | Nov 2015 | A1 |
20150366630 | Gorek et al. | Dec 2015 | A1 |
20160000571 | Mahfouz | Jan 2016 | A1 |
20160007983 | Frey et al. | Jan 2016 | A1 |
20160015465 | Steines et al. | Jan 2016 | A1 |
20160022176 | Le Huec et al. | Jan 2016 | A1 |
20160022370 | Pavlovskaia et al. | Jan 2016 | A1 |
20160038161 | Gibson | Feb 2016 | A1 |
20160038238 | Kostrzewski et al. | Feb 2016 | A1 |
20160038242 | Lo Iacono et al. | Feb 2016 | A1 |
20160038293 | Slamin et al. | Feb 2016 | A1 |
20160038307 | Bettenga | Feb 2016 | A1 |
20160045230 | Lowery et al. | Feb 2016 | A1 |
20160045317 | Lang et al. | Feb 2016 | A1 |
20160045326 | Hansen et al. | Feb 2016 | A1 |
20160058320 | Chien et al. | Mar 2016 | A1 |
20160058523 | Chien et al. | Mar 2016 | A1 |
20160074052 | Keppler et al. | Mar 2016 | A1 |
20160074202 | Reed et al. | Mar 2016 | A1 |
20160081754 | Kostrzewski et al. | Mar 2016 | A1 |
20160095710 | Juszczyk et al. | Apr 2016 | A1 |
20160100907 | Gomes | Apr 2016 | A1 |
20160106483 | Mayer et al. | Apr 2016 | A1 |
20160128847 | Kurtaliaj et al. | May 2016 | A1 |
20160143744 | Bojarski et al. | May 2016 | A1 |
20160157751 | Mahfouz | Jun 2016 | A1 |
20160199101 | Sharifi-Mehr et al. | Jul 2016 | A1 |
20160228192 | Jansen et al. | Aug 2016 | A1 |
20160235447 | Mundis, Jr. | Aug 2016 | A1 |
20160235480 | Scholl et al. | Aug 2016 | A1 |
20160235493 | LeBoeuf, II et al. | Aug 2016 | A1 |
20160242819 | Simpson | Aug 2016 | A1 |
20160242857 | Scholl | Aug 2016 | A1 |
20160242934 | Van der Walt et al. | Aug 2016 | A1 |
20160256279 | Sanders et al. | Sep 2016 | A1 |
20160256285 | Jansen | Sep 2016 | A1 |
20160262800 | Scholl et al. | Sep 2016 | A1 |
20160262895 | Shea et al. | Sep 2016 | A1 |
20160270802 | Fang et al. | Sep 2016 | A1 |
20160270931 | Trieu | Sep 2016 | A1 |
20160274571 | LaVallee et al. | Sep 2016 | A1 |
20160283676 | Kelly et al. | Sep 2016 | A1 |
20160287395 | Khalili et al. | Oct 2016 | A1 |
20160296285 | Chaoui et al. | Oct 2016 | A1 |
20160310221 | Bar et al. | Oct 2016 | A1 |
20160331417 | Trautwein et al. | Nov 2016 | A1 |
20160354009 | Schroeder | Dec 2016 | A1 |
20160354161 | Deitz | Dec 2016 | A1 |
20160360997 | Yadav et al. | Dec 2016 | A1 |
20170000568 | O'Neil et al. | Jan 2017 | A1 |
20170007145 | Gharib et al. | Jan 2017 | A1 |
20170007328 | Cattin et al. | Jan 2017 | A1 |
20170007408 | Fitz et al. | Jan 2017 | A1 |
20170027590 | Amiot et al. | Feb 2017 | A1 |
20170027617 | Strnad | Feb 2017 | A1 |
20170035580 | Murphy | Feb 2017 | A1 |
20170056179 | Lorio | Mar 2017 | A1 |
20170056196 | Kuiper et al. | Mar 2017 | A1 |
20170071503 | Wasiewlewski | Mar 2017 | A1 |
20170119472 | Herrmann et al. | May 2017 | A1 |
20170132389 | McCaulley et al. | May 2017 | A1 |
20170135706 | Frey et al. | May 2017 | A1 |
20170135707 | Frey et al. | May 2017 | A9 |
20170135770 | Scholl | May 2017 | A1 |
20170143426 | Isaacs et al. | May 2017 | A1 |
20170143494 | Mahfouz | May 2017 | A1 |
20170143502 | Yadin et al. | May 2017 | A1 |
20170156798 | Wasielewski | Jun 2017 | A1 |
20170189121 | Frasier et al. | Jul 2017 | A1 |
20170231661 | Bannigan | Aug 2017 | A1 |
20170231709 | Gupta et al. | Aug 2017 | A1 |
20170252107 | Turner et al. | Sep 2017 | A1 |
20170273718 | Metzger et al. | Sep 2017 | A1 |
20170323037 | Schroeder | Nov 2017 | A1 |
20170360493 | Zucker et al. | Dec 2017 | A1 |
20180078286 | Le Couedic | Mar 2018 | A1 |
20180178148 | Mazor et al. | Jun 2018 | A1 |
20180256067 | Chen et al. | Sep 2018 | A1 |
20180289396 | McGahan et al. | Oct 2018 | A1 |
20180295584 | Gliner et al. | Oct 2018 | A1 |
20180301213 | Zehavi et al. | Oct 2018 | A1 |
20180303552 | Ryan et al. | Oct 2018 | A1 |
20180310993 | Hobeika et al. | Nov 2018 | A1 |
20180349519 | Schroeder | Dec 2018 | A1 |
20190015136 | Kraemer | Jan 2019 | A1 |
20190029733 | Mickiewicz | Jan 2019 | A1 |
20190046269 | Hedblom | Feb 2019 | A1 |
20190046287 | Fallin et al. | Feb 2019 | A1 |
20190059951 | Barrus | Feb 2019 | A1 |
20190060086 | Krause et al. | Feb 2019 | A1 |
20190083144 | Sharifi-Mehr et al. | Mar 2019 | A1 |
20190099221 | Schmidt et al. | Apr 2019 | A1 |
20190103190 | Schmidt et al. | Apr 2019 | A1 |
20190110819 | Triplett et al. | Apr 2019 | A1 |
20190117278 | Chin | Apr 2019 | A1 |
20190122364 | Zhang et al. | Apr 2019 | A1 |
20190142599 | Thibodeau | May 2019 | A1 |
20190167314 | Mosnier | Jun 2019 | A1 |
20190201013 | Siccardi et al. | Jul 2019 | A1 |
20190201155 | Gupta et al. | Jul 2019 | A1 |
20190209212 | Scholl | Jul 2019 | A1 |
20190216507 | Bannigan | Jul 2019 | A1 |
20190223916 | Barrus et al. | Jul 2019 | A1 |
20190231443 | McGinley et al. | Aug 2019 | A1 |
20190231557 | Sutterlin et al. | Aug 2019 | A1 |
20190239935 | Willis et al. | Aug 2019 | A1 |
20190247100 | Mundis et al. | Aug 2019 | A1 |
20190254719 | Gandhi | Aug 2019 | A1 |
20190254769 | Scholl | Aug 2019 | A1 |
20190262015 | Siccardi et al. | Aug 2019 | A1 |
20190269463 | Mosnier | Sep 2019 | A1 |
20190343587 | Mosnier | Nov 2019 | A1 |
20190362028 | Mosnier | Nov 2019 | A1 |
20190380782 | McAfee | Dec 2019 | A1 |
20200060768 | Mosnier | Feb 2020 | A1 |
20200121394 | Mosnier | Apr 2020 | A1 |
20200170676 | Grob | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
2015258176 | Dec 2015 | AU |
2015202416 | Mar 2017 | AU |
2019200740 | Feb 2019 | AU |
2019200888 | Feb 2019 | AU |
2019203557 | Jun 2019 | AU |
2927955 | Apr 2014 | CA |
2872845 | Jan 2018 | CA |
1816134 | Aug 2006 | CN |
102805677 | Dec 2012 | CN |
104127229 | Nov 2014 | CN |
205073000 | Mar 2016 | CN |
103892953 | May 2016 | CN |
104434287 | Jan 2017 | CN |
104323843 | Jul 2017 | CN |
105078555 | Nov 2018 | CN |
1 570 781 | Jul 2005 | EP |
2 053 580 | Apr 2009 | EP |
2 749 235 | Jul 2014 | EP |
2 754 419 | Jul 2014 | EP |
2 496 183 | Sep 2015 | EP |
3 000 443 | Mar 2016 | EP |
2 608 749 | Aug 2016 | EP |
2 403 434 | Apr 2017 | EP |
3 431 032 | Jan 2019 | EP |
1358988 | Apr 1964 | FR |
1360208 | May 1964 | FR |
2016-537036 | Dec 2016 | JP |
2016-540610 | Dec 2016 | JP |
WO 9855038 | Dec 1998 | WO |
WO 0053077 | Sep 2000 | WO |
WO 04017836 | Mar 2004 | WO |
WO 04089224 | Oct 2004 | WO |
WO 04111948 | Dec 2004 | WO |
WO 05074368 | Aug 2005 | WO |
WO 06075331 | Jul 2006 | WO |
WO 06084193 | Aug 2006 | WO |
WO 07035925 | Mar 2007 | WO |
WO 07038290 | Apr 2007 | WO |
WO 09124245 | Oct 2007 | WO |
WO 08002588 | Jan 2008 | WO |
WO 08079546 | Jul 2008 | WO |
WO 08124079 | Oct 2008 | WO |
WO 09119181 | Oct 2009 | WO |
WO 10044880 | Apr 2010 | WO |
WO 10064234 | Jun 2010 | WO |
WO 10121147 | Oct 2010 | WO |
WO 10147972 | Dec 2010 | WO |
WO 11021192 | Feb 2011 | WO |
WO 12012863 | Feb 2012 | WO |
WO 12113030 | Aug 2012 | WO |
WO 12131660 | Oct 2012 | WO |
WO 13003435 | Jan 2013 | WO |
WO 04030559 | Apr 2014 | WO |
WO 14191790 | Dec 2014 | WO |
WO 16102026 | Dec 2014 | WO |
WO 15040552 | Mar 2015 | WO |
WO 15054543 | Apr 2015 | WO |
WO 15056131 | Apr 2015 | WO |
WO 15079011 | Jun 2015 | WO |
WO 15089118 | Jun 2015 | WO |
WO 15185219 | Dec 2015 | WO |
WO 15195843 | Dec 2015 | WO |
WO 15200720 | Dec 2015 | WO |
WO 16019424 | Feb 2016 | WO |
WO 16019425 | Feb 2016 | WO |
WO 16019426 | Feb 2016 | WO |
WO 1626053 | Feb 2016 | WO |
WO 16032875 | Mar 2016 | WO |
WO 16044352 | Mar 2016 | WO |
WO 16048800 | Mar 2016 | WO |
WO 16012726 | Apr 2016 | WO |
WO 16088130 | Jun 2016 | WO |
WO 16094826 | Jun 2016 | WO |
WO 17001851 | Jun 2016 | WO |
WO 16137347 | Sep 2016 | WO |
WO 16148675 | Sep 2016 | WO |
WO 16165030 | Oct 2016 | WO |
WO 17039596 | Mar 2017 | WO |
WO 17064719 | Apr 2017 | WO |
WO 17066518 | Apr 2017 | WO |
WO 17077356 | May 2017 | WO |
WO 17079655 | May 2017 | WO |
WO 17127838 | Jul 2017 | WO |
WO 17151949 | Sep 2017 | WO |
WO 17221257 | Dec 2017 | WO |
WO 18045086 | Mar 2018 | WO |
WO 18055494 | Mar 2018 | WO |
WO 18055518 | Mar 2018 | WO |
WO 18078636 | May 2018 | WO |
WO 18087758 | May 2018 | WO |
WO 18131044 | Jul 2018 | WO |
WO 18131045 | Jul 2018 | WO |
WO 18183314 | Oct 2018 | WO |
WO 18185755 | Oct 2018 | WO |
WO 18193316 | Oct 2018 | WO |
WO 18193317 | Oct 2018 | WO |
WO 18203100 | Nov 2018 | WO |
WO 18203101 | Nov 2018 | WO |
WO 19014452 | Jan 2019 | WO |
WO 19036039 | Feb 2019 | WO |
WO 19043426 | Mar 2019 | WO |
WO 19068085 | Apr 2019 | WO |
WO 19070729 | Apr 2019 | WO |
WO 19118844 | Jun 2019 | WO |
WO 19140240 | Jul 2019 | WO |
Entry |
---|
US 9,451,972 B2, 09/2016, Lang et al. (withdrawn) |
Aurouer et al., 2009, Computerized preoperative planning for correction of sigittal deformity of the spine, Surg. Radiol Anat 31:781-792. |
Abe et al. “Scoliosis corrective force estimation from the implanted rod deformation using 3 D FEM analysis”, 2015, Scoliosis 10(Suppl 2):52, 6 pages. |
Aubin et al. “Preoperative Planning Simulator for Spinal Deformity Surgeries”, Spine 2008, 33(20):2143-2152. |
Barton et al., Mar./Apr. 2016, Early experience and initial outcomes with patient-specific spine rods for adult spinal deformity, Trending in Orthopedics, 39(2):79-86. |
Fiere et al., Jul. 2016, 40. Preoperative planning and patient-specific rods for surgical treatment of thoracolumbar sagittal imbalance, in Surgery of the Spine and Spinal Cord. A Neurosurgical Approach, Van de Kalft ed., Springer International Publishing, Switzerland, pp. 645-662. |
Foroozandeh et al., Summer 2012, 3D reconstruction using cubic Bezier spline curves and active contours (case study), Iranian Journal of Medical Physics, 9(3):169-176. |
Galbusera et al., Feb. 2019, Artificial intelligence and machine learning in spine research, JOR Spine, 2:E1044, 20 pp. |
Grove 2011, Heterogeneous modeling of medical image data using B-spline functions, doctoral dissertation, Department of Computer Science and Engineering, University of South Florida, 212 pp. |
Lazarus, Jun. 21, 2013, An introduction to splines, 29 pp. |
Li et al., 2009, Modeling and measurement of 3D deformation of scoliotic spine using 2D x-ray images, Lecture Notes in Computer Science, 8 pp. |
Lin, Sep. 17-21, 2003, The simplified spine modeling by 3-D Bezier curve based on the orthogonal spinal radiographic images, Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 944-946. |
Pasha et al., 2018, Data-driven classification of the 3D spinal curve in adolescent idiopathic scoliosis with an applications in surgical outcome prediction, Scientific Reports, 8:16296, 10 pp. |
Poredos et al., 2015, Determination of the human spine curve based on laser triangulation, BMC Medical Imaging 15(2):1-11. |
Prautzsch et al., Mar. 26, 2001, Bezier-and B-spline techniques, 58 pp. |
Ratnakar et al. 2011, Predicting thoracic spinal postures in finite element model with Bezier technique, Ircobe Conference 2011, IRC-11-57, 4 pp. |
Reinshagen et al. “A novel minimally invasive technique for lumbar decompression, realignment, and navigated interbody fusion”, J Clin Neurosci. 2015, 22(9):1484-1490; XP055503028. |
Rickert et Al., “Posterior lumbar interbody fusion implants”, Orthopaede, Springer Verlag, Berlin, DE vol. 44, No. 2 dated Jan. 28, 2015 pp. 162-169. |
Solla et al., Mar. 2019, Patient-specific rods for surgical correction of sagittal imbalance in adults: Technical aspects and preliminary results, Clin Spine Surg, 32(2), 7 pp. |
Spontech Medical AG Vertaplan—die Software für Wirbelsäulenchirurgen, Aug. 29, 2013 Retrieved from the Internet: URL: https://www.youtube.com/watch?v=q0qhW1T1cp8 in 1 page. |
International Search Report and Written Opinion in PCT Application PCT/IB2014/065150, dated Oct. 8, 2014 in 9 pages. |
International Search Report in PCT Application PCT/IB2014/064586, dated Dec. 23, 2014, in 2 pages. |
International Search Report in PCT Application PCT/US2016/060676, dated Nov. 5, 2017 in 7 pages. |
International Search Report and Written Opinion in PCT Application PCT/IB2018/000551, dated Dec. 12, 2018 in 9 pages. |
International Search Report and Written Opinon in PCT Application PCT/IB2018/000557 dated Oct. 24, 2018 in 12 pages. |
Number | Date | Country | |
---|---|---|---|
20190167314 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62593570 | Dec 2017 | US |