Method and apparatus for ink jet printing on textiles

Abstract
Ink jet printing is provided on large area substrates such as wide width textile webs. The printheads are driven by linear servo motors across a bridge that extends across the substrate. The timing of the jetting of the ink is coordinated with the motion of the printheads, so that the heads can be rapidly moved and the ink can be jetted while the printheads are accelerating or decelerating as they move on the bridge. Preferably, ultraviolet (UV) light curable ink is jetted and first partially cured with UV light and then subjected to heating to more completely reduce uncured monomers of the ink on the substrate.
Description




FIELD OF THE INVENTION




The present invention relates to ink jet printing onto textiles, to the ink jet printing of wide web, large panel and other extended area substrates, and to the ink jet printing onto large area fabrics and other substrates on a high speed and commercial scale. The invention is particularly applicable to the printing of patterns onto fabric used in quilting such as mattress covers, comforters and bedspreads, and to the printing of signs, banners and other large area substrates. The invention is particularly related to the ink jet printing with ink compositions containing ultra-violet light (UV) curable and other polymerizable or otherwise stable inks.




BACKGROUND OF THE INVENTION




Needs have arisen for the printing of large banners, flags and signs in quantities that are not economical for many conventional printing processes. Proposals have been made to print such products from electronic source files that can be processed directly on the printing press or printing system, rather than through steps such as film image-setting and plate-making. One such process is that known as ink-jet printing. These processes have been attempted with modest success on surfaces such as vinyl, but printing with success onto textile surfaces has been even more limited. Such processes have been slow and lack reliability. The clogging of print heads in ink jet printing has been too frequent for use in wide width and large area substrates, and the processes used have not produced acceptable printing on textile materials.




Quilting, for example, is an art in which patterns are stitched through a plurality of layers of material over a two-dimensional area of the material. The multiple layers of material normally include at least three layers, one a woven primary or facing sheet that will have a decorative finished quality, one a usually woven backing sheet that may or may not be of a finished quality, and one or more internal layers of thick filler material, usually of randomly oriented fibers. The stitched patterns maintain the physical relationship of the layers of material to each other as well as provide ornamental qualities. Frequently, a combining of stitched patterns with printed patterns is desirable, such as in mattress covers and other quilt manufacture. Producing a printed pattern on a mattress cover requires the application of ink to fabric, which, unlike paper, plastic or other smooth surfaces, presents a texture, third dimension or depth, to the surface on which the printing is applied.




The printing of substrates that are more than several feet, or a meter, wide, referred to as the special category of “wide width” printing, into which category the printing of mattress ticking and most other quiltable materials would fall, is beyond many of the limitations of conventional printing methods. A number of technical problems exist that have deterred the development of the printing of wide fabrics such as mattress covers, upholstery, automobile seat cover fabrics, office partitions and other wide width substrates.




Wide width products are frequently printed in relatively small quantities. Traditional printing typically involves the creation of a plate, a mat, a screen, or some other permanent or at least tangible, physical image from which ink is transferred to the object being printed. Such images contribute a relatively high set up cost that is only economical where the number of identical copies of the product is large. At the other extreme, office printers, for example, print a single copy or a small number of copies of a given document or other item, and are currently of the type that uses no permanent, physical image transfer element, but which rather prints from a software or program controlled electronic image, which can be changed from product to product. Such “soft” image printing is sometimes referred to as direct digital printing, although the “soft” image need not necessarily be “digital” in the sense of a set of stored discrete numerical values. Ink jet printers are a common type of such “soft” image or digital printers in use today.




Ink jet printers print by projecting drops of ink on demand onto a substrate from one or more nozzles on one or more print heads. Office printers and other narrow width ink jet printers usually dispense water based or other solvent based inks onto the substrate by heating the ink and exploding bubbles of the ink out of the nozzles. These printers are commonly called bubble jet printers. The ink dries by evaporation of the solvent. Sometimes additional heat is used to evaporate the solvent and dry the ink. Printing onto wide width substrates with bubble type ink jet printers, or ink jet printers that use high temperature techniques to propel the ink, severely limits the life of the print head. The heat used to expel the ink and the evaporation of the solvents, particularly during downtime, and the thermal cycling of the heads, causes these print heads to clog or otherwise fail after as little as 20 milliliters of ink is dispensed. Office printers are, for example, often designed so that the print head is replaced every time a reservoir of ink is replenished. For this reason, for larger scale ink jet printing processes, such as wide width printing of films used for outdoor advertising, signage and architectural applications, print heads that use mechanical ink propulsion techniques are more common. Such mechanical print heads include piezo or piezo-crystal print heads, which convert electrical energy into intra-crystal vibrations that cause drops of ink to be ejected from print head nozzles.




Piezo print heads are particularly useful for applying inks that dry by polymerization which can be brought about after the ink leaves the print head and is deposited onto the substrate, usually by exposure to some form of energy medium such as electromagnetic or particle radiation. Inks have been formulated for ink jet printing that can be polymerized by exposure to a radiation curing source such as a focused beam of ultra violet light (UV) or high energy beams of electrons (EB). The inks generally incorporate stabilizers which prevent premature curing due to low levels of light exposure. Therefore, the inks usually require exposure to some threshold level of energy that is necessary to initiate a polymerization reaction. Unless exposed to such threshold energy levels, such inks do not polymerize and remain stable, with a low tendency to dry in the nozzles or elsewhere unless cured by adequate exposure to the energy medium.




Solvent based inks are primarily cured by evaporation of the solvents. Some solvent based inks cure only by air drying, while others require the application of heat to enhance the evaporation of the solvent. In some cases, heat will facilitate a chemical change or polymerization of the ink along with an evaporation of a solvent. Polymerizable inks include monomers and oligomers that polymerize, and other additives. UV curable inks polymerize when exposed to UV light at or above the threshold energy level. These UV curable ink formulations include photoinitiators which absorb light and thereby produce free radicals or cations which induce crosslinking between the unsaturation sites of the monomers, oligomers and polymers, as well as other additive components. Electron beam-cured inks do not require photoinhibitors because the electrons are able to directly initiate crosslinking.




Heat or air curable inks that are organic solvent based or water based inks often do not have as high a color intensity as UV curable or other polymerizable inks because the pigments or dyes that produce the color are somewhat diluted by the solvent. Furthermore, organic solvents can produce an occupational hazard, requiring costly measures be taken to minimize contact of the evaporating solvents by workers and to minimize other risks such as the risks of fire. Solvent based inks, whether applied with heat or not, tend to dry out and eventually clog ink jet nozzles. In addition, solvent based inks set by forming a chemical bond with the substrate, and accordingly, their formulation is substrate material dependent. As a result, the selection of solvent based ink varies from fabric to fabric. Specific ink compositions are paired with specific fabric compositions to improve the fastness of the ink to the fabric, which results from chemical or electrostatic bonds formed between the ink and the fabric. Where the selected ink composition does not react or otherwise has an affinity with the surface of the particular fabric, the ink merely maintains a physical contact with the fabric surface and typically is easily removed by water, another solvent or abrasion. With UV and other radiant beam-curable inks such as electron beam-cured inks, the bonding between the ink and fabric is primarily mechanical and not limited to specific combinations of ink and fabric.




Polymerizable inks, particularly those cured upon exposure to a radiation or energy medium, are difficult to cure on three dimensional substrates such as the surface of a textile. While UV curable inks are capable of providing higher color intensity and do not present the hazards that many solvent based inks present and can avoid nozzle clogging, printing with UV curable ink onto textile fabric presents other problems that have not been solved in the prior art. To cure UV ink, for example, it must be possible to precisely focus a UV curing light onto the ink. UV ink, when jetted onto fabric, particularly onto highly textured fabric, is distributed at various depths over the texture of the fabric surface. Furthermore, the ink tends to soak into or wick into the fabric. As a result, the ink is present at various depths on the fabric, so that some of the ink at depths above or below the focal plane of the UV curing light evade the light needed to cause a total cure of the ink. In order to cure, UV ink must be exposed to UV light at an energy level above a curing threshold. However, increasing the intensity of the curing light beyond certain levels in order to enhance cure of the ink can burn, scorch or otherwise have destructive effects on the deposited ink or the fabric. Furthermore, ink jet printing can be carried out with different ink color dots applied in a side-by-side pattern or in a dot-on-dot (or drop-on-drop) pattern, with the dot-on-dot method being capable of producing a higher color density, but the higher density dot-on-dot pattern is even more difficult to cure when the cure is by UV light.




In addition, UV ink can be applied quickly to reduce wicking and UV ink can be developed to allow minimized wicking. Some wicking, however, helps to remove artifacts. Further, inks developed to eliminate wicking leave a stiff paint-like layer on the surface of the fabric, giving the fabric a stiff feel or “bad hand”. Therefore, to reduce the UV curing problem by eliminating wicking is not desirable.




UV curing of jetted ink on fabric has a limited cure depth that is determined by the depth of field of the focused curing UV light. When UV curable ink is jetted onto fabric, UV light may proceed to cure an insufficient portion of the ink. A large uncured portion of the deposited ink can cause movement or loss of the ink over time, resulting in deterioration of the printed images. Even if a sufficient portion of the ink is cured to avoid visibly detectable effects, uncured ink at some level has the possibility of producing symptoms in some persons who contact the printed fabric. The amount of uncured monomers or ink components that can cause problems by inhalation or direct skin contact has not been officially determined, but standards exist for determining limits for components of packaging material ingested with food. For example, if more than approximately 100 parts per million (PPM) of ink from packaging material is present in food, some persons who are sensitive to the uncured monomers may suffer reactions and others may develop sensitivities to the material. Such criteria assumes that 1 square inch of packaging material makes contact with ten grams of food. Thus, to interpret this criteria, it is assumed that each PPM of ink component in packaged food is equivalent to 15.5 milligrams of ink component migrating out of each square meter of packaging material into the food. While this does not provide an exact measure of the amount of uncured ink components that might be harmful to humans, it suggests that approximately 10% of uncured ink components on items of clothing, mattress covers or other fabrics with which persons may be in contact for extended periods of time, may be unacceptable.




For the reasons stated above, UV curable inks have not been successfully used to print onto fabric where a high degree of cure is required. Heat curable or other solvent based inks that dry by evaporation can be cured on fabric. As a result, the ink jet printing of solvent based inks and heat curable or air dryable solvent based ink has been the primary process used to print on fabric. Accordingly, the advantages of UV or other radiation curable ink jet printing have not been available for printing onto fabric.




There exists a need in printing of patterns onto mattress ticking and mattress cover quilts, as well as onto other types of fabrics, for a process to bring about an effective cure of ink compositions containing UV curable inks and to render practical the printing with UV curable inks onto fabric.




SUMMARY OF THE INVENTION




An objective of the present invention is to provide an effective method and apparatus for wide width “digital” or “soft” image printing onto textile fabric. Another objective of the invention is to effectively apply a stable curable ink onto a textile or other substrate and to effectively cure the ink on the substrate with UV other energy, a chemical curing agent or other curing medium, and particularly doing so using ink jet printing.




A further objective of the invention is to successfully apply and effectively cure ink jetted onto textiles and other substrates in a reliable manner without a tendency of the nozzles of the heads to frequently clog. Particularly, it is an objective of the invention to print onto textile fabrics and wide width substrates with a piezo or other mechanical or electromechanical print head.




Another objective of the invention is to provide for the printing onto textile fabric and other textured or wide width substrates using an ink that remains stable until deposited onto the surface of the substrate. A particular objective is to provide such a process for printing with UV ink or other inks that are curable by exposure to impinging energy. A particular objective of the invention is to provide for the effective curing of UV inks jetted onto fabric by reducing uncured monomers and other extractable non-solvent polymerization reactants, including reactant byproducts, or components of the ink, to a level most likely to be tolerable by or acceptable to persons contacting the printed substrates.




According to the principles of the present invention, a stable ink is digitally printed onto fabric and setting of the ink is initiated after the ink is deposited onto the substrate. By a “stable ink” is meant one that will not begin to cure, thicken or otherwise change properties in a way that will adversely affect the ability to apply the ink to the substrate, unless and until such ink is exposed to a curing medium that is otherwise absent from its environment. Inks that begin to set or which thicken upon evaporation of a solvent are not stable as herein defined. Inks that begin to polymerize before being exposed to UV light from a particular light source or to chemical agents that are provided to contact the inks after being applied to a substrate are also not considered stable.




In the preferred embodiment, stable UV ink monomers are deposited onto the substrate and polymerization of the ink is initiated by exposure to an impinged energy beam, such as UV, EB or other such energy beam. In accordance with certain aspects of the invention, the UV exposed or otherwise polymerization initiated ink is thereafter subjected to heat to reduce the content in the ink of unpolymerized polymerizable reactants and other extractable components of the ink to low levels that are likely to be tolerable or otherwise acceptable to persons contacting the fabric.




In certain embodiments of the invention, a stable ink composition is jetted onto fabric and the set or cure of the ink is initiated by exposure to a chemical substance, energy or otherwise after it is ejected from the ink jet nozzles. In the preferred and illustrated embodiments, UV polymerizable ink is jetted onto the substrate where it is exposed to UV light for its cure. Preferably, a non-bubble jet print head such as a piezo-crystal or other mechanical ink ejection transducer is used to jet the ink. Heat may be applied to the piezo-crystal or other mechanical ink injection transducer during operation, but generally only to the extent necessary for ink viscosity reduction. With or following the exposure to the UV light, the printed fabric is subjected to a heated air stream which either extends the UV light initiated curing process, drives off uncured components of the ink, or both.




Typically one or more sets of four print heads are provided on a carriage, with each of the four heads of each set configured to scan the substrate sequentially to deposit each of four colors of a CMYK color set. In a preferred embodiment, two sets of four print heads each are configured so that each set prints the same four colors in a two printhead wide strip, or alternatively, the sets are configured and controlled to print over the same area with each of eight colors.




More particularly, UV curable ink is jetted onto the fabric, and the jetted ink is exposed to UV curing light to cure the UV ink component to an extent sufficient to render the printed image substantially resistant to further wicking, which is generally about 60 to 95% polymerization depending on ink density, substrate porosity and composition, and substrate weight and thickness. Preferably, UV light curing heads are mounted on the carriage carrying the printheads across the substrate, one on each side of the heads, with the lights alternating during the bidirectional motion of the printheads to expose the ink immediately after being deposited on the substrate with light from the trailing light curing head. The light curing heads are directed onto the substrate to expose the ink immediately after it contacts the substrate to freeze the dots of ink and curtain the wicking of the ink into textile and other absorbent fabric. Then, the fabric bearing the partially cured jetted ink is heated with heated air in a heat curing oven, at which the UV light initiated polymerization may continue, or uncured monomers are vaporized, or both, in order to produce a printed image of UV ink that contains a reduced level of uncured monomers or other components of the ink which is likely to be tolerable by persons sensitive or potentially sensitive to such ink components. Preferably, the uncured components of the ink are reduced to an order of magnitude of about a gram per square meter, for example, and generally not more than about 1.55 grams per square meter of uncured monomer on the fabric substrate.




In the preferred embodiments, linear servos motors are provided to drive the print heads, at least transversely, over the substrate. Linear motors are easier to tune, require little service, and have better acceleration and deceleration than belt or other drive systems. Such servos provide accuracy that enables printing to be carried out while the heads are accelerating or decelerating. Programmed compensation is made for the variable head speed by the timing of the jetting of the ink. Thus, areas of the substrate having no printing can be skipped at high speed, greatly improving the speed and efficiency of the print operation by minimizing the time during which the print head is not depositing ink on the substrate.




According to the preferred embodiment of the invention, ink is jetted onto a textile material such as a mattress cover ticking material, preferably prior to the quilting of the fabric into a mattress cover. The ink is jetted at a dot density of about 180×256 dots per inch per color to about 300×300 dots per inch per color, though lower dot densities of from about 90×256 dots per inch or as low as about 90×90 dots per inch can be applied with acceptable resolution for certain applications. Preferably, four colors of a CMYK color palette are applied, each in drops or dots of about 75 picoliters, or approximately 80 nanograms, per drop, utilizing a UV ink jet print head. A UV curing light head is provided, which moves either with the print head or independent of the print head and exposes the deposited drops of UV ink with a beam of about 300 watts per linear inch, applying about 1 joule per square centimeter. Generally, UV ink will begin to cure, at least on the surface, at low levels of energy in the range of about 20 or 30 millijoules per square centimeter. However, to effect curing in commercial operation, higher UV intensities in the range of about 1 joule per square centimeter are desired. Provided that some minimal threshold level of energy density is achieved, which can vary based on the formulation of the ink, the energy of the beam can be varied as a function of fabric speed relative to the light head and the sensitivity of the fabric to damage from the energy of the beam.




The fabric on which the jetted ink has been thereby partially UV cured is then passed through an oven where it is heated to about 300° F. from about 30 seconds up to about three minutes. Forced hot air may be used to apply the heat in the oven, but other heating methods such as infrared or other radiant heaters may be used. Alternatively, heated platens may be used to heat the ink bearing material, and such platens are particularly effective in bringing the material quickly up to the 300° F. temperature. The UV energy level, oven heating temperature and oven heat time may be varied within a range of the above listed values depending on the nature of the fabric, the density, type and composition of the applied ink; and the speed of the fabric during processing relative to the UV curing light head. Thus, a higher ink density applied to the fabric will generally require more UV energy, higher oven heating temperature, longer oven heat time or a combination of these variables, to effect the necessary curing on the particular fabric.




The reliability of the printing processes may be enhanced, according to certain aspects of the invention, by preconditioning the substrate, such as by precoating, shaving or singeing of the surface to be printed. Such preconditioning eliminate dust and lint that could collect on the print heads and potentially contribute to clogging of the nozzles.




The invention further provides an online printhead cleaning station for automatic cleaning of the printheads during the course of the printing process. Preferably, periodically during the course of the printing of an extended area substrate, the printhead carriage is traversed to the printhead cleaning station where ink is jetted from the heads to purge the nozzles and the heads are wiped of ink and foreign matter that might have collected on them.




Further, the invention further provides for an ink composition which contains, in combination with the UV ink or other inks curable by exposure to impinging energy, one or more dyes which are both reactive or have an affinity to some or all of the fiber surfaces of the fabric and are compatible with the UV or other curable ink. The UV inks or other inks curable by exposure to impinging energy are comprised of a polymerizable portion and at least one pigment, suspended in the polymerizable portion.




Stable dye components can be added to the otherwise polymerizable ink to form a stable composition. The composition is digitally printed onto the substrate, whereupon the dye component is brought into contact with fiber surfaces in the fabric to chemically bond or form an affinity with those surfaces. Polymerization of the UV or other curable ink component is initiated by exposure to an impinged energy beam, such as UV, EB or other such energy beam. This effects at least a surface cure of the UV or other curable ink component, but generally has little effect on the dye component. Then the partially polymerized or cured ink is thereafter subjected to heat to both complete chemical bonding of the dye or finalizing formation of an affinity to the fiber surfaces and reduce the unpolymerized polymerizable reactants and other extractable components of the UV or other curable ink component to low levels that are likely to be tolerable or otherwise acceptable to persons contacting the fabric. Where such dye is included in the ink, the presence of heat facilitates chemical bonding or affinity formation of unreacted dye in contact with fiber surfaces in the fabric.




Where the ink composition incorporates a separate dye component which is combined with the UV or other impinging energy curable ink, the dye portion of such ink compositions may be selected from dyes that are stable and are compatible with the ink and the substrate, and are selected from the group that includes, but is not limited to, disperse dyes, reactive dyes, acid dyes, basic dyes, metallized dyes, naphthol dyes and other dyes which do not require a post-treatment to either set the dye or to develop the color. Disperse dyes are widely used for dyeing most manufactured fibers. Reactive dyes are anionic dyes which react with hydroxyl groups in cellulose fibers in the presence of alkali. Acid dyes are used on wool and other animal fibers, as well as certain manufactured fibers such as nylon. Basic dyes are positive-ion-carrying dyes which have a direct affinity for wool and silk. these dyes may also be used on basic-dyeable acrylics, modacrylics, nylons, and polyesters. Naphthol dyes are formed on the fiber by first treating the fiber with a phenolic compound in caustic solution and then applying a solution of a diazonium salt. the salt reacts with the phenolic compound to produce a colored azo compound. Generally, these dyes are used for cellulose fibers.




To the extent that a dye component is included which does not bind chemically to the fiber surfaces or form an affinity, the portion of dye which does not react with the surfaces is encapsulated within the polymerized UV ink composition to minimize migration of the dye. This encapsulation effect reduces or eliminates the need for post-treatment to remove the mobile dye from the fabric.




Further, the amount of heat needed to cause reaction or form an affinity of the dye component, when included, with the fiber surface of the fabric is a function of at least the dye component concentration, dye chemical composition, fiber composition, and fabric processing speed past or through the heat source. Generally, the upper limits for the UV or other impinging beam of energy and oven heating temperature are those values which, when applied to the specific ink and fabric, begin to damage or otherwise adversely affect the applied ink, the underlying fabric or both.




The invention has the advantage that, for different inks and using different criteria for the desired residual amount of uncured ink components remaining on the fabric, the parameters can be varied to increase or reduce the residual amount. By increasing or decreasing the intensity of energy, or using a different form of energy than UV, or by increasing or decreasing the time of exposure of the ink to the energy, the amount of remaining unpolymerized non-solvent ink components can be changed. Additionally, using higher or lower temperatures, or more or less air flow, or greater or less heating time in the post curing oven, can change the final composition of the ink on the substrate. Care, however, should be taken that the energy curing or heating process does not damage the fabric or the ink.




A further advantage of the invention is that a portion of the ink composition can be included that will combine with fiber surfaces to provide coloration which is chemically bonded or has an affinity to those surfaces. Color or wash fastness due to chemical reaction or affinity formation of the dye to fiber surfaces over at least a portion of the printed fabric is accomplished while maintaining the advantage of mechanical bonding of the UV ink component onto other portions of the fiber.




The invention makes it possible to print images on fabric with UV curable ink by providing effective curing of the ink, leaving less than a nominal 1.55 grams of uncured monomers per square meter of printed material and usually leaving only about 0.155 grams per square meter of uncured monomers. Thus, the invention provides the benefits of using UV curable ink over water and solvent based inks, including the advantages of high color saturation potential, low potential sensitivity or toxicity, and without clogging the jet nozzles and enabling the use of piezo or other high longevity print heads. Furthermore, the encapsulation effect provided by the cured UV ink substantially or completely prevents migration of non-binding dye, if included, onto other sections of the fabric, or onto other fabrics as in the case of washing the printed fabric with other items. Furthermore, the ability to print on wide width fabrics with polymerizable inks, which do not form chemical bonds with the substrates, and therefore are not material dependent, provides an advantage, particularly with fabrics such as mattress covers and other furniture and bedding products.




These and other objects of the present invention will be more readily apparent from the following detailed description of the preferred embodiments of the invention.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a diagrammatic perspective view of a one embodiment of a web-fed mattress cover printing and quilting machine embodying principles of the present invention.





FIG. 2

is a perspective view of an ink jet printing machine embodying principles of the present invention.





FIG. 3

is cross-sectional view of the printing machine of FIG.


2


.





FIG. 4

is a perspective view of a portion of the machine of

FIGS. 2 and 3

.





FIG. 5

is a top view of the portion of the machine illustrated in FIG.


4


.





FIG. 5A

is a perspective view of a portion of FIG.


5


.




FIGS.


6


and


6


A-


6


D are prints of display screens of the operator terminal and information bridge of the machine of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The figure illustrates a quilting machine


10


having a stationary frame


11


with a longitudinal extent represented by an arrow


12


and a transverse extent represented by an arrow


13


. The machine


10


has a front end


14


into which is advanced a web


15


of ticking or facing material from a supply roll


16


rotatably mounted to the frame


11


. A roll of backing material


17


and one or more rolls of filler material


18


are also supplied in web form on rolls also rotatably mounted to the frame


11


. The webs are directed around a plurality of rollers (not shown) onto a conveyor or conveyor system


20


, each at various points along the conveyor


20


. The conveyor system


20


preferably includes a pair of opposed pin tentering belt sets


21


which extend through the machine


10


and onto which the outer layer


15


is fed at the front end


14


of the machine


10


. The belt sets


21


retain the web


15


in a precisely known longitudinal position thereon as the belt sets


21


carry the web


15


through the longitudinal extent of the machine


10


, preferably with an accuracy of 0 to ¼ inch. The longitudinal movement of the belts


21


is controlled by a conveyor drive


22


. The conveyor


20


may take alternative forms including, but not limited to, opposed cog belt side securements, longitudinally moveable positive side clamps that engage and tension the material of the web


15


or other securing structure for holding the facing material web


15


fixed relative to the conveyor


20


.




Along the conveyor


20


are provided three stations, including an ink jet printing station


25


, a UV light curing station


24


, a heated drying station


26


, a quilting station


27


and a panel cutting station


28


. The backing material


17


and filler material


18


are brought into contact with the top layer


15


between the drying station


26


and the quilting station


27


to form a multi-layered material


29


for quilting at the quilting station


27


. Preferably, the layers


17


,


18


are not engaged by the belt sets


21


of the conveyor


20


, but rather, are brought into contact with the bottom of the web


15


upstream of the quilting station


27


to extend beneath the web


15


through the quilting station


27


and between a pair of pinch rollers


44


at the downstream end of the quilting station


27


. The rollers


44


operate in synchronism with the belt sets


21


and pull the webs


17


,


18


through the machine


10


with the web


15


.




The printing station


25


includes one or more ink jet printing heads


30


that are transversely moveable across the frame


11


and may also be longitudinally moveable on the frame


11


under the power of a transverse drive


31


and an optional longitudinal drive


32


. Alternatively, the head


30


may extend across the width of the web


15


and be configured to print an entire transverse line of points simultaneously onto the web


15


.




The ink jet printing head


30


is configured to jet UV ink at 75 picoliters, or approximately 80 nanograms, per drop, and to do so for each of four colors according to a CMYK color pallette. Preferably, the printing head


30


does not undergo a heating step during operation. A mechanical or electromechanical print head such as a piezo print head is preferred. The dots are preferably dispensed at a resolution of about 180 dots per inch by about 256 dots per inch. The resolution may be higher or lower as desired, but the 180×256 resolution is preferred. If desirable for finer images or greater color saturation, 300×300 dots per inch is preferable. The drops of the different colors can be side-by-side or dot-on-dot. Dot-on-dot (sometimes referred to as drop-on-drop) produces higher density.




The print head


30


is provided with controls that allow for the selective operation of the head


30


to selectively print two-dimensional designs


34


of one or more colors onto the top layer web


15


. The drive


22


for the conveyor


20


, the drives


31


,


32


for the print head


30


and the operation of the print head


30


are program controlled to print patterns at known locations on the web


15


by a controller


35


, which includes a memory


36


for storing programmed patterns, machine control programs and real time data regarding the nature and longitudinal and transverse location of printed designs on the web


15


and the relative longitudinal position of the web


15


in the machine


10


.




The UV curing station


24


includes a UV light curing head


23


that may move with the print head


30


or, as is illustrated, move independently of the print head


30


. The UV light curing head


23


is configured to sharply focus a narrow longitudinally extending beam of UV light onto the printed surface of the fabric. The head


23


is provided with a transverse drive


19


which is controlled to transversely scan the printed surface of the fabric to move the light beam across the fabric. Preferably, the head


23


is intelligently controlled by the controller


35


to selectively operate and quickly move across areas having no printing and to scan only the printed images with UV light at a rate sufficiently slow to UV cure the ink, thereby avoiding wasting time and UV energy scanning unprinted areas. If the head


23


is included in the printing station


25


and is coupled to move with the print head


30


, UV curing light can be used in synchronism with the dispensing of the ink immediately following the dispensing of the ink.




The UV curing station


24


, in the illustrated embodiment, is located immediately downstream of the printing station


25


so that the fabric, immediately following printing, is subjected to a UV light cure. In theory, one photon of UV light is required to cure one free radical of ink monomer so as to set the ink. In practice, one joule of UV light energy is supplied by the UV curing head


23


per square centimeter of printed surface area. This is achieved by sweeping a UV beam across the printed area of the fabric at a power of 300 watts per linear inch of beam width and exposing the surface for a time sufficient to deliver the energy at the desired density. Alternatively, if fabric thickness and opacity are not too high, curing light can be projected from both sides of the fabric to enhance the curing of the UV ink. Using power much higher can result in the burning or even combustion of the fabric, so UV power has an upper practical limit.




The heat curing or drying station


26


is fixed to the frame


11


, preferably immediately downstream of the UV light curing station. With sufficient UV cure to stabilize the ink such that the printed image is substantially resistant to further wicking, the ink will be sufficiently color-fast so as to permit the drying station to be off-line, or downstream of the quilting station


27


. In embodiments in which a dye component is included in the ink composition, the dye will have either reacted or formed an affinity with certain fiber surfaces, or will have become substantially or completely encapsulated within the cured UV in component. When on-line, the drying station should extend sufficiently along the length of fabric to adequately cure the printed ink at the rate that the fabric is printed. Heat cure at the oven or drying station


26


maintains; the temperature of the ink on the fabric at about 300° F. for up to three minutes. Heating of from 30 seconds to 3 minutes is the anticipated acceptable range. Heating by forced hot air is preferred, although other heat sources, such as infrared heaters, can be used as long as they adequately penetrate the fabric to the depth of the ink.




The exact percentage of tolerable uncured monomers varies from ink to ink and product to product. Generally, it is thought that uncured monomers of UV curable ink should be reduced to below about 0.1%, or 1000 PPM. In the preferred embodiment of the invention, uncured monomers of UV curable ink are reduced to less than 100 PPM, and preferably to about 10 PPM. As explained above, each 1 PPM is equivalent to about 15.5 milligrams extractables per square meter of printed material. As used herein, the percentage or portion of remaining uncured monomers refers to the mass of extractable material that can be removed from a given sample of cured ink by immersing the cured ink sample in an aggressive solvent such as toluene, and measuring the amount of material in the solvent that is removed from the ink by the solvent. The measurements are made with a gas chromatograph with a mass detector. In the preferred embodiment of the invention, the measured amount of material removed from a given sample of the ink is less than 1.5 grams extractables per square meter of printed material. Measurements of higher than 100 PPM or 1.5 grams extractables per square meter of printed material are undesirable. Measurements of 10 PPM are preferred.




In certain specialized embodiments, an ink composition comprising a UV ink component and a dye component may be formulated in a manner which generates a compatible, shelf-stable composition. The relative concentration ranges of UV ink component to dye component in such compositions will vary with the nature of the fabric being printed, and the respective physical characteristics of the UV ink and dye components. Non-limiting physical characteristics of the UV ink and dye which are evaluated in connection with enhancing compatibility of the UV ink component with the dye component include polarity, viscosity, and pH. The dye and UV ink would be selected so that no reaction occurs or can be expected to occur between these ink components or with any other incorporated additive under the conditions expected during storage and printing operation.




The quilting station


27


is located downstream of the oven


26


in the preferred embodiment. Preferably, a single needle quilting station such as is described in U.S. patent application Ser. No. 08/831,060 to Jeff Kaetterhenry, et al. and entitled Web-fed Chain-stitch Single-needle Mattress Cover Quilter with Needle Deflection Compensation, which is expressly incorporated by reference herein, now U.S. Pat. No. 5,832,849. Other suitable single needle type quilting machines with which the present invention may be used are disclosed in U.S. patent application Ser. No. 08/497,727 and Ser. No. 08/687,225, both entitled Quilting Method and Apparatus, expressly incorporated by reference herein, now U.S. Pat. Nos. 5,640,916 and 5,685,250, respectively. The quilting station


27


may also include a multi-needle quilting structure such as that disclosed in U.S. Pat. No. 5,154,130, also expressly incorporated by reference herein. In the figure, a single needle quilting head


38


is illustrated which is transversely moveable on a carriage


39


which is longitudinally moveable on the frame


11


so that the head


38


can stitch 360° patterns on the multi-layered material


29


.




The controller


35


controls the relative position of the head


38


relative to the multi-layered material


29


, which is maintained at a precisely known position by the operation of the drive


22


and conveyor


20


by the controller


35


and through the storage of positioning information in the memory


36


of the controller


35


. In the quilting station


27


, the quilting head


38


quilts a stitched pattern in registration with the printed pattern


34


to produce a combined or composite printed and quilted pattern


40


on the multi-layered web


29


. This may be achieved, as in the illustrated embodiment by holding the assembled web


29


stationary in the quilting station


27


while the head


38


moves, on the frame


11


, both transversely under the power of a transverse linear servo drive


41


, and longitudinally under the power of a longitudinal servo drive


42


, to stitch the 360° pattern by driving the servos


41


,


42


in relation to the known position of the pattern


34


by the controller


35


based on information in its memory


36


. Alternatively, the needles of a single or multi-needle quilting head may be moved relative to the web


29


by moving the quilting head


38


only transversely relative to the frame


11


while moving the web


29


longitudinally relative to the quilting station


27


, under the power of conveyor drive


22


, which can be made to reversibly operate the conveyor


20


under the control of the controller


35


.




In certain applications, the order of the printing and quilting stations


25


,


27


, respectively, can be reversed, with the printing station


25


located downstream of the quilting station


27


, for example the station


50


as illustrated by phantom lines in the figure. When at the station


50


, the printing is registered with the quilting previously applied at the quilting station


27


. In such an arrangement, the function of the curing station


26


would also be relocated to a point downstream of both the quilting station


27


and printing station


50


or be included in the printing station


50


, as illustrated.




The cutoff station


28


is located downstream of the downstream end of the conveyor


20


. The cutoff station


28


is also controlled by the controller


35


in synchronism with the quilting station


27


and the conveyor


20


, and it may be controlled in a manner that will compensate for shrinkage of the multi-layered material web


29


during quilting at the quilting station


27


, or in such other manner as described and illustrated in U.S. Pat. No. 5,544,599 entitled Program Controlled Quilter and Panel Cutter System with Automatic Shrinkage Compensation, hereby expressly incorporated by reference herein. Information regarding the shrinkage of the fabric during quilting, which is due to the gathering of material that results when thick, filled multi-layer material is quilted, can be taken into account by the controller


35


when quilting in registration with the printed pattern


34


. The panel cutter


28


separates individual printed and quilted panels


45


from the web


38


, each bearing a composite printed and quilted pattern


40


. The cut panels


45


are removed from the output end of the machine by an outfeed conveyor


46


, which also operates under the control of the controller


35


.




Piezo print heads useful for this process are made by Spectra of New Hampshire. UV curing heads useful for this process are made by Fusion UV Systems, Inc., Gaithersburg, Md.




An alternative embodiment of the invention is the ink jet printing machine


600


illustrated in FIG.


2


. The machine


600


is a roll-to-roll ink jet printing machine that is particularly configured for printing onto wide textile webs. Such machines are particularly useful for printing a facing layer of material which may then be transferred to a quilting machine on a separate quilting line or to feed material downstream to a quilting station as in the embodiment illustrated in

FIG. 1

, described above. The machine


600


is also particularly suited to print on textiles that are not necessarily to be used in a quilted product, such as for signs, banners, apparel and other products.




The printing machine


600


has a stationary housing


601


with a longitudinal extent represented by arrow


602


and a transverse extent represented by arrow


603


. The machine


600


has a front end


604


from which is advanced a substrate web of textile material


605


downstream in the longitudinal direction. The material may be a greige goods textile material or some other material on which printing is desired. Where the material is a textile, it can have been preconditioned by precoating, shaving or singeing of the surface to be printed to eliminate dust and lint that could collect on the print heads and potentially contribute to clogging of the nozzles. Failure to remove the fuzz can cause the fuzz or dust to be sucked into the nozzle orifices as the flow reverses between dot ejections, which could clog the nozzles.




An operator station


606


is provided at the right side of the front end of the housing


601


having a push button control panel


607


and a touch screen and display


608


. The housing


601


includes a base assembly


609


which supports the machine


600


and encloses the supply of substrate material as described in connection with

FIG. 3

below. Across the top of the housing


601


transversely and supported on the base


609


extends an information bridge


610


. The information bridge


610


has four display screens


611


-


614


facing the front


604


of the machine


600


. From the control panel


606


an operator can select the information to be displayed on each of the screens


611


-


614


. Such information can include status data, machine parameter settings, scheduling, batch and product information, pattern data, machine status and alarm conditions, or other information useful in operating the machine. One or more of the screens


611


-


614


can also be set to display video images of the printing area or the substrate downstream of the printing station from information captured by video cameras (not shown) mounted on the machine


600


.




The base


609


of the housing


601


has a conveyor table


615


on the top thereof on the upwardly facing horizontal surface of which is supported a length of the substrate web


605


for printing, as illustrated in

FIGS. 3 and 4

. The conveyor table


615


has a conveyor belt


616


that extends transversely across the width of the table


615


on transversely extending rollers


617


and


618


that are respectively rotatably mounted at the front and back of the base


609


of the housing


601


. The belt


616


extends across the width of the frame


601


and rests on a smooth stainless steel vacuum table


620


, which has therein an array of upwardly facing vacuum holes


621


which communicate with the underside of the belt


616


. The belt


616


has a high friction rubber-like polymeric surface


622


to help prevent a horizontal sliding of the substrate


605


and through which an array of holes


623


is provided to facilitate communication of the vacuum from the vacuum table


620


to the substrate


605


. The belt


616


is inelastic and has an open weave backing


107


which provides dimensional stability to the belt


616


while allowing the vacuum to be communicated between the holes


621


of the vacuum table


620


and the holes


623


in the surface


622


of the belt


616


. The forward motion of the substrate


605


relative to the on the housing


601


is precisely controllable by indexing of the belt


616


by control of a DC brushless servo drive motor


624


(

FIG. 3

) for the rollers


617


,


618


with signals from a controller


625


behind the operator panel


606


on the housing


601


. The indexing of the belt


616


is controllable to an accuracy of about 0.0005 inches to move the substrate web


605


relative to the housing


601


.




Fixed to the base


609


of the housing


601


and extending transversely thereof is a printing bridge


630


, above the conveyor table


615


and below the information bridge


610


. The printing bridge


630


supports a print head carriage


631


for transverse movement above and parallel to the substrate


605


supported on the conveyor table


615


, as illustrated in more detail in

FIGS. 3 and 4

. The bridge


630


has a pair of rails


632


on the front side thereof on which the carriage


631


is adapted to move. A linear servo motor


633


has a stator bar


633




a


containing a linear array of permanent magnets mounted across the front face of the printing bridge


630


and an armature


633




b


fixed to the carriage


631


and electrically connected through a wire cage chain


634


on the bridge


630


to the controller


625


. An encoder


636


also extends across the front of the bridge


630


and provides feedback information to the controller


625


as to the position of the carriage


631


on the bridge


630


. Linear motors such as the servo motor


633


are preferred because they are easier to tune, require little service, and have better acceleration and deceleration than belt or other drive systems. Because of their accuracy, printing can be carried out while the heads


640


,


641


are accelerating or decelerating, with programmed compensation in the timing of the jetting of the ink being made by the controller


625


. This improves the speed and efficiency of the print operation by allowing the print heads


640


,


641


to use acceleration and deceleration time and to skip at high speed across areas of the substrate


605


that will have no printing and to areas at which ink is to be deposited, thereby minimizing the time during which the print head is not depositing ink on the substrate. Accordingly, linear servo motors to transversely move the carriage


631


that carries the print heads


640


,


641


across the bridge


630


are preferred for the machine


600


.




The print head carriage


631


has fixed at the bottom thereof two sets


640


,


641


, each having four ink jet print heads


640




a-d,




641




a-d.


The print heads of each set are arranged in a transverse row so that they print successively along a transverse strip across the substrate


605


as the print head carriage


631


moves transversely across the bridge


630


to respectively apply the four colors of a CMYK color set. The ink jet printing heads


640




a-d,




641




a-d


each include a linear array of two hundred fifty-six (256) ink jet nozzles that extend in the longitudinal direction relative to the frame


601


and in a line perpendicular to the direction of travel of the carriage


631


on the bridge


630


. The nozzles of each of the heads


640


,


641


are configured and controlled to simultaneously but selectively jet UV ink of one of the CMYK colors, and can print a strip of 256 pixels side by side across the substrate


605


at 15,000 dots per second. The spacing of the nozzles is, in the embodiment herein described, 90 jets per linear inch, so that the print heads are each slightly less than three inches wide. One pass of the print heads prints, for example, prints a transverse strip about 2.85 inches wide of ninety rows of pixels. With the two sets of heads


640


and


641


, the strip is about 5.7 inches wide. By indexing the web {fraction (1/180)}th of an inch and printing with another pass of the carriage


631


, which can be in the opposite direction, a longitudinal resolution of 180 dots per inch (dpi) can be achieved, as illustrated in FIG.


5


. With four passes of the print heads, indexing between the scans {fraction (1/360)}th inch, a longitudinal dot resolution of 360 dpi can be achieved. Schemes to reduce artifacts and achieve different levels of printing quality involve activating half or one-third of the jets and scanning two or three times, indexing as required. Transverse resolution is settable at any resolution up to approximately 720 dpi by controlling the resolution and timing of the information sent by the controller


625


to the print heads. A transverse dot resolution is preferably maintained close to the longitudinal resolution being used.




Ink is supplied to each of the print heads


640




a-d,




641




a-d


by a respective one of a set of eight ink supplies (not shown) in the left side of the base


609


of the housing


601


, which are connected to the respective heads through tubes carried by the wire cage


634


. Each of the ink supplies includes a collapsible plastic bag and a peristaltic pump to supply UV ink to one of the ink jet print heads


640




a-d,




641




a-d.


Each collapsible supply bag is coupled to one of the peristaltic pumps via a tube that may include a quick disconnect. The peristaltic pump in turn supplies ink through a tube to a respective one of the ink jet print heads. An optional intervening reservoir may be provided in each tube between the pump and the print head to allow intermittent operation of the peristaltic pump or to handle intermittent demands exceeding pump output.




In the preferred and illustrated embodiment, the ink is ultraviolet light polymerizable ink composed essentially of polymerizable monomers which are stable unless and until exposed to a sufficient level of UV light to initiate a polymerizing reaction. UV light is provided by a pair of UV curing heads


645


,


646


mounted on each side of the carriage


631


to expose the ink immediately after it is deposited onto the substrate


605


by the print heads


640


,


641


. The UV light heads


645


,


646


operate alternatively, with the head on the side of the carriage that trails the print heads


640


,


641


being activated to freeze the dots of ink within approximately 0.05 to 0.20 seconds after being deposited as the carriage


631


moves transversely on the bridge at approximately forty inches per second. The location of the heads


645


,


646


has the advantage of curing any atomized UV ink that might be produced by the nozzles of the print heads, thereby turning the liquid monomers into a dust that is less likely to be harmful. An optional additional UV light curing head


647


may be provided on a separate carriage


648


(as shown in phantom in

FIG. 3

) to move across the back of the bridge


630


independently of the movement of the print head carriage


631


to more thoroughly cure the ink by scanning the substrate


605


downstream of the print heads


640


,


641


.




The supply of the substrate material


605


is loaded on a roll


650


onto a sliding carrier


651


that slides out of the base


609


of the housing


601


for loading and returns to the position shown in

FIG. 3

for operation of the machine


600


. The web of the material


605


extends from the roll


650


around an idler roller


652


, around the bottom of a vertically moveable accumulator roller


653


and over the conveyor belt


616


on the top of the conveyor table


615


. The accumulator roller


653


is weighted and supported by the web of material


605


so as to apply a uniform tension on the web of material


605


. The ends of the shaft of the roller


653


ride in vertical tracks configured to keep the roller level. Limit switches or other detectors (not shown) sense upper and lower positions of the accumulator roller


653


so that the amount of material advancing from the supply roll


650


can be controlled. At the rear or downstream end of the conveyor table


615


, a pinch roller


619


is provided to clamp the web


605


against the belt


616


as it passes around the roller


618


.




Below the nip of rollers


618


and


619


is provided a heater


660


. The web of material


605


enters the heater


660


, which heats the substrate


605


to reduce the content of uncured monomers of the UV ink in the same manner as the heating station


26


described above in connection with the embodiment


10


of FIG.


1


. Rather than using heated air, as in the case of heating station


26


, the heater


660


contacts the substrate


605


with one or more heated platens, which quickly bring the substrate to a temperature of 360° F. within approximately one to two seconds. The heating station or heater


660


has a path therethrough of from about thirty inches to about forty inches for the web


605


. The heater


660


includes an initial heated stainless steel bullnose platen


661


is positioned to contact the under surface of the material


605


opposite the side on which the ink from the print heads


640


,


641


has been deposited. The bullnose platen


661


brings the substrate


605


to a desired temperature of 300-380° in one to two seconds, where hot air takes from 30 seconds to 3 minutes. The web


605


passes over a second bullnose platen


662


downstream of the first platen


661


, which contacts the ink bearing side of the substrate


605


, insuring that the temperature of the substrate


605


, and particularly the ink, is at the desired temperature throughout the thickness of the material


605


. Once brought to temperature, the substrate


605


is maintained at the desired temperature by a series of additional plates


663


,


664


. In lieu of the additional plates, other ways of maintaining the desired temperature for another thirty seconds more or less, such as with heated air or radiant heaters, would be adequate. An exhaust system (not shown) connects to the heater


660


to exhaust and dispose of any vapors that may contain monomers of the ink. Such exhaust may be connected to an electrostatic carbon filter and the air therefrom returned to the environment.




At the outlet of the heater


660


a series of rollers


666


take up and roll the printed material web


605


. The series of rollers


666


includes another accumulator roller


667


which maintains tension on the web


605


downstream of the nip of the rollers


618


,


619


.




As illustrated in

FIG. 5

, at the right side of the path of the print head carriage


631


is provided a head cleaning station


670


. Periodically in the course of the printing of a web of material


605


, for example, after the printing of some length of web, twenty meters for example, or whenever an operator determines that the heads need to be cleaned, the carriage


631


is traversed to the right side of the bridge


630


over the cleaning station


670


. The cleaning station


670


is provided with a pan


671


for collecting ink. When the heads are moved to the cleaning station


670


, they pass over a slot


672


in a wiper blade mounting block


673


and ink is jetted from the heads into the pan


671


to clear the heads. The cleaning station


670


is also provided with an array of longitudinally extending upwardly projecting polyurethane wiper blades


675


that are mounted to the block


673


. The carriage


631


is operated to move on the bridge


630


to wipe the heads


640


,


641


back and forth over the wiper blades


675


to wipe the bottom faces thereof which house the nozzles free of excess ink or dust. The blades are made of a polymeric material such as polyurethane and held to the block


673


in slotted blade holder members


677


fixed to the top of the block


673


. Slots


676


are provided in the block


673


so that ink wiped from the heads by the blades


675


drains into the collecting pan


671


. Once the heads are cleaned, the carriage resumes the scanning and printing of the web


605


. Such head cleaning is programmed to occur automatically, periodically during the printing process, when an automatic head cleaning option is selected by the operator.




Operation of the machine


600


is carried out at the control panel


606


described above.

FIG. 6

illustrates the main control window


680


displayed on the screen


608


of the panel


606


. The window


680


includes a function key


681


and set of buttons


682


for assigning functions to the hard buttons


607


on the panel


606


, such as manually advancing the web


605


, moving the slide


651


to load a roll


650


and facilitating other such operator procedures, and for selecting the information to be displayed on the screens


611


-


614


on the information bridge


610


. The operator can manually choose a selected pattern, which is displayed in window


683


, by pressing the button


684


, to open the pattern select window


684




a,


which displays icons


683




a


of the available patterns, as illustrated in FIG.


6


A. The operator can also set up printer parameters by pressing the button


685


on window


680


, which opens the printer setup window


685




a


illustrated in FIG.


6


B. The operator can further configure the printer by pressing the button


686


on window


680


, which opens the printer configuration window, various pages


686




a,




686




b


of which are illustrated in

FIGS. 6C and 6D

. Input, printed output and other communication functions can be controlled by pressing the button


687


while diagnostic information can be displayed by pressing the button


688


. Speed and timing information is displayed in boxes


689


while batch and job status data, such as items and quantities completed and job (product or customer) identification data is displayed in boxes


690


. The machine


600


is configured to function in accordance with the batch control and automatic scheduling processes described in U.S. Pat. No. 6,105,520, by James T. Frazer, Von Hall, Jr. and M. Burl White entitled Quilt Making Automatic Scheduling System and Method, hereby expressly incorporated by reference herein.




The above description is representative of certain embodiments of the invention. Those skilled in the art will appreciate that various changes and additions which may be made to the embodiments described above without departing from the principles of the present invention.




Therefore, the following is claimed.



Claims
  • 1. A digital printing method comprising:providing a printhead in a printing apparatus configured to digitally print an image on a substrate by scanning a progressively indexed series of lines across the substrate while selectively depositing, simultaneously from a plurality of nozzles, a plurality of drops of ink, on demand, on the substrate, under programmed control, to form the image on the substrate; driving the printhead across the substrate with a linear servo motor having a stator extending parallel to and transverse the support and an armature moveable on the stator; and digitally printing the image on the substrate with the printhead by so driving the printhead with the armature across the support on the stator of the linear servo motor parallel to the support and directed toward the support while selectively depositing drops of ink on demand as the linear servo motor moves the printhead relative to the support.
  • 2. The method of claim 1 wherein:the printing includes jetting ink from the printhead onto the substrate.
  • 3. The method of claim 2 further comprising:controlling the jetting of the ink by advancing the timing thereof in relation to the speed of the printhead across the substrate.
  • 4. The method of claim 2 further comprising:controlling the jetting of the ink by advancing the timing thereof in relation to the speed of the printhead across the substrate to compensate for transverse displacement of the ink due to the velocity of the printheads parallel to the substrate.
  • 5. The method of claim 2 further comprising:controlling the jelling of the ink by advancing the timing thereof in relation to the speed of the printhead across the substrate to compensate for transverse displacement of jetting ink due to the velocity of the printheads parallel to the substrate.
  • 6. The method of claim 1 wherein:the driving of the printhead includes accelerating and decelerating the printhead while driving it across a substrate with the linear servo motor; and the printing includes printing on the substrate while the head is accelerating or decelerating.
  • 7. The method of claim 6 wherein:the printing includes jetting ink from the printhead onto the substrate while the head is accelerating or decelerating.
  • 8. The method of claim 7 further comprising:controlling the jetting of the ink by advancing the timing thereof in relation to the speed of the printhead across the substrate.
  • 9. The method of claim 1 wherein:the substrate is a textile; and the printing includes jetting ink from the printheads onto the surface of the textile.
  • 10. The method of claim 1 wherein:the digitally printing of the image on the substrate includes printing the image directly from information in an electronic file; and the image is printed by controlling the linear servo to drive the printhead in response to the information from the electronic file.
  • 11. The method of claim 1 wherein:the printhead includes a plurality of nozzles and the printing is performed in a scanning motion on the substrate by selectively and simultaneously depositing drops of ink of a plurality of different colors onto the substrate.
  • 12. A digital printing apparatus comprising:a substrate support; a linear servo motor having a stator extending parallel to and transverse the support and an armature moveable on the stator; a digital printhead moveable with the armature across the support on the stator of the linear servo motor parallel to the support and directed toward the support and operable to selectively deposit drops of ink on demand as the linear servo motor moves the printhead relative to the support; a controller operable to drive the linear servo motor parallel to the support and to operate the printhead in synchronism with the movement of the servo motor to print an image on a substrate on the support in accordance with data from an electronic source file.
  • 13. The apparatus of claim 12 wherein:the printhead is an ink jet printhead.
  • 14. The apparatus of claim 13 wherein:the controller is operable to time the jetting of the ink from the printhead in relation to the speed of the linear servo motor.
  • 15. The apparatus of claim 13 wherein:the controller is operable to time the jetting of the ink from the printhead in relation to the speed of the linear servo motor by advancing or retarding the timing of the jetting of the ink from the printhead in relation to the speed of the printhead across the substrate to compensate for transverse displacement of the ink due to the velocity of the printhead parallel to a substrate on the support.
  • 16. The apparatus of claim 12 wherein:the controller is operable to control the printing of the printhead so as to accurately produce an image from the electronic source file when the servo motor is accelerating or decelerating.
  • 17. The apparatus of claim 12 wherein:the printhead includes a plurality of nozzles operable to print in a scanning motion on the substrate by selectively and simultaneously depositing drops of ink of a plurality of different colors onto the substrate.
  • 18. A textile printing apparatus comprising:a textile-substrate support; a bridge extending transversely across the support that is mounted for longitudinal movement between the bridge and a substrate on the support; an ink jet printhead moveable across the bridge and positioned to deposit a dot pattern of ink onto a textile substrate on the support by scanning in transverse lines across the substrate progressively along a substrate on the support; and a computer controlled linear servo motor positioned to move the printhead across the bridge, the servo motor having a stator extending parallel to and transverse the support and an armature moveable on the stator; the printhead being moveable with the armature across the support on the stator of the linear servo motor parallel to the support and directed toward the support and operable to selectively deposit drops of ink on demand as the linear servo motor moves the printhead relative tot he support.
  • 19. The apparatus of claim 18 wherein:the printhead includes a plurality of nozzles operable to print in a scanning motion on the substrate by selectively and simultaneously depositing drops of ink of a plurality of different colors onto the substrate.
  • 20. An ink jet printing method comprising:driving a printhead across a substrate with a linear servo motor having a stator extending parallel to and transverse the support and an armature moveable on the stator, the printhead being moveable with the armature across the support on the stator of the linear servo motor parallel to the support and directed toward the support and operable to selectively deposit drops of ink on demand as the linear servo motor moves the printhead relative to the support; and jetting drops of ink on demand on the substrate with the printhead at a controlled dot density while so driving the printhead across the substrate; controlling the jetting of the ink by advancing the timing thereof in relation to the speed of the printhead across the substrate to compensate for transverse displacement of the ink due to changes in the velocity of the printheads parallel to the substrate.
Parent Case Info

This is a continuation in part of U.S. Patent Application entitled Method and Apparatus for Ink Jet Printing on Textiles, filed Mar. 30, 2001, Express Mail No. EL718725485US, which is a continuation in part of U.S. patent application Ser. No. 09/390,571, filed Sep. 3, 1999 now U.S Pat. No. 6,312,123 and of International Application Serial No. PCT/US00/24226, filed Sep. 1, 2000, each commonly owned with the present application and each hereby expressly incorporated herein by reference. This application is also related to U.S. patent applications filed Mar. 30, 2001 and entitled “Method and Apparatus for Printing on Rigid Panels and Other Contoured or Textured Surfaces” and “Printing and Quilting Method and Apparatus”, Express Mail Nos. EL718725477US and EL718725494US, respectively, each hereby expressly incorporated herein by reference.

US Referenced Citations (42)
Number Name Date Kind
3968498 Uchiyama Jul 1976 A
4183030 Kaieda et al. Jan 1980 A
4197563 Michaud Apr 1980 A
4228438 Vazirani Oct 1980 A
4231742 Clausen et al. Nov 1980 A
4266229 Mansukhani May 1981 A
4271347 Svenson Jun 1981 A
4293233 Hoffman Oct 1981 A
4303924 Young, Jr. Dec 1981 A
4408400 Colapinto Oct 1983 A
4551925 Ericsson Nov 1985 A
4836102 Cicci Jun 1989 A
4971408 Hoisington et al. Nov 1990 A
5396275 Koike et al. Mar 1995 A
5406314 Kuehnle Apr 1995 A
5409504 Fritzsche Apr 1995 A
5468553 Koike et al. Nov 1995 A
5500023 Koike et al. Mar 1996 A
5505994 Crawford Apr 1996 A
5526742 Petersen Jun 1996 A
5534063 Maruyama et al. Jul 1996 A
5537137 Held et al. Jul 1996 A
5563644 Isganitis et al. Oct 1996 A
5621449 Leenders et al. Apr 1997 A
5623001 Figov Apr 1997 A
5640905 Szyszko et al. Jun 1997 A
5680168 Kokubo et al. Oct 1997 A
5690028 Schick Nov 1997 A
5699100 Fukuda et al. Dec 1997 A
5745140 Stoffel et al. Apr 1998 A
5748204 Harrison May 1998 A
5764262 Wu et al. Jun 1998 A
5774155 Medin et al. Jun 1998 A
5809877 Szyszko et al. Sep 1998 A
5858514 Bowers Jan 1999 A
5864354 Hibino Jan 1999 A
5873315 Codos Feb 1999 A
5934195 Rinke et al. Aug 1999 A
6092890 Wen et al. Jul 2000 A
6237490 Takahashi et al. May 2001 B1
6296403 Duchovne Oct 2001 B1
6302514 Eade et al. Oct 2001 B1
Foreign Referenced Citations (12)
Number Date Country
0080448 Jun 1983 EP
2322597 Sep 1998 GB
61-164836 Jul 1986 JP
62092849 Sep 1987 JP
63234236 Sep 1988 JP
2-220883 Sep 1990 JP
7-66530 Mar 1995 JP
8-150707 Jun 1996 JP
8-218018 Aug 1996 JP
WO 9704964 Feb 1997 WO
WO 9742034 Nov 1997 WO
WO 9747481 Dec 1997 WO
Continuation in Parts (1)
Number Date Country
Parent 09/390571 Sep 1999 US
Child 09/824517 US