This application claims priority under 35 U.S.C. §119(a) to Korean Patent Application No. 10-2010-0035891, filed on Apr. 19, 2010, in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to a method and apparatus for interfacing, and more particularly, to a method and apparatus for providing an interface by analyzing waveforms generated during touching.
2. Description of the Related Art
Today, various types of apparatuses including a displaying means with a touch sensor have been developed. Various methods of providing an intuitive and easy interface for users using a touch sensor have been considered. Users may perform desired operations by touching a display of a small device.
The present invention provides an interface having various functions according to obtained property information of a plurality of input members.
According to one aspect of the present invention, an interface method is provided, including detecting waveforms generated due to contact between a plurality of input members and an input surface for receiving touch inputs; obtaining property information regarding each input member based on the detected waveforms; and generating an input signal corresponding to a combination of the property information of the input members and gestures generated by the input members.
The above and other features and advantages of the present invention will become more apparent by describing in detail embodiments thereof with reference to the attached drawings in which:
An embodiment, according to the present invention, will be now be described in detail referring to the accompanying drawings.
The waveform detecting unit 120 detects a waveform generated by a touch input. If an input member touches the input surface 110, a unique vibration or sound is generated depending on a characteristic of the input member. The waveform detecting unit 120 detects a waveform by processing a vibration or sound generated when an input member touches the input surface 110 in a frequency domain. When a plurality of input members touch the input surface 110 at the same time, the waveform detecting unit 120 may detect a plurality of waveforms corresponding to each input member from one waveform.
The property information obtaining unit 130 obtains property information regarding an input member based on the detected waveform. Such property information may include various pieces of information regarding an input member. For example, such property information may include information such as a type or shape of an input member.
The property information obtaining unit 130 may obtain information regarding a type and shape of an input member by comparing a detected waveform with another waveform or comparing detected waveforms with each other, or by using information other than waveforms.
First, a case where the property information obtaining unit 130 compares a detected waveform with a reference waveform or compares detected waveforms with each other in order to obtain property information regarding an input member will be described.
The property information obtaining unit 130 may obtain property information regarding an input member that is touching the input surface 110 by comparing one or more reference waveforms stored in a database with a detected waveform. The database may store a reference waveform for each of a plurality of input members and store a reference waveform for each of states of the input members. For example, a reference waveform when a thumb touches the input surface 110 and a reference waveform when an index finger touches the input surface 110 may be individually stored.
An example where the property information obtaining unit 130 obtains property information regarding input members by comparing detected waveforms with reference waveforms will be described with reference to
The property information obtaining unit 130 may compare a reference waveform with a detected waveform in consideration of various factors such as a shape, an envelope, an amplitude, a frequency, etc. of a waveform. In
A diagram (a) of
At a point of ‘1’ second, since a waveform having an average frequency of 1 hz was detected, it is determined that a corresponding touch input was invalid.
At a point of ‘2’ second, since a waveform having an average frequency of 7 hz was detected, it is determined that a touch was performed using a finger.
At a point of ‘3’ second, since a waveform having an average frequency of 15 hz was detected, it is determined that a touch was performed using a stylus.
A user may add a reference waveform of a new input member. For example, the user selects an item for registering of a new input member, and then touches the input surface 110 by using the new input member. The interface device 100 stores a generated waveform as a reference waveform of the new input member.
The property information obtaining unit 130 may obtain property information regarding an input member by comparing a plurality of waveforms that are simultaneously or sequentially detected.
When similar input members, such as a thumb and an index finger, touch the input surface 110, property information may not be obtained by simply comparing detected waveforms with reference waveforms. The property information obtaining unit 130 may obtain exact property information regarding an input member by comparing detected waveforms with each other.
A case where the property information obtaining unit 130 obtains property information by using information obtained by using the input surface 110 and a detected waveform together will now be described.
When the input surface 110 includes a capacitive overlay touchpad, the property information obtaining unit 130 may obtain property information regarding an input member by using an electrical signal received from the input surface 110. If an input member that is a conductor touches the capacitive overlay touchpad, an electrical signal is generated. On the other hand, if an input member that is a nonconductor touches the capacitive overlay touchpad, no electrical signal is generated. Accordingly, when no electrical signal is generated, if the waveform detecting unit 120 has detected a waveform, it can be determined that a nonconductor was used as an input member.
When the input surface 110 includes a resistive touchpad, the property information obtaining unit 130 may obtain property information regarding an input member by using pressure information received from the input surface 110. For example, a vibration generated when a stylus touches the input surface 110 while a palm is placed on a bottom of the input surface 110 may be different from a vibration generated when the stylus touches the input surface 110 while the palm is not in contact with the bottom of the input surface 110. Accordingly, since one input member can generate different vibrations, it may be impossible to determine whether a stylus touches the input surface 110 or a finger touches the input surface 110 by using only a waveform of a vibration. However, it may be determined which input member is used to touch the input surface 110 by using pressure information together with a sensed waveform.
Also, the property information obtaining unit 130 may obtain property information by using a size or shape of a contact surface formed when an input member touches the input surface 110. The input signal generating unit 140 generates an input signal corresponding to combination of a property of an input member and a gesture generated by the input member.
When a plurality of input members contact the input surface 110, the input signal generating unit 140 selects which input member is a valid member for generating a touch input based on property information. When a user attempts to input a touch using a stylus, a user's finger may inadvertently make contact with the input surface 110. The input signal generating unit 140 may determine that only a stylus is a valid input member, and thus may generate an input signal based on only a gesture generated by a stylus.
When it is determined that each of a plurality of input members are valid, the input signal generating unit 140 may generate an input signal corresponding to a combination of gestures generated by each input member based on property information of the input members.
A function corresponding to a gesture generated by one input member may be independent from a gesture generated by another input member or may be related to a gesture that is continuously or simultaneously generated by another input member. In the former case, a function performed according to a gesture generated by an input member is performed again if the same gesture is generated by the same input member. However, in the latter case, a function performed according to a gesture generated by a first input member may be different from a function performed according to the same gesture generated by the first input member if there is a gesture generated by a second input member before or after the gesture generated by the first input member.
For example, it is assumed that a user touches the input surface 110 by using a stylus. In the former case, the same function (for example, selecting an item) is performed in both a case where a user touches the input surface 110 by using a stylus with his or her hand touching the input surface 110 and a case where the user touches the input surface 110 by using the stylus with his or her hand detached from the input surface 110. On the other hand, in the latter case, different functions (for example, selecting an item and moving the item) may be respectively performed in a case where a user touches the input surface 110 by using a stylus with his or her hand touching the input surface 110 and a case where the user touches the input surface 110 by using the stylus with his or her hand detached from the input surface 110. In particular, in the latter case, only gestures generated by input members contacting the input surface 110 at the same time or within a threshold time may be considered.
The interface device 100 may further include a control unit (not shown), and the control unit may control functions to be performed corresponding to generated input signals.
In
In step s310, a waveform is detected from a sound or a vibration generated when an input member touches an input surface for receiving a touch input. In step s320, a reference waveform corresponding to the detected waveform is detected by comparing the detected waveform with the reference waveform. If a reference waveform corresponding to the detected waveform does not exist, step s328 is performed to determine that the touch is invalid. Alternatively, if a reference waveform corresponding to the detected waveform does not exist, the detected waveform may be registered as a new waveform or a prompt window may ask the user to confirm such registration.
In step s332, property information of the input member is obtained according to the result of the comparing step s320. As described above, the property information of the input member may include a type or shape of the input member. In step s324, a gesture generated by the input member is input and noise is removed. In step s326, an input signal corresponding to the property information of the input member and the input gesture is generated.
In
The waveform detecting unit 120 detects a first waveform generated when the user's palm touches the input surface 110 and a second waveform generated when the stylus touches the input surface 110. The property information obtaining unit 130 checks input members based on each waveform. The input signal generating unit 140 selects valid input members based on property information regarding the input members. In
A conventional interface device may not distinguish a material of an input member. Thus, when the user unintentionally touches the input surface 110, the wrong input signal is generated. However, in the interface device 100 according to the present invention, an exact input signal may be generated by obtaining property information of the input member and then distinguishing valid input members from invalid input members.
When the input surface 110 is touched only by the stylus, tapping, long-pressing, dragging, operations, and the like performed in a general interface device may be performed. On the other hand, if the input surface 110 is touched by the stylus while the finger is touching the input surface 110, a pop-up is generated.
Thus, the interface device 100 may provide various functions that may not be provided by a conventional interface device by combining property information of two or more input members and gestures generated by the input members.
Referring to part (a) of
Referring to part (a) of
Referring to part (a) of
Referring to part (a) of
Referring to part (a) of
Referring to part (a) of
In
Referring to part (a) of
Since a conventional interface employing a capacitive overlay touchpad may use only a conductor as an input member, a function of the interface is limited. However, in an interface, according to the present invention, a function corresponding to gestures generated by a nonconductor may be set, and thus the interface may provide various functions.
In step s1310, waveforms are detected from sounds or vibrations generated when a plurality of input members touch an input surface for receiving touch inputs. In step s1320, property information regarding the input members is obtained according to the detected waveforms. The property information may include information regarding types or shapes of the input members.
The property information of the input members may be obtained by comparing the detected waveforms with reference waveforms, comparing the detected waveforms with each other, and using electrical signals generated from a capacitive overlay touchpad or pressure signals generated from a resistive touchpad together with the detected waveforms.
In step s1330, an input signal corresponding to a combination of the property information of the input members and gestures generated by the input members is generated. The input signal may then be generated based on only the gesture generated by a valid input member.
A user may previously set a function according to a type of an input member and a gesture generated by the input member. Specifically, a function according to a type of an input member and a gesture generated by the input member may be set regardless of or in connection with a gesture of another input member.
The generated input signal is then processed, and the result may be displayed.
The present invention can also be embodied as computer readable codes on a computer readable recording medium. The computer readable recording medium is any data storage device that can store data which can be thereafter read by a computer system. Examples of the computer readable recording medium are Read-Only Memory (ROM), Random-Access Memory (RAM), CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and the like. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
While the present invention has been particularly shown and described with reference to embodiments thereof, it will be understood by one of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. The embodiments should be considered in descriptive sense only and not for purposes of limitation. Therefore, the scope of the invention is defined not by the detailed description of the invention but by the appended claims and their equivalents, and all differences within the scope will be construed as being included in the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0035891 | Apr 2010 | KR | national |