This relates to a method of installing or removing an electric submersible pump in a well with a positive well head pressure.
In wells with a positive well head pressure, such as SAGD (steam assisted gravity drainage) wells, the well must be depressurized, generally by cooling the well, in order to install or remove the electric submersible pump. The process to cool the well and reheat the well afterward adds a number of days onto the servicing of the well.
According to an aspect, there is provided a method of servicing an electric submersible pump in a well with a positive well head pressure. The well comprises a casing and a wellhead mounted to the casing. The wellhead has a sealable injection port and at least one production port. The method comprises the steps of providing production tubing in the casing connected to the wellhead such that production fluids flow through the production tubing and out the at least one production port of the wellhead; a coil tubing string having an electric submersible pump at a downhole end of the coil tubing string and control lines through the coil tubing string for controlling the electric submersible pump; and a pump-receiving housing above the injection port of the wellhead, the pump-receiving housing being sealed to atmosphere when the injection port is open, and openable to atmosphere when the injection port is sealed. The injection port is sealed and the pump-receiving housing is opened to insert or remove the electric submersible pump from the pump-receiving housing. The pump-receiving housing is closed and the injection port is opened to move the electric submersible pump to or from the production tubing in the well. The electric submersible pump may be an inverted electric submersible pump whereby the motor and customized components to attach the motor to the coiled tubing is at the top of the assembly, and the pump is at the bottom of the assembly. The control lines may comprise an oil feed line for continuously providing the electric submersible pump with clean oil and to maintain a positive pressure relative to the well pressure at the electric submersible pump location.
According to another aspect, there is provided a method of removing an electric submersible pump from the well. The method comprises the steps of providing production tubing in the casing connected to the wellhead such that production fluids flow through the production tubing and out the at least one production port of the wellhead; a coil tubing string positioned through the injection port and the production tubing, the coil tubing string having an electric submersible pump at a downhole end of the coil tubing string and control lines through the coil tubing string for controlling the electric submersible pump, the electric submersible pump being sized to pass through the production tubing; and a pump-receiving housing above the injection port of the wellhead, the pump-receiving housing being sealed to atmosphere when the injection port is open, and openable to atmosphere when the injection port is sealed. The coil tubing is retracted from the well such that the electric submersible pump is withdrawn through the injection port and into the pump-receiving housing. The injection port is sealed and the pump-receiving housing is opened to atmosphere. The electric submersible pump is removed from the pump-receiving housing.
According to another aspect, there is provided a method of inserting an electric submersible pump in the well. The method comprising the steps of providing production tubing in the casing connected to the wellhead such that production fluids flow through the production tubing and out the a least one production port of the wellhead; a coil tubing string having an electric submersible pump at a downhole end of the coil tubing string and control lines through the coil tubing string for controlling the electric submersible pump, the electric submersible pump being sized to pass through the production tubing; and a pump-receiving housing above the injection port of the wellhead, the pump-receiving housing being sealed to atmosphere when the injection port is open, and openable to atmosphere when the injection port is sealed. With the injection port sealed, the electric submersible pump is positioned in the pump-receiving housing. The pump-receiving housing is sealed to atmosphere, and the injection port is opened. The coil tubing and the electric submersible pump is lowered into the production tubing in the well with a positive well head pressure through the injection port of the wellhead and is seated into a pressure sealing seat located at the downhole end of the tubing.
According to another aspect, there is provided, in combination, a coil tubing string and an inverted electric submersible pump (ESP). The coil tubing string comprises an internal bore and control lines housed within the internal bore. The control lines extend from the surface end to the pump connection end. An oil supply supplies oil to the inverted ESP through at least one control line at a pressure greater than the pressure of a wellbore. The inverted ESP is sized to fit within production tubing and comprises a pump section and a motor section. The motor section is disposed above the pump section. The pump section comprises at least one inlet port and at least one outlet port. A coil tubing connection sealably connects the motor section to the coil tubing string. A seat engagement seal is provided on the pump section between the at least one inlet port and the at least one outlet port. The seat engagement seal engages a downhole end of the production tubing, such that the inlet ports are in communication with wellbore fluids, and the outlet ports are in communication with an interior of the production tubing.
According to another aspect, there is provided, in combination, an inverted electric submersible pump (ESP) sized to fit within a downhole production path and a coiled tubing string. The coiled tubing string comprises an internal bore, and one or more supply lines housed within the internal bore and connected between surface and the inverted ESP. The inverted ESP comprises a pump section and a motor section, the motor section disposed above the pump section, the pump section comprising one or more inlet ports and one or more outlet ports; at least one sealing element positioned between the one or more inlet ports and the one or more outlet ports that is sized to seal against the downhole production path; and a coiled tubing connection for sealably connecting the motor section to the coiled tubing string.
According to another aspect, the inverted ESP may comprise one or more of the following features: the one or more supply lines may comprise an oil delivery line connected between a supply of oil on surface and the inverted ESP; the one or more supply lines may comprises one or more transmission lines, each transmission line comprising an electric power line or a temperature and pressure data acquisition and transmission line, and wherein the oil delivery line is a metal capillary tube and provides structural support to the one or more transmission lines; the inverted ESP may comprise a thrust chamber between the pump section and the motor section, and the oil may be supplied by the oil delivery line passes through the motor section and the thrust chamber prior to being ejected from the inverted ESP; the oil may be ejected into the interior of the production path; the oil may be ejected from the inverted ESP from a check valve; the oil may be supplied to the oil delivery line by a positive displacement pump; the at least one pump sealing ring may be mounted to an exterior surface of the thrust chamber; the at least one pump sealing ring and the pump seating nipple may be made from metal and the at least one pump sealing ring engages the pump seating nipple in an interference fit engagement; the pump sealing ring and the pump seating nipple may be sized such that interference fit engagement causes the at least one pump sealing ring to elastically deform; the pump sealing ring and the pump seating nipple may be passive sealing elements; and the one or more inlet ports may be directly open to a hydrocarbon formation.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
A method of servicing an electric submersible pump in a well with a positive well head pressure will now be described with reference to
The method described below may be used to install or remove an electric submersible pump 10 without having to cool or depressurize the well. This method may be particularly useful for thermal stimulated wells such as SAGD wells or other wells with a positive well head pressure, or other wells with a positive well head pressure that are required to be pressure relieved prior to being opened. Referring to
With the elements described above, electric submersible pump 10 may be installed or removed without having to cool well 12. In order to insert electric submersible pump 10 into a well with a positive well head pressure, injection port 18 is first sealed by closing BOP 32 and pump-receiving housing 30 is opened. Electric submersible pump 10 is connected to coil tubing string 24 and inserted into housing 30. Pump-receiving housing 30 is then closed and sealed to atmosphere and BOP 32 is opened to allow electric submersible pump 10 to be inserted through injection port 18 in wellhead 16 and into well 12 by operating coil tubing injector 34. In order to remove electric submersible pump 10 from pressurized well 10, the process is reversed, with coil tubing injector 34 lifting electric submersible pump 10 through wellhead 16 and into housing 30. BOP 32 is then closed and sealed, and housing 30 is opened to provide access to electric submersible pump 10. Electric submersible pump 10 may then be serviced or replaced, as necessary.
As depicted, electric submersible pump 10 is preferably an inverted electric submersible pump, and is run off a 1¼″-3½″ coil tubing string 24 that contains the instrumentation lines. Other sizes may also be used, depending on the preferences of the user and the requirements of the well. When compared with traditional electric submersible pumps, electric submersible pump 10 lacks the seal section, motor pothead and wellhead feedthrough. As shown, electric submersible pump 10 includes a power head 27, motor section 38, thrust chamber 40, electric submersible pressure sealing seat 42 and electric submersible pump section 44. Thrust chamber 40 includes two mechanical seals with a check valve (not shown), and replaces the conventional seal/protector section that separates pump section 44 and motor section 38. The check valve in thrust chamber 40 allows the lubricating fluid supplied by supply line 28 to exit thrust chamber 40 and comingle with, for example, produced fluids from the well with the pump discharge from outlet ports 50. Pressure sealing seat 42, commonly referred to in industry as a pump seating nipple, has a seal 46 between inlet ports 48 and outlet ports 50. Inlet ports 48 are in communication with downhole fluids to be pumped to surface via outlet ports 50, which are positioned within production tubing 22.
Referring to
As depicted in
Preferably, electric submersible pump 10 is installed using the passive seal provided by pump seating nipple 42 and pump sealing rings 52 as depicted such that a packer, such as a sealbore packer, or other active sealing element is not required. As a result of this design, it is preferred that the full weight of the submersible pump 10 will not be borne by pump seating nipple 42, but that most or substantially all of the weight of electric submersible pump 10 will be supported by coiled tubing string 24. During installation, electric submersible pump 10 will be lowered until it engages pump seating nipple 42. The operator will be notified of this as a certain depth is reached and by monitoring the weight supported by coiled tubing injector 34. Once sufficient weight to cause pump sealing rings 52 and pump seating nipple 42 has been applied to properly seal electric submersible pump 10, the remaining weight will continue to be supported along coiled tubing string 24. After properly engaged, and depending on the specifications of the various components, coiled tubing injector 34 may be backed off to support additional weight, while still allowing sufficient weight to maintain the seal between pump seating nipple 42 and pump sealing rings 52.
Referring to
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
The following claims are to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, and what can be obviously substituted. Those skilled in the art will appreciate that various adaptations and modifications of the described embodiments can be configured without departing from the scope of the claims. The illustrated embodiments have been set forth only as examples and should not be taken as limiting the invention. It is to be understood that, within the scope of the following claims, the invention may be practiced other than as specifically illustrated and described.
Number | Date | Country | Kind |
---|---|---|---|
2707059 | Jun 2010 | CA | national |
Number | Date | Country | |
---|---|---|---|
Parent | 12877940 | Sep 2010 | US |
Child | 14576957 | US |