1. Field of the Invention
The present invention relates to masonry and, more specifically, to a thru-wall masonry flashing system.
2. Description of the Prior Art
Typical masonry veneer walls are made by laying a plurality of bricks (or other masonry units, such as stones) in an ordered arrangement. With a veneer wall, the structural support for the wall is typically a wood or steel frame and the masonry veneer functions aesthetically.
Typically, rainwater is absorbed through masonry veneer in a very short amount of time. In such a case, a mechanism must be in place to prevent the structural components of the wall and other building assemblies and components from becoming wet. This is typically done by employing thru wall flashing and weep structures. Thru wall flashing is a sheet structure placed at the bottom regions of a masonry veneer, at intersections and terminations, providing moisture barrier protection that allows water to collect and travel in a gap between a vertical portion of the thru wall flashing and the rear surface of the veneer. Water is allowed to drain out of the veneer through the weep structure, which is typically a plastic tube, wicking rope or other type of weep, embedded in the mortar at the bottom of the veneer and on top of the thru wall flashing platform.
Frequently, the masonry veneer must interface with a structure. For example, an angled roof may intersect with the masonry veneer of a wall. In such an intersection, a stair-stepped structure of masonry and thru wall flashing is built up by the mason. Once the veneer is complete, a roofer applies counter flashing to the part of the thru wall flashing extending beyond the outer surface of the veneer. The counter flashing interfaces the veneer with the roof line.
Existing thru wall flashing units are typically made at the job site from sheet metal by masons or sheet metal fabricators. Doing so can be time consuming and costly. The additional step of applying counter flashing adds to the time consumed and the cost.
Also, existing weep structures tend to get clogged with mortar droppings generated by masons. If the weep structures get clogged, then drainage through the veneer and cavity wall ventilation is hampered, thereby increasing the likelihood of moisture-related problems in the frame structure of the wall assemblies and components.
Therefore, there is a need for a flashing system that is relatively inexpensive, reliable and easy to use.
There is also a need for a flashing system that incorporates both thru wall flashing and counter flashing in a single unit.
There is also a need for a weep structure that resists clogging.
The disadvantages of the prior art are overcome by the present invention which, in one aspect, is a masonry wall that includes a masonry foundation, a flashing unit disposed on the masonry foundation, a masonry weep structure, a mortar bed and at least one layer of masonry units disposed upon the mortar bed. The masonry flashing unit includes a platform having a front edge and an opposite back edge. The masonry flashing unit has a width between the front edge and the back edge so that when a masonry unit is disposed on the platform with the front surface substantially flush with the front edge, a gap of predetermined width is defined between the back surface of the masonry unit and the back edge. The predetermined width is sufficient to allow water that has seeped through a plurality of masonry units to downwardly toward the platform. A back vertical wall, having a top edge, extends upwardly from the back edge of the platform. The back vertical wall has a height so that the top edge extends by a predetermined amount beyond the top surface of a brick of a plurality of masonry units placed on the platform. A front vertical wall depends downwardly from the front edge of the platform. A masonry weep structure is disposed on the platform of the flashing unit. The masonry weep structure includes a first elongated mesh strip and a first plurality of spaced-apart mesh fingers extending from the elongated mesh strip. Each finger extends from the elongated mesh strip at a distance at least equal to a width of a masonry unit. The mesh strip and the mesh fingers are made of a mesh material that allows water to pass therethrough and that is stable in the presence of mortar. The mesh fingers terminate in a front surface that is in alignment with the front edge of the platform. The mortar bed is disposed on the platform of the flashing unit so as to fill in a space between the spaced-apart mesh fingers. The masonry units are disposed upon the mortar bed and the spaced-apart mesh fingers. The layer of masonry units has a back surface that is spaced-apart from the back vertical wall of the flashing unit by a predetermined distance sufficient to allow water that has seeped through the masonry units to flow downwardly to the first elongated mesh strip and through the spaced-apart mesh fingers.
In another aspect, the invention is a masonry flashing unit for use with a plurality masonry units wherein each masonry unit has a front surface, an opposite back surface, a bottom surface and an opposite top surface. The masonry flashing unit includes a platform, a back vertical wall and a front vertical wall. The platform has a front edge and an opposite back edge. The back vertical wall has a top edge and extends upwardly from the back edge of the platform. The back vertical wall has a height so that the top edge extends by a predetermined amount beyond the top surface of a masonry unit of the plurality of masonry units placed on the platform. The front vertical wall depends downwardly from the front edge of the platform. The platform has a width between the front edge and the back edge so that when a masonry unit of the plurality of masonry units is disposed on the platform with the front surface substantially flush with the front edge, a gap of predetermined width is defined between the back surface of the masonry unit and the back vertical wall. The predetermined width is sufficient to allow water that has seeped through the plurality of masonry units to run down the back vertical wall.
In another aspect, the invention is a modular flashing unit for use with a plurality masonry units in which each masonry unit has a front surface, an opposite back surface, a bottom surface and an opposite top surface. The modular flashing unit includes a stepped member, a front vertical wall and a back vertical wall. The stepped member includes at least a first latitudinal platform and a second latitudinal platform. The second latitudinal platform is not coplanar with the first latitudinal platform. Each of the first latitudinal platform and the second latitudinal platform has a front edge, an opposite back edge, a first side edge and an opposite second side edge. The stepped member also includes at least one longitudinal wall connecting the first side edge of the first latitudinal platform to the second side edge of the second latitudinal platform. The longitudinal wall includes a front edge and an opposite back edge. The stepped member has a width between the first latitudinal platform and the second latitudinal platform that is wider than a masonry unit of the plurality of masonry units by a predetermined amount. The front vertical wall has a stepped edge connected to the front edge of the first latitudinal platform, the front edge of the second latitudinal platform and the front edge of the longitudinal wall. The back vertical wall has a stepped edge that is connected to the back edge of the first latitudinal platform, the back edge of the second latitudinal platform and the back edge of the longitudinal wall.
In another aspect, the invention is a masonry weep system that includes a mesh finger, having a first side, an opposite second side, a front end and an opposite back end. The mesh finger is made of a mesh material that allows water to pass therethrough and that is stable in the presence of mortar. The mesh finger placed on a masonry foundation. Mortar is placed on the masonry foundation and is disposed about the first side and the second side of the mesh finger and does not cover the back end or the front end.
In another aspect, the invention is a masonry weep structure that includes a first elongated mesh strip and a first plurality of spaced-apart mesh fingers that extend from the elongated mesh strip. Each finger extends from the elongated mesh strip at a distance at least equal to a width of a masonry unit. The mesh strip and the mesh fingers are made of a mesh material that allows water to pass therethrough and that is stable in the presence of mortar.
In yet another aspect, the invention is a method of making a modular flashing system for a user to employ with a masonry foundation. Dimensions corresponding to the masonry foundation are received. A modular flashing system that is sized to fit the masonry foundation is made based on the dimensions. A template that has an edge that corresponds to an edge of the masonry foundation is made. The template is delivered to the user so that when the user builds the masonry foundation according to the template, the modular flashing system will fit the masonry foundation.
These and other aspects of the invention will become apparent from the following description of the preferred embodiments taken in conjunction with the following drawings. As would be obvious to one skilled in the art, many variations and modifications of the invention may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.” “Masonry unit” includes any unit of solid masonry material, including a brick, a concrete block, a ceramic block, a glass block, a piece of stone, or any unit of any other type of material that is used to make a masonry wall. “Mortar” includes cement, grout and any substance used to bind masonry units.
As shown in
As shown in
A weep structure may be used with the flashing units 100 disclosed herein. While a conventional weep structure, such as a plastic tube, may be used to drain water from the gap 126, a mesh-type weep structure 300, as shown in
As shown in
One embodiment of a modular flashing system 700 is shown in
As shown in
As shown in
The modular flashing unit 710 could be made in one of several ways. For example, it could be made from sheet metal using conventional metalworking techniques. Similarly, it could be made from sheet plastic using conventional plastic fabrication techniques, including vacuum forming. The planar template 760 could be made from one of many sheet materials, including metal, plastic or even sturdy cardboard.
In one method of making the modular flashing unit 710, a builder or architect sends the dimensions for the masonry foundation 770 to a fabrication facility. The fabrication facility would employ a conventional computer-aided design and manufacturing (CAD/CAM) system to design the modular flashing unit 710 and the planar template 760, using predefined criteria, based on the dimensions. The CAD/CAM system would control the necessary cutting tools (such as a LASER cutting tool) to cut out the necessary parts.
In one embodiment, a sheet cutting facility or a stair manufacturer, could make two copies of the planar template 760, each of which is marked with a unique identifier that corresponds to the specific use specified by the builder. One of the dual twin templates is sent to the mason, thereby allowing the building of the masonry foundation 770 to commence, and the other is sent to a fabrication facility for use in the fabrication of the modular flashing unit 710. Making the masonry foundation 770 in tandem with the planar template 760 allows for efficient workflow.
The above described embodiments are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.
This application is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 11/054,423, filed Feb. 9, 2005, the entirety of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11054423 | Feb 2005 | US |
Child | 12569096 | US |