1. Field of the Invention
2. Description of the Related Art
In complex computer systems, particularly those in large transaction processing environments as shown in
This is shown additionally in
Legacy operating systems such as Linux 2.4 or Microsoft NT4 were architected assuming that each “I/O Service” is provided by an independent adapter. An “I/O Service” is defined as the portion of adapter functionality that connects a server onto one of the network fabrics. Referring to
Consider an ECA having networking and storage I/O Services. A first issue is initialization of a specific Ethernet port that is shared between the I/O Services. The independent drivers that are exporting networking and storage concurrently from separate PCI functions may want to utilize a common ECA port. In this case a single Ethernet PHY may need to be initialized by writing to MDIO registers in order to bring the Ethernet link to an active state. Access to the PHY must be coordinated or the drivers may never be able to bring the link to an active state. If the access is not coordinated, a scenario where one driver resets the PHY and then starts initializing various PHY registers when the other driver has already gotten to the point of initializing the same PHY registers can occur. The content of the PHY registers at the end of concurrent initialization performed by both drivers is indeterminate. This could lead to software errors as well as difficulties bringing up the Ethernet link.
A second example is link state change on an Ethernet port that is shared between the I/O Services. Without coordination, a link state change event may be fielded by one of the drivers, which clears the event as part of the normal processing for a link state change. It is highly likely that the second driver will not see the link state change event and therefore not behave properly.
External ports, accelerated connections, and memory registration resources are all examples of resources that must be managed in a way that is intuitive and in a way that takes the best advantage of the functionality provided by an ECA. Given that the services exported by the ECA can be loaded in any order by a PnP enabled operating system and that users can dynamically (or permanently) disable one or more of the services, an ECA should have a flexible mechanism to robustly and transparently transfer resource management responsibility between the various drivers that provide ECA services.
Systems according to the present invention utilize a series of managers to handle resource management. Three types of managers are preferably used, with each manager being in one of two states, active or available. The types of managers are Global Interface Manager (GIM), Resource Manager (RM) and Access Manager (AM). Associated with each device driver for a given function is a GIM. The device driver may be associated with one or more RMs and/or AMs. Among managers of a given type, one is the active manager and all other managers of that specific type are available and work with the active manager to handle resource requests. As there can be RMs for different resources, the active manager concept is applied to the RMs associated with each resource.
Mechanisms are present to allow the active manager and related information to be transferred to an available manager if necessary.
In this manner device drivers may independently load or unload without concerns for resource management issues of the ECA.
In the preferred embodiment as shown in
Referring to
Referring then to
Referring then to
In basic operations, a series of tasks are performed by the various modules or sub-modules in the protocol engine 616 to handle the various iWARP, iSCSI and regular Ethernet traffic. A context manager 704 is provided with a dedicated datapath to the local memory interface 610. As each connection which is utilized by the ECA 400 must have a context, various subcomponents or submodules are connected to the context manager 704 as indicated by the arrows captioned by cm. Thus all of the relevant submodules can determine context of the various packets as needed. The context manager 704 contains a context cache 706, which caches the context values from the local memory, and a work available memory region cache 708, which contains memory used to store transmit scheduling information to determine which operations should be performed next in the protocol engine 616. The schedules are effectively developed in a work queue manager (WQM) 710. The WQM 710 handles scheduling for all transmissions of all protocols in the protocol engine 616. One of the main activities of the WQM 710 is to determine when data needs to be retrieved from the external memory 506 or 512 or from host memory 504 for operation by one of the various modules. The WQM 710 handles this operation by requesting a time slice from the protocol engine arbiter 702 to allow the WQM 710 to retrieve the desired information and place it in on-chip storage. A completion queue manager (CQM) 712 acts to provide task completion indications to the CPUs 500. The CQM 712 handles this task for various submodules with connections to those submodules indicated by arrows captioned by cqm. A doorbell submodule 713 receives commands from the host, such as “a new work item has been posted to SQ x,” and converts these commands into the appropriate context updates.
A TCP off-load engine (TOE) 714 includes submodules of transmit logic 716 and receive logic 718 to handle processing for accelerated TCP/IP connections. The receive logic 716 parses the TCP/IP headers, checks for errors, validates the segment, processes received data, processes acknowledges, updates RTT estimates and updates congestion windows. The transmit logic 716 builds the TCP/IP headers for outgoing packets, performs ARP table look-ups, and submits the packet to the transaction switch 608. An iWARP module 719 includes a transmit logic portion 720 and a receive logic portion 722. The iWARP module 719 implements various layers of the iWARP specification, including the MPA, DDP and RDMAP layers. The receive logic 722 accepts inbound RDMA messages from the TOE 714 for processing. The transmit logic 720 creates outbound RDMA segments from PCI data received from the host CPUs 500.
A NIC module 724 is present and connected to the appropriate items, such as the work queue manager 710 and the protocol engine arbiter 702. An iSCSI module 726 is present to provide hardware acceleration to the iSCSI protocol as necessary.
Typically the host operating system provides the ECA 400 with a set of restrictions defining which user-level software processes are allowed to use which host memory address ranges in work requests posted to the ECA 400. Enforcement of these restrictions is handled by an accelerated memory protection (AMP) module 728. The AMP module 728 validates the iWARP STag using the memory region table (MRT) and returns the associated physical buffer list (PBL) information. An HDMA block 730 is provided to carry out the DMA transfer of information between host memory 504,via one of the bus interfaces 602 or 604, and the transaction switch 608 on behalf of the WQM 710 or the iWARP module 719. An ARP module 732 is provided to retrieve MAC destination addresses from an on-chip memory. A free list manager (FLM) 734 is provided to work with various other modules to determine the various memory blocks which are available. Because the data, be it data packets or control structures, is all contained in packets, a list of the available data blocks is required and the FLM 734 handles this function.
The protocol engine 616 of the preferred embodiment also contains a series processors to perform required operations, each processor including the appropriate firmware for the function of the processor. The first processor is a control queue processor (CQP) 738. The control queue processor 738 performs commands submitted by the various host drivers via control queue pairs. This is relevant as queue pairs are utilized to perform RDMA operations. The processor 738 has the capability to initialize and destroy queue pairs and memory regions or windows. A second processor is the out-of-order processor (OOP) 740. The out-of-order processor 740 is used to handle the problem of TCP/IP packets being received out-of-order and is responsible for determining and tracking the holes and properly placing new segments as they are obtained. A transmit error processor (TEP) 742 is provided for exception handling and error handling for the TCP/IP and iWARP protocols. The final processor is an MPA reassembly processor 744. This processor 744 is responsible for managing the receive window buffer for iWARP and processing packets that have MPA FPDU alignment or ordering issues.
Prior to proceeding with the description, following are definitions of various terms.
Virtual Device: Generic term for the “I/O adapters” inside ECA 400. The ECA 400 of the preferred embodiments implements these virtual devices: four host NICs, which are connected to the operating system; 12 internal NICs, which are private or internal NICs that are not exposed to the operating system directly; four management NICs; one TCP Offload Engine (TOE); one iSCSI acceleration engine; and one iWARP acceleration engine.
Service: One or more virtual devices are used in concert to provide the I/O Services implemented by ECA 400. The four major ECA 4001/0 Services are: Network, Accelerated Sockets, Accelerated RDMA, and Block Storage. A given I/O Service may be provided by different underlying virtual devices, depending on the software environment that ECA 400 is operating in. For example, the Accelerated Sockets I/O Service is provided using TOE and Host NIC(s) in one scenario, but is provided using TOE and Internal NIC(s) in another scenario. Virtual devices are often not exclusively owned by the I/O Services they help provide. For example, both the Accelerated Sockets and Accelerated RDMA I/O Services are partly provided using the TOE virtual device. The only virtual device exclusively owned is iSCSI, which is owned by Block Storage.
PCI Function: ECA 400 is a PCI multi-function device as defined in the PCI Local Bus Specification, rev 2.3. ECA 400 implements from one to eight PCI Functions, depending on configuration. Each PCI Function exports a group of I/O Services that is programmed by the same device driver. A PCI Function usually has at least one unique IP address and always has at least one unique MAC address.
Endnode: A virtual device or set of virtual devices with a unique Ethernet MAC address.
ECA Logical Model: The ECA Logical Model describes how ECA 400 functionality (e.g. Ethernet ports, virtual devices, I/O Services, etc) will be presented to end users. It is to be understood that certain aspects of the ECA Logical Model do not map directly and simply to the physical ECA 400 implementation. For example, there are no microswitches in the ECA 400 implementation. Microswitches are virtual, and the transaction switch 608 implements their functionality. Management and configuration software saves information in NVRAM that defines the Logical Model.
Each microswitch basically has the functionality of a layer 2 Ethernet switch. Each arrow connecting to a microswitch represents a unique endnode. The ECA 400 preferably comprises at least 20 unique Ethernet unicast MAC addresses as shown.
A microswitch is only allowed to connect between one active Ethernet port or link aggregated port group and a set of ECA 400 endnodes. This keeps the microswitch from requiring a large forwarding table, resulting in a microswitch being like a leaf switch with a single default uplink port. Inbound packets always terminate at one or more ECA 400 endnodes so that there is no possibility of switching from one external port to another. Outbound packets sent from one ECA 400 endnode may be internally switched to another ECA 400 endnode connected to the same microswitch. If internal switching is not required, the packet always gets forwarded out the Ethernet or uplink port.
Each Ethernet port has its own unique unicast MAC address, termed an ECA 400 “management MAC address”. Packets using one of these management MAC addresses are always associated with a management NIC virtual device. Packets sent to these addresses will often be of the fabric management variety.
A box labeled “mgmt filter” within the microswitch represents special filtering rules that apply only to packets to/from the management NIC virtual devices. An example rule: Prevent multicast packets transmitted from a management NIC from internally switching.
If there is a “mux” or multiplexer in an ECA Logical Model, this signifies packet classification. In
Each I/O Service is associated with an “affiliated NIC group”. An “affiliated NIC group” always contains four NIC virtual devices. The number of active NIC virtual devices within an “affiliated NIC group” is always equal to the number of ECA 400 Ethernet ports in use. Organizing ECA 400 NIC virtual devices into “affiliated NIC groups” is useful because it helps determine which NIC should receive an inbound packet when link aggregation is active and because it helps prevent outbound packets from being internally switched in some cases.
Each accelerated I/O Service (Accelerated Sockets, Accelerated RDMA, and Block Storage) is associated with an “affiliated NIC group” because it provides a portion of its services using an “affiliated” TCP/IP stack running on the host or server. The “affiliated” TCP/IP stack transmits and receives packets on ECA 400 Ethernet ports via these affiliated NICs. There may be multiple TCP/IP stacks simultaneously running on the host to provide all of the ECA 400 I/O Services. The portion of services provided by an “affiliated” TCP/IP stack are:
Initiates TCP/IP connection: An affiliated TCP/IP stack is responsible for initiating each TCP/IP connection, and then notifying the ECA 400. Once notified, the ECA 400 will perform the steps required to transfer the connection from the host to the corresponding Accelerated I/O Service, and will then inform the host of the success or failure of the transfer in an asynchronous status message.
Performs IP fragment reassembly: the ECA 400 does not process inbound IP fragmented packets. Fragmented packets are received by their affiliated TCP/IP stack for reassembly, and are then returned to the ECA 400 for higher layer processing.
Processes fabric management, e.g. ARP or ICMP, messages.
All I/O Services transfer data between the ECA 400 and the host using the Queue Pair (QP) concept from iWARP verbs. While the specific policy called out in the iWARP verbs specification may not be enforced on every I/O Service, the concepts of submitting work and completion processing are consistent with iWARP verbs. This allows a common method for submitting and completing work across all I/O Services. The WQE and CQE format used on QPs and CQs across QPs on different I/O Services vary significantly, but the mechanisms for managing WQs (work queues) and CQs (completion queues) are consistent across all I/O Services.
The ECA 400 preferably uses a flexible interrupt scheme that allows mapping of any interrupt to any PCI Function. The common elements of interrupt processing are the Interrupt Status Register, Interrupt Mask Register, CQ, and the Completion Event Queue (CEQ). ECA 400 has sixteen CEQs that can be distributed across the eight PCI Functions. CEQs may be utilized to support quality of service (QOS) and work distribution across multiple processors. CQs are individually assigned to one of the sixteen CEQs under software control. Each WQ within each QP can be mapped to any CQ under software control. This model allows maximum flexibility for work distribution.
The ECA 400 has 16 special QPs that are utilized for resource assignment operations and contentious control functions. These Control QPs (CQPs) are assigned to specific PCI Functions. Access to CQPs is only allowed to privileged entities. This allows overlapped operation between verbs applications and time consuming operations, such as memory registration.
System software controls how the ECA 400 resources are allocated among the active I/O Services. Many ECA 400 resources can be allocated or reallocated during run time, including Memory Regions, PBL resources, and QPs/CQs associated with Accelerated I/O Services. Other ECA 400 resources, such as protection domains, must be allocated once upon reset. By allowing most ECA 400 resources to be allocated or reallocated during run time, the number of reboots and driver restarts required when performing ECA 400 reconfiguration is minimized.
There are two major operating system types, unaware operating systems and aware operating systems. In the context of this description, unaware operating systems are those that do not include a TCP/IP stack that can perform connection upload/download to an Accelerated Sockets, Accelerated RDMA, or Block Storage I/O Service. The TCP/IP stack is unaware of these various ECA 400 I/O Services. With such operating systems, the host TCP/IP stack is only used for unaccelerated connections, and one or more additional TCP/IP stacks, referred to throughout this description as internal stacks exist to perform connection setup and fabric management for connections that will use Accelerated I/O Services. For example, any application that wishes to use an Accelerated RDMA connection will establish and manage the connection through an internal stack, not through the host stack.
In the context of this description, aware operating systems are those that include a TCP/IP stack that can perform connection upload/download to one or more of: Accelerated Sockets, Accelerated RDMA, or Block Storage I/O Service, i.e. the TCP/IP stack is aware of these various I/O Services. Currently those operating systems are only from Microsoft. Future Microsoft operating systems will incorporate a TOE chimney or TOE/RDMA chimney, enabling connection transfer between the host TCP/IP stack and the Accelerated Sockets or Accelerated RDMA I/O Services. Typically the host TCP/IP stack is used to establish a connection and then the ECA 400 performs connection transfer to the Accelerated Sockets or Accelerated RDMA I/O Service. The advantage of this cooperation between the host stack and the ECA 400 is to eliminate the need for many or all of the internal stacks.
In addition to the characteristics described above, for operation of the preferred embodiment each of the operating system types described above utilizes an independent driver model. Legacy operating systems such as Windows NT4 typically support only this model. These operating systems require a separate, independent driver to load for each I/O Service. With this model, the I/O Service to PCI Function ratio is always 1:1.
The primary example is unaware operating system and is shown in
The Block Storage I/O Service 806 has access to both the iSCSI 812 and iWARP virtual devices 814, which allows it to support both iSCSI and iSER transfers.
If the host supports the simultaneous use of more than one RDMA API, VI and DAPL, then these APIs connect to the ECA 400 through a single shared PCI Function.
This model uses this fixed mapping between I/O Services and PCI Functions:
It is understood that administration of a machine with multiple active TCP/IP stacks is more complicated than administration of a machine with a single active TCP/IP stack and that attempts to interact between stacks, such as to coordinate TCP port space usage, must use unconventional means to provide a robust implementation since no OS-architected method for interaction is available.
Thus the Logical Model according to
In the preferred embodiment the ECA 400 supports the programming of any I/O Service and any Virtual Device from any PCI Function. When drivers load, they learn through configuration parameters which I/O Services and Virtual Devices are configured as active on their PCI function and restrict themselves to programming only these I/O Services and Virtual Devices. Alternatively, I/O Services and Virtual Devices may be determined by operating system needs and the appropriate drivers are loaded. When a driver posts a new command to the adapter, mapping values inside the protocol engine 616 are used to associate each command with the appropriate I/O Service, Virtual Device(s) and an Ethernet port.
In the preferred embodiment the manager system allows NIC, clustering, and storage drivers to load or unload in any order on any combination of PCI functions without interfering with the operation of drivers that remain in the running state during the transition of the effected driver. Any requests to a software component that is in the process of unloading will be stalled until a handoff to another capable manager has occurred.
There are some basic concepts that this manager architecture preferably employs. First, the hardware portion of the interface is only used when necessary due to the impact to the system of accessing the hardware when compared to local software mechanisms. Second, each type of manager has one manager designated as the active manager which will be responsible for performing the functions for that manager type. All other managers of that type are required to call their respective active manager using a provided safe mechanism. Third, each manager provides two sets of interfaces: 1) one that is provided to the user of the manager, and 2) another that is used by other managers of the same type. The types of managers include, but are not limited to, the Global Interface Manager (GIM), various Resource Managers (RMs) and various Access Managers (AMs). The GIM uses the hardware of the ECA 400 to insure that only one GIM is active. All other managers can use the GIM to insure that only one active manager exists for each type of manager.
The GIM is used as a central repository for the lists of RMs and AMs. Whenever access to an RM or AM is needed, the GIM is consulted to find the correct manager. RMs are used to manage lists of software or hardware resources. A few examples of RMs are Memory Region Table Entry (MRTE) Manager, Perfect Filter Table Entry Manager, and the Multicast Hash Entry Manager. These resource managers control resources that are implemented globally by the ECA 400, but need to be managed per driver or PCI function in order to isolate failures and prevent resource over-usage. A driver might request a block of MRTEs from the MRTE RM. The active MRTE RM owns all MRTEs implemented by the ECA 400 and “loans” them to drivers as they request them.
AMs are used to manage access to particular hardware resources. Two example AMs are the EEPROM Manager and the Flash Manager. In this case only one driver is able to access the EEPROM and/or Flash at a time due to the nature of the interface to the EEPROM and Flash. A driver would first obtain access to the hardware resource from the AM, then access the resource through ECA 400 registers once granted access, and the notify the AM that access is no longer needed.
In the simplified example of
Prior to describing examples of manager operations, a few more background descriptions are considered helpful. The first relates to hardware assistance. The hardware portion of a GIM is implemented with several registers. The first register is a Scratchpad Lock register. The Scratchpad Lock Register provides a locking mechanism for software to use to synchronize access to the Scratchpad registers. The mechanism requires that each driver contending for this lock must use a unique lock_requester_id. To obtain the lock a driver writes a value including its lock_requester_id and a lock request to the Scratchpad Lock Register. The driver then reads the Scratchpad Lock Register. If the read result indicates a locked and the lock_owner_id is equal to the driver's lock_requester_id, then lock is owned by the driver. This operation is repeated until the driver acquires lock.
A set of the Software Scratchpad registers are for use by ECA 400 software and drivers as needed. Preferably there are twelve 32-bit registers that store the last value written to them. All of these individual registers are accessible from all of the ECA 400 PCI functions. This allows host software to distribute software that must access any lock maintained by the hardware across the independent drivers loaded for different PCI functions exposed by the ECA 400. While the Software Scratchpad registers have no specific meaning to the ECA 400 hardware, the host software preferably uses the first two of these software scratchpad values as a single 64-bit value that is the host address of the currently active GIM. The way the software uses this scratchpad locator and associated lock to atomically obtain the currently active GIM is defined in the following pseudocode.
The core base class that is used by all managers to interface with other managers of the same type is the Exclusion Interface (EIF). The entry points defined by the EIF are Handoff, Hold for New Owner, New Owner, Register and Deregister. Additionally the EIF class has a software lock, a pointer to the active manager of that type, and a table of other EIFs that have been registered.
The Handoff entry point is used to pass active manager designation and resources from one manager to another of the same type. HoldForNewOwner is used to acquire the software lock for a manager before performing a handoff operation. After performing the handoff operation, the NewOwner entry point is called to inform the managers of the new active manager and to release the software lock within the managers. The Register entry point is used to notify the currently active manager that another manager of the same type is available. The newly registered manager may be able to take over active manager duties and would need to be told of any handoffs that are performed. The Deregister entry point is used to notify the currently active manager that a previously available manager is no longer available.
In addition to the EIF entry points described above, each GIM supports additional interfaces to allow registration of other managers (RMs/AMs). These interfaces are Lock, Release, Get Interface, Register Interface, Deregister Interface, and Deregister Interface.
A manager uses the Lock and Release entry points to ensure that the active manager completes its requested operation before attempting a handoff operation. The operations to register different types of services are Get, Register, Reregister and Deregister Interface. The operations are used mainly to register new RMs or AMs with a GIM. The GIM must be aware of all RMs and AMs, not just active RMs and AMs, so that if it hands off active manager designation to another GIM, all of the RMs and AMs can be properly notified. Other entry points and data elements may be defined for GIMs, RMs and AMs but are not relevant to this description.
With that background, description of the operations of the some usage scenarios of the GIMs, RMs and AMs is appropriate. This is not an exhaustive list of the scenarios but should be representative and allow derivation of other scenarios to readily be done by one skilled in the art.
At driver initialization, each ECA 400 driver must look to see if there is already a GIM running. It must either register with that active GIM or assert itself as the active GIM. Additionally, the driver must do the same for each RM or AM that it intends to use. Remember that a driver must be prepared to be a RM or AM for other drivers if it needs to use a given RM or AM. The following pseudocode demonstrates the process for driver startup and GIM registration:
Note that the Register must take place with the hardware lock held or else a window opens up where the GIM pointer acquired from the hardware might no longer be valid.
The registration of the RMs and AMs must take place after GIM Registration because each RM/AM needs to use a GIM. The following pseudocode demonstrates the process for a RM/AM to startup and register itself with the GIM. The AM/RM type identifies the manager, such as qp resource manager vs memory region resource manager, etc.
Note that GIM→Lock obtains the lock in the local GIM before calling the active GIM. This allows a GIM to safely do a handoff operation without causing a fault.
The allocation/deallocation of a resource or access to a resource is performed by a driver through the use of its AM/RM. The driver will perform the appropriate function call that the AM/RM provides, for instance AllocateQueuePair(), and passes to the function the AM RM's handle. This function provided by the AM/RM is actually a pass-through function that will lock the AM/RM so that the active AM/RM cannot be handed off while this function call is in progress. After obtaining this lock, the pass-though function will call the active AM/RM's process version of this function. Whatever logic needed for this function will be implemented in the active AM/RM and the results are returned to the pass-through function. The pass-though version then frees its lock and returns. In certain instances, such as the MRTE RM 1936 of
The GIM handoff operation makes use of the hardware lock and each GIM's local lock in order to ensure a robust handoff is possible. The following psuedocode illustrates the operation
During operations it may be appropriate to shutdown and unload a driver. Illustrative psuedocode is shown below.
Therefore in
For example, in
It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5400326 | Smith | Mar 1995 | A |
5434976 | Tan et al. | Jul 1995 | A |
5758075 | Graziano et al. | May 1998 | A |
5832216 | Szczepanek | Nov 1998 | A |
5953511 | Sescila, III et al. | Sep 1999 | A |
6052751 | Runaldue et al. | Apr 2000 | A |
6067300 | Baumert et al. | May 2000 | A |
6145045 | Falik et al. | Nov 2000 | A |
6199137 | Aguilar et al. | Mar 2001 | B1 |
6243787 | Kagan et al. | Jun 2001 | B1 |
6389479 | Boucher et al. | May 2002 | B1 |
6400730 | Latif et al. | Jun 2002 | B1 |
6408347 | Smith et al. | Jun 2002 | B1 |
6418201 | Holland et al. | Jul 2002 | B1 |
6427171 | Craft et al. | Jul 2002 | B1 |
6502156 | Sacker et al. | Dec 2002 | B1 |
6535518 | Hu et al. | Mar 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6591310 | Johnson | Jul 2003 | B1 |
6594329 | Susnow | Jul 2003 | B1 |
6594712 | Pettey et al. | Jul 2003 | B1 |
6601126 | Zaidi et al. | Jul 2003 | B1 |
6625157 | Niu et al. | Sep 2003 | B2 |
6658521 | Biran et al. | Dec 2003 | B1 |
6661773 | Pelissier et al. | Dec 2003 | B1 |
6675200 | Cheriton et al. | Jan 2004 | B1 |
6690757 | Bunton et al. | Feb 2004 | B1 |
6693901 | Byers et al. | Feb 2004 | B1 |
6694394 | Bachrach | Feb 2004 | B1 |
6697868 | Craft et al. | Feb 2004 | B2 |
6704831 | Avery | Mar 2004 | B1 |
6721806 | Boyd et al. | Apr 2004 | B2 |
6751235 | Susnow et al. | Jun 2004 | B1 |
6760307 | Dunning et al. | Jul 2004 | B2 |
6763419 | Hoese et al. | Jul 2004 | B2 |
6778548 | Burton et al. | Aug 2004 | B1 |
6813653 | Avery | Nov 2004 | B2 |
7089326 | Boucher et al. | Aug 2006 | B2 |
7093024 | Craddock et al. | Aug 2006 | B2 |
7142539 | Grinfeld | Nov 2006 | B2 |
7149817 | Pettey | Dec 2006 | B2 |
7149819 | Pettey | Dec 2006 | B2 |
7177941 | Biran et al. | Feb 2007 | B2 |
7233984 | Mohamed et al. | Jun 2007 | B2 |
7237510 | White | Jul 2007 | B2 |
7299266 | Boyd et al. | Nov 2007 | B2 |
7299290 | Karpoff | Nov 2007 | B2 |
7308551 | Arndt et al. | Dec 2007 | B2 |
7376755 | Pandya | May 2008 | B2 |
7376765 | Rangan et al. | May 2008 | B2 |
7376770 | Arndt et al. | May 2008 | B2 |
7383312 | Biran et al. | Jun 2008 | B2 |
7383483 | Biran et al. | Jun 2008 | B2 |
7388866 | Fan et al. | Jun 2008 | B2 |
7392172 | Rostampour | Jun 2008 | B2 |
7401126 | Pekkala et al. | Jul 2008 | B2 |
7426674 | Anderson et al. | Sep 2008 | B2 |
7430211 | Elzur | Sep 2008 | B2 |
7437738 | Shah et al. | Oct 2008 | B2 |
7451197 | Davis et al. | Nov 2008 | B2 |
7535913 | Minami et al. | May 2009 | B2 |
7543087 | Philbrick et al. | Jun 2009 | B2 |
7551614 | Teisberg et al. | Jun 2009 | B2 |
7565504 | Garcia et al. | Jul 2009 | B2 |
7688838 | Aloni et al. | Mar 2010 | B1 |
7782869 | Chitlur Srinivasa | Aug 2010 | B1 |
7782905 | Keels et al. | Aug 2010 | B2 |
7843906 | Chidambaram et al. | Nov 2010 | B1 |
7849232 | Sharp et al. | Dec 2010 | B2 |
7889762 | Keels et al. | Feb 2011 | B2 |
8032664 | Sharp et al. | Oct 2011 | B2 |
20010049740 | Karpoff | Dec 2001 | A1 |
20020073257 | Beukema et al. | Jun 2002 | A1 |
20020085562 | Hufferd et al. | Jul 2002 | A1 |
20020147839 | Boucher et al. | Oct 2002 | A1 |
20020161919 | Boucher et al. | Oct 2002 | A1 |
20020172195 | Pekkala et al. | Nov 2002 | A1 |
20020191627 | Subbiah et al. | Dec 2002 | A1 |
20030031172 | Grinfeld | Feb 2003 | A1 |
20030050990 | Craddock et al. | Mar 2003 | A1 |
20030097428 | Afkhami et al. | May 2003 | A1 |
20030165160 | Minami et al. | Sep 2003 | A1 |
20030169775 | Fan et al. | Sep 2003 | A1 |
20030200284 | Philbrick et al. | Oct 2003 | A1 |
20030217185 | Thakur et al. | Nov 2003 | A1 |
20030237016 | Johnson et al. | Dec 2003 | A1 |
20040010545 | Pandya | Jan 2004 | A1 |
20040010594 | Boyd et al. | Jan 2004 | A1 |
20040015622 | Avery | Jan 2004 | A1 |
20040030770 | Pandya | Feb 2004 | A1 |
20040037319 | Pandya | Feb 2004 | A1 |
20040049600 | Boyd et al. | Mar 2004 | A1 |
20040049774 | Boyd et al. | Mar 2004 | A1 |
20040062267 | Minami et al. | Apr 2004 | A1 |
20040083984 | White | May 2004 | A1 |
20040085984 | Elzur | May 2004 | A1 |
20040093389 | Mohamed et al. | May 2004 | A1 |
20040093411 | Elzur et al. | May 2004 | A1 |
20040098369 | Elzur | May 2004 | A1 |
20040100924 | Yam | May 2004 | A1 |
20040153578 | Elzur | Aug 2004 | A1 |
20040193908 | Garcia et al. | Sep 2004 | A1 |
20040221276 | Raj | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20050044264 | Grimminger et al. | Feb 2005 | A1 |
20050080982 | Vasilevsky et al. | Apr 2005 | A1 |
20050102682 | Shah et al. | May 2005 | A1 |
20050149623 | Biran et al. | Jul 2005 | A1 |
20050220128 | Tucker et al. | Oct 2005 | A1 |
20050223118 | Tucker et al. | Oct 2005 | A1 |
20050265352 | Biran et al. | Dec 2005 | A1 |
20060039374 | Belz et al. | Feb 2006 | A1 |
20060045098 | Krause | Mar 2006 | A1 |
20060105712 | Glass et al. | May 2006 | A1 |
20060126619 | Teisberg et al. | Jun 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060146814 | Shah et al. | Jul 2006 | A1 |
20060193327 | Arndt et al. | Aug 2006 | A1 |
20060195617 | Arndt et al. | Aug 2006 | A1 |
20060230119 | Hausauer et al. | Oct 2006 | A1 |
20060235977 | Wunderlich et al. | Oct 2006 | A1 |
20060236063 | Hausauer et al. | Oct 2006 | A1 |
20060248047 | Grier et al. | Nov 2006 | A1 |
20060251109 | Muller et al. | Nov 2006 | A1 |
20060259644 | Boyd et al. | Nov 2006 | A1 |
20060274787 | Pong | Dec 2006 | A1 |
20070083638 | Pinkerton et al. | Apr 2007 | A1 |
20070136554 | Biran et al. | Jun 2007 | A1 |
20070150676 | Arimilli et al. | Jun 2007 | A1 |
20070165672 | Keels et al. | Jul 2007 | A1 |
20070168567 | Boyd et al. | Jul 2007 | A1 |
20070168693 | Pittman | Jul 2007 | A1 |
20070208820 | Makhervaks et al. | Sep 2007 | A1 |
20070226386 | Sharp et al. | Sep 2007 | A1 |
20070226750 | Sharp et al. | Sep 2007 | A1 |
20080028401 | Geisinger | Jan 2008 | A1 |
20080043750 | Keels et al. | Feb 2008 | A1 |
20080147822 | Benhase et al. | Jun 2008 | A1 |
20080244577 | Le et al. | Oct 2008 | A1 |
20090254647 | Elzur et al. | Oct 2009 | A1 |
20100332694 | Sharp et al. | Dec 2010 | A1 |
20110099243 | Keels et al. | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20070198720 A1 | Aug 2007 | US |