A. Field of Invention
The present invention relates generally to methods and apparatus for installing fluid system components and more particularly to an apparatus and method of installing axially ported components in a boss or manifold.
B. Description of Related art
A variety of fluid systems require the connection of a valve or other axially ported component to a boss or manifold under conditions where removability and compact design are most desirable. Chemical analysis apparatus, for example, often require multiple valves arrayed within a small area, with the capability of controlling small amounts of reagent. Conventional installation methods include cementing the component in place, connecting a tube section between the component and the manifold, or securing a component receiving drive sleeve to the manifold. The process of cementing a component in place prevents easy removal or replacement of the cemented component without damage to the component or manifold. Displacing the component from the manifold and connecting the component to the manifold by a length of tubing allows multiple ports within a small area, but the length of tubing may change the operating characteristics of he system and requires filling the connecting tube with the fluid to be dispensed, which may be wasteful. Since most components used in such arrays are electrically powered and controlled, wires must be lead from the component to a control and/or power circuit and the wires are preferably attached before installation. Therefore, it is desirable to provide an installation system that would neither disturb the wires nor require their attachment after installation of the component. Conventional methods of securing a component receiving drive sleeve to the manifold may be relatively bulky and may cause leakage or unintended disengagement from the manifold. In complex systems involving small components, the components are susceptible to damage and an installation system would preferably provide protection of the components against otherwise damaging forces.
Therefore, there is a need for an improved method and device for sealingly and removably securing an axially ported component to a manifold under space limitations.
The method of the present invention comprises installing an axially ported valve or other component with at least one tubular port axially extending from a component body using the apparatus described herein. A mounting opening is formed in the manifold with a section having a conically tapered wall with an inner end and an outer end that is of greater diameter than the inner end and forming an internally threaded section within the manifold opening. A sealing member is formed of an elastomeric substance such as PTFE with a frustaconically tapered outer surface corresponding to the tapered inner surface of the manifold opening and a central bore coaxial with the tapered outer surface. The tubular extension of the component port is inserted into the central bore of the sealing member and the sealing member is inserted in to the manifold opening and forcefully retained therein by the engagement of the threaded section of the manifold opening by external threads formed at one end of a generally cylindrical drive sleeve. A thrust bearing collar placed between the sealing member and the drive sleeve isolates the sealing member from direct frictional contact with the drive sleeve. The thrust collar comprises a flat annular upper surface with an opening in the center, and a circumferential rim that extends downward in the direction of the sealing member and an inward flange extending inward toward the center of the sealing member. The collar rim is cylindrical and surrounds a radially protruding lip around the upper edge of the sealing member, the sealing member lip being received within the collar rim and flange when the sealing member and collar are assembled together. The drive sleeve defines a central chamber of sufficient inside dimension to receive the body of a component to be installed. The threaded end of the drive sleeve has a opening that is of greater inside diameter than the sleeve chamber, forming an inward projecting and downward facing shoulder with a downward, flat drive surface that corresponds to and in use contacts the radially outer edge portion of the upper surface of the thrust bearing collar. The drive sleeve threaded end opening is of sufficient inside diameter to receive the collar rim within the opening. The drive sleeve has a drive surface at the end opposite from the threaded end and comprises a slot extending axially from the threaded end to the drive end. The drive end of the drive sleeve has an outer surface adapted to be engaged and securely gripped by a tool for applying rotational force to the sleeve, for example, the illustrated drive end is hexagonal in cross section to be easily engaged by a wrench or other drive tool means for imparting rotational force to the drive sleeve. The upper end of the drive sleeve is open to the sleeve chamber and the opening of the upper end is of lesser diameter that the sleeve chamber and the component to be installed. At least the upper surface of the collar is preferably formed of a metal and the opposing surfaces of the drive sleeve and thrust collar are smooth to minimize friction between the opposing surfaces caused by rotation of the drive sleeve under pressure resulting from compression of the sealing member.
The sealing member and thrust collar may be assembled together before use and insertion into the installation bore. The thrust collar is placed over the sealing member and the lip of the upper portion of the sealing member is inserted within the thrust collar rim and inward extending flange, thereby retaining the thrust collar and sealing member together. The component to be installed in the manifold is either is placed within the drive sleeve before insertion of the port into the sealing member central bore or the drive sleeve may be placed over and around the component after the port has been inserted into the sealing member central bore. The longitudinally extending slot allows the drive sleeve to be placed over the component even after the component is in place and/or has been connected by electrical wiring and/or fluid supply tubing, since electrical control wires and/or input tubing can pass through the slot. The application of rotational force on the drive sleeve and the engagement of the sleeve screw threads with the screw threads of the installation bore causes forceful axial movement of the drive sleeve toward the manifold and thereby exerts axial pressure on the thrust collar without exerting axial pressure or force on the component, which is not directly secured to the drive sleeve. The pressure of the drive sleeve on the thrust collar compresses the sealing member causing the sealing member outer surface to seal against the tapered surface of the installation bore. The compression of the sealing member against the tapered surface of the installation bore imparts a radial inward compression of the sealing member causing the inner wall of the central bore to seal against the component port inserted therein. The drive sleeve, being screwed into the manifold provides support and protection to the installed component and since the opening of the drive end of the sleeve is smaller that the component body, the component is retained within the sleeve and secured to the manifold without being forced into position.
The principle aim of the present invention is to provide a new and improved method and device that meets the foregoing requirements and is capable of providing an efficient and compact installation of a component in a manifold.
Other objects and advantages of the invention will become apparent from the Description of the Preferred Embodiments and the Drawings and will be in part pointed out in more detail hereinafter.
The invention consists in the features of construction, combination of elements and arrangement of parts exemplified in the construction and method as hereinafter described.
With reference to the Figures wherein like numerals represent like parts, a first preferred embodiment of an apparatus constructed in accordance with and for use in performing the method of the present invention is generally designated by numeral 10 in
Sealing member 16 is preferably formed of polytetrafluoroethylene, commonly referred to as PTFE, commonly available and sold under the trademark Teflon, registered to E. I. du Pont de Nemours and Company or its affiliates, for the benefit of the generally chemically inert nature of the material as well as its physical characteristics, specifically compressibility. It will be appreciated that sealing member 16 can be formed of other suitable material including more reactive materials if inertness is not a necessary trait, provided that the material used is at least somewhat compressible. The illustrated preferred embodiment of sealing member 16 is generally conical with a central bore 26 sized to receive the tubular port 102 of an axial flow component such as component 100. The outer surface 18 of sealing member 16 conically tapers from a relatively narrower end 20 to a wider end 22 at an angle of about 55 to 65 degrees. Wider sealing member end 22 comprises a flat disc shaped surface 24 normal to the axis of the sealing member 16 and sealing member central bore 26. Adjacent to wider end 22, the outer diameter of the surface of sealing member 16 is reduced, forming an annular circumferential lip 30 extending radially outward and continuous with surface 24.
Thrust bearing collar 14 is annular, having a central opening 32 a flat annular surface 34 on one side and a sealing member engaging side 36 on the other side. Sealing member engaging side 36 comprises a circumferential downwardly projecting rim 37 projecting in the direction of away from surface 34 and toward sealing member narrower end 20 in the assembled apparatus 10. Rim 37 extends from the outer edge of side 36 to an annular flange 38. Sealing member engaging side 36 is of a diameter equal or slightly greater than the diameter of wider end 22 such that rim 37 can surround sealing member wider end 22 and lip 30. Flange 38 projects inwardly and is generally of a thickness and depth and is distanced from side 36 sufficiently to allow sealing member lip 30 to be received in the space between flange 38 and side 36. The outer diameter of collar 14 is greater that the diameter of the flow component 100 intended to be installed. Collar 14 is preferably formed of metal, with possible substitute materials selected for requisite rigidity and strength, if necessary.
Drive sleeve 12 is generally tubular in shape with a slot 40 extending the length of one side. Drive sleeve 12 comprises a first end 46 with a externally threaded outer surface 52 and a second end 42 with an adjacent outer surface 44. Drive sleeve 12 is open at both ends 42 and 46 and partially encloses a central chamber 50, the open ends 46 and chamber 50 being large enough to receive flow component 100 without binding and the opening 54 at end 42 being restricted to less than the diameter of the component 100 to be installed. The opening at first end 46 is formed with an inside wall 47 of greater inside diameter than chamber 50, and a shoulder is formed between wall 47 and the chamber 50 with a generally flat and annular surface 48 normal to the axis of sleeve 12. Inside wall 47 is of slightly greater diameter than collar rim 37 such that, in the assembled apparatus 10, collar 14 fits at least partially within wall 47 of end 46 and the outer edge of collar side 34 engages surface 48. Drive sleeve 12 is preferably of at least slightly less length that the separation between the port 102 and any side mounted electrical connections or other ports on the component to be installed, such that drive sleeve 12 is able to rotate about component 100 on installation. Outer surface 44 of sleeve second end 42 is circumferentially hexagonal in shape to readily accept a wench.
The method of the present invention comprises installing a component 100 in a manifold using an assembled apparatus 10, partially shown as section 112 in
While preferred embodiments of the foregoing invention have been set forth for purposes of illustration, the foregoing description should not be deemed a limitation of the invention herein. Accordingly, various modifications, adaptations and alternatives may occur to one skilled in the art without departing from the spirit and the scope of the present invention. It will be anticipated that the drive sleeve screw threads could be internal if the screw threads of the installation bore were external. Similarly, the shape of the sealing member could be varied with results varying according to the shape used and the drive surface of sleeve second end 42 could be modified to include a knurled or splined surface for engaging a rotational tool. In addition, apparatus 10 can be assembled before insertion of component 100, which can be inserted through sleeve end 42, and collar 14 can be retained within sleeve 12 if desired for convenience of installation.
This application claims the benefit of U.S. Provisional Application No. 60/741,312, filed Dec. 1, 2005.
Number | Date | Country | |
---|---|---|---|
60741312 | Dec 2005 | US |