In the detailed description of the preferred embodiments of the invention presented below, reference is made to the accompanying drawings, in which:
The subject invention will now be more particularly described with reference to the accompanying drawings. In the mode of operation according to the invention, the aforementioned ink is jetted from an ink jet printhead 10 into just those cells of a patterned uniform series of equal-sized cells (see
To practice this invention, an electric field must be established between the primary imaging member 60 and the receiver 40. This can be done using known methods. For example, a difference of potential can be established between the primary imaging member 60 and a pressure roller 50 by a voltage source 30. Alternatively, a difference of potential can be established between the primary imaging roller 60 and an electrically conducting transport web, with the receiver sandwiched between the two aforementioned members.
In one preferred embodiment of this invention, the primary imaging member 60 includes a noncompliant material with high electrical conductivity. Suitable materials include nickel, stainless steel, and aluminum. If desired, the primary imaging member can be over-coated with a thin layer of a low surface energy material such as various fluorinated hydrocarbon polymers including Teflon, various silicones, or salts of fatty acids such as zinc stearate, for example. These materials can serve to enhance release of the ink while minimizing the spreading of the ink droplets. When practicing the mode of the invention with a material with a high electrical conductivity, it is preferable to establish the electrical field by applying a voltage from source 30 of between 100 volts and 1,000 volts. Lower voltages may not be able to transfer all the marking particles within the ink droplets. Higher voltages may result in electrostatic discharge. In this mode of operation, the preferable screen frequency of the uniform series of cells is between 140 to 1,200 lines per inch (lpi), and more preferably between 400 and 800 lpi. The preferred geometry of the primary imaging member is a cylinder.
In an alternative preferred mode of operation for this invention, the primary imaging member 60 includes an electrically conductive member such as an aluminum, nickel, or stainless steel roller, sleeve, or plate that is covered with a ceramic material. The ceramic material can be electrically conductive or electrically insulating. A uniform series of cells as previously mentioned is then produced in or through the ceramic layer by known means, such as laser ablation, for example. In the case of an electrically insulating ceramic, the thickness of the ceramic, especially at the bottom of each cell, must be sufficiently thin as to allow a sufficiently strong electric field to be produced across the ink to permit fractionation of the ink and transfer of the marking particles.
In another alternative preferred mode of operation, the primary imaging member 60 includes a compliant material such as an elastomer. Suitable elastomers are polyurethane, silicones, or natural and artificial rubbers, for example. The elastomer selected should not be subject to being dissolved in, or plasticized by, the ink. The elastomer also should not significantly swell when immersed in ink solvent. This primary imaging member 60 should also have a suitable charge agent, as are know in the literature, so that the electrical resistivity of the primary imaging member is less that 1011 Ω-cm, and preferably less that 1010 Ω-cm. The primary imaging member 60 can also have a thin coating or layer of a material to control adhesion, such as a fluorinated hydrocarbon including Teflon, various silicones, or salts of fatty acids such as zinc stearate, for example. The primary imaging member 60 can also include a thin layer (less than 50 μm thick) of a relatively hard material (i.e. a material having a Young's modulus greater than 108 Pa). Suitable materials include various creamers, leathery or glass polymers, or refractory materials such as diamond-like carbon, SiC, SiO2, for example. When practicing this mode of the invention, the applied voltage used to generate the aforementioned electrostatic field should be greater than 300 volts and less than 3,000 volts. It is preferable that, in this embodiment of the invention, the primary imaging member 60 includes a compliant layer not less than 0.1 mm thick and preferably at least 1.0 mm thick. This layer should have a Young's modulus of between 1.0 MPa and 10.0 MPa, as determined by measuring the stress-strain curve in tension using a device such as an Instron Tensil Tester and extrapolating back to zero strain. It is also preferable that this same layer have a Poisson's ratio between 0.4 and 0.5.
When practicing this mode of the invention, it is desirable that the uniform series of cells be arranged in a pattern having a periodicity corresponding between 30 and 400 lpi, although higher values of the periodicity, i.e. more than 400 lpi, are acceptable if such a member can be produced with sufficient cell size and shape uniformity.
The ink used in this invention is not a conventional ink jet ink. Rather, the ink comprises marking particles suspended in an electrically insulating solvent, as described in co-pending U.S. patent application Ser. No. ______, and whose description is incorporated herein by reference.
In one preferred mode of operation, the image is transferred to a final image-bearing member (receiver) such as paper. This is illustrated in
In order to use electrostatic transfer, the inks must include electrically charged marking particles such as those described in co-pending U.S. patent application Ser. No. ______. Moreover, the ink should be electrically insulating, i.e., it should have an electrical resistivity greater than 1010 Ω-cm, and preferably greater than 1012 Ω-cm, as determined using the method described in the same co-pending U.S. patent application.
In another preferred mode of operation, the primary imaging member 60 has a compliant textured layer 20′ (see
In yet another preferred mode of operation of this invention, the image is not transferred directly from the primary imaging member 60 to the receiver 40. Rather, as shown in
Although this can be done upon application of just pressure between the intermediate member 80 and the receiver, it is preferable to apply an electric field from source 30 to intermediate member 80 and back-up pressure roller 50 that urges the charged marking particles from the intermediate member to the receiver. Other means of transfer from the intermediate member to the final image receiver (e.g., paper) can be done using thermal or thermal assisted transfer, as are known in the electrophotographic literature. As suggested, it is preferable that the intermediate member 80, include an elastomeric material, i.e. one having the same mechanical and electrical properties as detailed above. Such a material is preferable because: 1) it can protrude into a cell partially filled with ink and allow that ink to transfer, as will be discussed forthwith; 2) it can expand under the pressure associated with transfer and allow a controllable amount of dot gain to occur, which allows the printing of high density regions; and 3) it conforms to the surface roughness of many receivers, ensuring more uniform transfer.
The surface of the intermediate member 80 can include a material that controls the adhesion of the marking particles to the intermediate member. Examples of such adhesion-controlling materials include, but are not limited to Teflon, zinc stearate, various ceramers, or sol-gels, for example.
It is preferable that the intermediate member 80 have a compliant layer not less than 0.1 mm thick and preferably at least 1.0 mm thick. This layer should have a Young's modulus of between 1.0 MPa and 10.0 MPa, as determined by measuring the stress-strain curve in tension using a device such as an Instron Tensile Tester and extrapolating back to zero strain. Suitable materials include various polyurethanes, silicones, or rubbers, for example. The material chosen should not be significantly swellable or softenable in the solvent used in the ink. Such a material is preferable because: 1) it can protrude into a cell partially filled with ink and allow that ink to transfer, as will be discussed forthwith; 2) can expand under the pressure associated with transfer and allow a controllable amount of dot gain to occur that allows the printing of high density regions; and 3) it conforms to the surface roughness of many receivers, ensuring more uniform transfer. It is further preferable, that the material, have a Poisson ratio of between 0.4 and 0.5. This would further facilitate the ability to have a controllable dot gain.
A multicolor printing apparatus, as shown in
In a typical printed receiver, image density, or gray scale, can be controlled by forming area-modulated dots into a regular screen pattern at, for example, 150 dots per inch. This is frequently referred to as a 150-line rule. This is obviously not feasible in a system in which a single primary imaging member must be able to print a variety of documents, as is presently the case. Rather, as discussed previously in this disclosure, the cells (series of substrate 20 of primary imaging member 60 in
When printing into a cellular structure, it is important to be able to allow the ink drops to spread in a controllable manner on the receiver in order to be able to totally cover the receiver and produce high-density prints. This spread is often referred to as “dot gain”, and the dots ultimately printed on the receiver are larger than those initially jetted into the cells on the primary imaging member. The ability to control dot gain is important since too little dot gain would not allow the ink to totally cover the receiver, thereby allowing un-inked portions of the receiver to show through and limiting the density of the print; and too much dot gain can result in a loss of sharpness as edges become blurred. Moreover, the ability to accurately render low-density images would be compromised, as the ink would spread too much.
When using electrostatic transfer, the inks should include electrically charged marking particles such as those described in the aforementioned co-pending U.S. patent application. Moreover, the ink should be electrically insulating, i.e., it should have an electrical resistivity greater than 1010 Ω-cm, and preferably greater than 1012 Ω-cm, as determined using the method described in the same co-pending U.S. patent application.
In order to enhance transfer of ink from partially filled cells, a preferred embodiment of this invention includes the use of a uniformally patterned series of cells on a compliant substrate 20 fitted to a rigid support cylinder as shown in
The surface energy of the compliant substrate 20 may also be optimized to enhance the release of ink from the cell, both during transfer to the receiver and in the subsequent cleaning step. Many surface modification techniques exist such as plasma treatment to attached chemical moieties that modify the surface energy.
When being used with an electrostatic transfer assist, the patterned primary imaging member 60 should include an electrically conducting layer, such as a metal cylinder or sleeve, beneath the compliant member so as to allow the roller to be electrically biased. The elastomer should also be electrically conducting and have a resistivity less than 1011 Ω-cm, preferably less than 109 Ω-cm, and more preferably less than 106 Ω-cm. This can be achieved by suitably doping the elastomer with appropriate charge transport agents commonly used in electrostatic transfer rollers in electrophotographic engines. Moreover, the receiver should also be backed in a manner suitable to establish an electric field. For example, the receiver could be pressed against the primary imaging member 60 using an electrically grounded metal roller 50. The metal member of the compliant primary imaging member could then be electrically biased by connecting the metal member to a suitable voltage source (e.g., source 30), thereby establishing an electric field across the primary imaging member 60 and receiver 40. The polarity of the voltage is chosen to drive the marking particles towards the receiver. Other electrical configurations that give similar applied electrical fields, as known in the literature, are also suitable for use with this invention.
The back-up pressure roller 50 can also include other components such as a thin ceramic layer or wet-ability or adhesion controlling films such as Teflon, for example, provided such layers are sufficiently thin so as to allow a transfer field to be formed. The properties of the other components are known in the electrophotographic art and can be directly implemented from that art.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.