A single frequency network (SFN) is a broadcast network in which several transmitters simultaneously transmit the same signal over the same frequency channel. One type of conventional SFN is known as a hybrid satellite-terrestrial SFN. An example hybrid SFN is defined in the Digital Video Broadcasting (DVB) standard “Framing Structure, channel coding and modulation for Satellite Services to Handheld devices (SH) below 3 GHz,” ETSI EN 302 583 V1.1.2 (February 2010).
In these types of networks, the terrestrial transmitter usually needs certain information that is contained in the satellite signal in order for the terrestrial transmitter to generate and transmit the terrestrial signal properly.
In a conventional hybrid satellite-terrestrial network, such as a Digital Video Broadcasting Satellite Services to Handheld devices (DVB-SH) SFN, if the satellite signal and terrestrial signal are transmitted in identical (or alternatively adjacent) frequency bands, then required satellite information cannot be recovered from the satellite signal using a receiving antenna situated relatively close to the location of the terrestrial transmitter due to radio-frequency (RF) interference caused by the terrestrial transmitter. Consequently, at the site of a terrestrial transmitter, the satellite signal is often too weak relative to the signal from the terrestrial transmitter to be decoded for recovery of the required satellite information directly from the over-the-air (OTA) signal received on site. Because of this, the required information about the satellite signal is obtained at a location remote to the terrestrial transmitter, and transmitted to the site of the terrestrial transmitter via some other network. This other network is sometimes referred to as an “auxiliary” network. However, auxiliary networks such as these can be relatively expensive and/or inaccurate.
At least some example embodiments provide methods and apparatuses for interference cancellation in a hybrid satellite-terrestrial network. In at least one example embodiment, initially the terrestrial transmitter does not transmit a signal. Therefore, the terrestrial transmitter does not cause interference to the satellite signal component/portion of a composite over-the-air (OTA) signal. Thus, the satellite receiver is able to decode the satellite signal component of the OTA signal, and provide required satellite information to the terrestrial transmitter for transmitting the terrestrial signal.
The terrestrial transmitter is then turned on and the output power is gradually increased. With relatively low power interference from the terrestrial transmitter, the composite OTA signal has a satellite signal portion that is strong enough for the required satellite information carried by the satellite signal portion to be decoded by the satellite receiver. Thus, the terrestrial transmitter can continue using the required information from the decoded satellite signal when transmitting the terrestrial signal.
At the same time, the composite OTA signal is processed by the interference cancellation block to detect the timing, phase, amplitude, frequency offset, and other channel characteristics of the terrestrial signal portion. With timing, phase, amplitude and other channel characteristics of the terrestrial signal portion, plus the required satellite information from the satellite signal decoder, or otherwise available on site, the interference cancellation block generates a modified version of the terrestrial signal portion of the received OTA signal as an interference cancellation signal.
The interference cancellation signal is combined with the composite OTA signal to suppress interference caused by the terrestrial transmitter at the satellite receiver so that the satellite signal decoder is able to continue to receive a relatively clean satellite signal portion from which to extract required satellite information.
As the output power of the terrestrial transmitter increases, the interference cancellation block continues to detect and track the timing, phase, amplitude and other channel characteristics of the terrestrial signal portion to generate the interference cancellation signal so that interference caused by the terrestrial transmitter is suppressed, or significantly attenuated. Accordingly, a relatively clean satellite signal component is input to the satellite signal decoder (e.g., continuously at all times).
At least one example embodiment provides a method for cancelling interference caused by a terrestrial transmitter at a satellite receiver in a hybrid satellite-terrestrial network. According to at least this example embodiment, the method includes: generating, at the satellite receiver, an interference cancellation signal based on a reference terrestrial signal from the terrestrial transmitter and a received over-the-air (OTA) signal, the interference cancellation signal being a modified version of the reference terrestrial signal; and cancelling, at the satellite receiver, the interference caused by the terrestrial transmitter by combining the interference cancellation signal with the received OTA signal.
At least one other example embodiment provides a satellite receiver. According to at least this example embodiment, the satellite receiver includes an interference cancellation block and a combiner. The interference cancellation block is configured to generate an interference cancellation signal based on a reference terrestrial signal from the terrestrial transmitter and a received over-the-air (OTA) signal. The interference cancellation signal is a modified version of the reference terrestrial signal. The combiner is configured to combine the interference cancellation signal with the received OTA signal to cancel interference caused by a terrestrial transmitter in a hybrid satellite-terrestrial network.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limiting of the present invention.
It should be noted that these figures are intended to illustrate the general characteristics of methods, structure and/or materials utilized in certain example embodiments and to supplement the written description provided below. These drawings are not, however, to scale and may not precisely reflect the precise structural or performance characteristics of any given embodiment, and should not be interpreted as defining or limiting the range of values or properties encompassed by example embodiments. The use of similar or identical reference numbers in the various drawings is intended to indicate the presence of a similar or identical element or feature.
Various example embodiments of the present invention will now be described more fully with reference to the accompanying drawings in which some example embodiments of the invention are shown.
Detailed illustrative embodiments of the present invention are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments of the present invention. This invention may, however, may be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments of the present invention. As used herein, the term “and/or,” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected,” or “coupled,” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected,” or “directly coupled,” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between,” versus “directly between,” “adjacent,” versus “directly adjacent,” etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments of the invention. As used herein, the singular forms “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Specific details are provided in the following description to provide a thorough understanding of example embodiments. However, it will be understood by one of ordinary skill in the art that example embodiments may be practiced without these specific details. For example, systems may be shown in block diagrams in order not to obscure the example embodiments in unnecessary detail. In other instances, well-known processes, structures and techniques may be shown without unnecessary detail in order to avoid obscuring example embodiments.
Also, it is noted that example embodiments may be described as a process depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations may be performed in parallel, concurrently or simultaneously. In addition, the order of the operations may be re-arranged. A process may be terminated when its operations are completed, but may also have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination may correspond to a return of the function to the calling function or the main function.
Moreover, as disclosed herein, the term “buffer” may represent one or more devices for storing data, including random access memory (RAM), magnetic RAM, core memory, and/or other machine readable mediums for storing information. The term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information. The term “computer-readable medium” may include, but is not limited to, portable or fixed storage devices, optical storage devices, wireless channels and various other mediums capable of storing, containing or carrying instruction(s) and/or data.
Furthermore, example embodiments may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine or computer readable medium such as a storage medium. A processor(s) may perform the necessary tasks.
A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
As discussed herein, the notation “x(t),” “y(t)” and “z(t)” refer to signals that have been processed with appropriate radio frequency (RF) modulation (e.g., orthogonal frequency division multiplexing (OFDM) modulation or the like) for transmission/reception over-the-air. By contrast, the notation “xn,” “yn” and “zn” refer to digital signals including frames and/or blocks of samples. The digital signals “xn,” “yn” and “zn” are digital representations of the corresponding RF signals x(t), y(t) and z(t).
As described herein, x(t) refers to a satellite signal (sometimes referred to herein as an “analog satellite signal”), whereas y(t) refers to a terrestrial signal (sometimes referred to herein as an “analog terrestrial signal” or “reference terrestrial signal”). A combination or composite of the satellite signal x(t) and the terrestrial signal y(t) is referred to as an over-the-air (OTA) composite signal z(t). In some instances, the over-the-air (OTA) composite signal z(t) is referred to as an “analog OTA composite signal,” an “OTA signal,” and/or a “composite signal.”
At least one example embodiment provides a method for cancelling interference caused by a terrestrial transmitter at a satellite receiver in a hybrid satellite-terrestrial network. According to at least this example embodiment, the satellite receiver generates an interference cancellation signal based on a reference terrestrial signal from the terrestrial transmitter and a received over-the-air (OTA) signal. The interference cancellation signal is a modified version of the reference terrestrial signal. The satellite receiver then cancels the interference caused by the terrestrial transmitter by combining the interference cancellation signal with the received OTA signal.
At least one other example embodiment provides a satellite receiver. According to at least this example embodiment, the satellite receiver includes an interference cancellation block and a combiner. The interference cancellation block is configured to generate an interference cancellation signal based on a reference terrestrial signal from the terrestrial transmitter and a received over-the-air (OTA) signal. The interference cancellation signal is a modified version of the reference terrestrial signal. The combiner is configured to combine the interference cancellation signal with the received OTA signal to cancel interference caused by a terrestrial transmitter in a hybrid satellite-terrestrial network.
Referring to
The signals x(t) and y(t) are derived from, and carry, satellite information. The satellite information may include payload data, which is data to be provided/transmitted to the mobile receiver 104. In one example, the payload data may include, for example, multimedia content (e.g., voice, video, pictures, etc.) as well as signal transmission or channel characteristic information (e.g., frequency and timing offset information).
As mentioned above, in a hybrid satellite and terrestrial network, such as that shown in
In conventional satellite radio networks, a satellite receiver is co-located with a terrestrial transmitter. In one example, the satellite receiver discussed herein replaces the conventional satellite receiver in conventional satellite radio networks.
In a conventional Digital Video Broadcasting Satellite Services to Handheld devices (DVB-SH) network, there is no satellite receiver co-located with the terrestrial transmitter. According to at least some example embodiments, a satellite receiver is added at the site of the terrestrial transmitter so that the satellite receiver and the terrestrial transmitter are co-located with one another.
An example embodiment of the satellite receiver 102 and the terrestrial transmitter 222, as well as their interaction with one another, will be discussed in more detail below with regard to
In addition to the functions/acts described herein, it should be understood that the satellite receiver 102 and the terrestrial transmitter 222 are also capable of performing conventional, well-known functions of conventional satellite receivers and terrestrial transmitters in a hybrid satellite-terrestrial network. Because such functions are well-known in the art, a detailed discussion is omitted.
Referring to
At step S404, the satellite receiver 102 processes the composite OTA signal z(t) and extracts satellite information. In this example, the satellite information includes payload data SAT_SIG_PAYLOAD. The payload data SAT_SIG_PAYLOAD may include, for example, multimedia content (e.g., voice, video, pictures, etc.).
Still referring to step S404, in more detail the radio frequency (RF) filter 202 filters the received composite OTA signal z(t) to remove out of band noise and interference. The combiner 204 combines (adds or sums) the filtered composite OTA signal z(t) with an interference cancellation signal yEST(t) from the interference cancellation block 224. In this initial iteration, the interference cancellation signal yEST(t) is also zero because the transmission power at the terrestrial transmitter 222 is zero. Thus, the combined signal output from the combiner 204 is essentially the received satellite signal x(t) from the RF filter 202.
A low noise amplifier (LNA) 206 amplifies the combined signal, and outputs the amplified combined signal to a downconverter/analog-to-digital converter (ADC) block 208. The downconverter/ADC block 208 frequency-down-converts the combined signal to an intermediate frequency (IF) or baseband analog signal, and then further converts the analog combined signal to composite signal digital samples zn. The composite signal digital samples zn are also referred to herein as a composite digital signal zn or a digital representation of the composite signal. The composite digital signal zn is composed of consecutive digital samples grouped into a plurality of blocks or frames. The manner in which a digital signal and/or samples are generated via digital sampling is well known in the art. Thus, a detailed discussion is omitted for the sake of brevity.
The downconverter/ADC block 208 outputs the composite digital signal zn to the interference cancellation block 224 and a satellite signal decoder 2102.
The satellite signal decoder 2102 decodes the composite digital signal zn to extract the payload data SAT_SIG_PAYLOAD. The satellite signal decoder 2102 outputs the payload data SAT_SIG_PAYLOAD to the terrestrial transmitter 222 and the interference cancellation block 224. The interference cancellation block 224 will be discussed in more detail later.
Returning to
In more detail, at step S405 the modulator 2104 modulates the payload data SAT_SIG_PAYLOAD from the satellite signal decoder 2102 to generate digital samples ySAT
A high power amplifier (HPA) 214 amplifies the reference terrestrial signal y(t) from the DAC/upconverter 212, and the amplified reference terrestrial signal y(t) is output to the terrestrial transmitter antenna 2220 for transmission.
A coupler 220 obtains feedback of the reference terrestrial signal y(t), and outputs the obtained feedback to a downconverter/ADC 218. The downconverter/ADC 218 downconverts the reference terrestrial signal y(t) to an IF or baseband analog signal. The downconverter/ADC 218 also digitizes the reference terrestrial signal y(t) to generate a reference terrestrial digital signal yn. The reference terrestrial digital signal yn is a digital copy or representation of the reference terrestrial signal y(t) to be transmitted by the terrestrial transmitter 222. In some instances, the reference terrestrial digital signal yn may be referred to as a digital representation of the reference terrestrial signal y(t). Similar to the composite digital signal zn, the reference terrestrial digital signal yn is also composed of consecutive digital samples grouped into blocks or frames. The downconverter/ADC 218 outputs the reference terrestrial digital signal yn to the satellite receiver 102. More specifically, the downconverter/ADC 218 outputs the reference terrestrial digital signal yn to the interference cancellation block 224 at the satellite receiver 102.
As mentioned above, the interference cancellation block 224 also receives the composite digital signal zn from the downconverter/ADC 208 and the payload data SAY_SIG_PAYLOAD from the satellite signal decoder 2102.
Still referring to
At step S410, the terrestrial transmitter 222 increases the transmission (output) power PTER of the reference terrestrial signal y(t) by an incremental amount. In one example, the terrestrial transmitter 222 increases the output power PTER of the reference terrestrial signal y(t) by about 0.1 dB.
At step S412, the terrestrial transmitter 222 determines whether the current transmission power PTER has reached a given, desired or predetermined transmission power level PTH by comparing the current transmission power PTER with the transmission power level PTH. The transmission power level PTH may be determined by a network operator according to empirical data. In one example, the transmission power level PTH may be about 100 W. If the current transmission power PTER is greater than or equal to the transmission power level PTH, then the process shown in
Returning to step S412 in
The process then returns to step S404.
In the initial iteration of the process shown in
Referring still to
At step S404, the satellite receiver 102 processes the received composite OTA signal z(t) and extracts the satellite information (e.g., payload data) SAT_SIG_PAYLOAD.
In more detail, for example, the RF filter 202 filters the composite OTA signal z(t) to remove out of band noise and other interference. The combiner 204 then sums the filtered composite OTA signal z(t) with the interference cancellation signal yEST(t) output from the interference cancellation block 224. In this iteration, the terrestrial cancellation signal yEST(t) is substantially equal to, but has a phase opposite to, the reference terrestrial signal y(t). Thus, the terrestrial signal component of the composite OTA signal z(t) is substantially cancelled from the composite OTA signal z(t). The combiner 204 outputs the remainder of the composite OTA signal z(t) to the low noise amplifier (LNA) 206, and the process continues in the manner discussed above.
According to at least some example embodiments, because the power of the reference terrestrial signal y(t) is relatively low at the start, the received satellite signal x(t) is strong enough for the satellite signal decoder 2102 to continue to extract satellite information from the received satellite signal x(t).
The combiner 204 is able to suppress interference caused by signals transmitted by the terrestrial transmitter 222 from the composite OTA signal z(t) received at the satellite receiver 102. As a result, satellite information carried by the satellite signal x(t) may be extracted from the composite digital signal zn even as the signal power of the reference terrestrial signal y(t) at the terrestrial transmitter antenna 2220 increases. Therefore, the satellite signal decoder 2102 continues to extract satellite information from the satellite signal x(t) regardless, or independent, of the signal power of the terrestrial signal component of the composite signal z(t) at the satellite receiver 102.
As mentioned above, the process shown and described with regard to
The generation of the interference cancellation signal by the interference cancellation block 224 will now be described in more detail with regard to
As mentioned above,
In more detail, the interference cancellation block 224 includes a satellite signal reconstruction block 2248. The satellite signal reconstruction block 2248 generates a reconstructed satellite digital signal xrecon based on the payload data SAT_SIG_PAYLOAD. In one example, the satellite signal reconstruction block 2248 generates the reconstructed satellite digital signal xrecon by modulating the payload data SAT_SIG_PAYLOAD using, for example, quadrature-phase-shift-keying (QPSK). The reconstructed satellite digital signal xrecon is a reconstructed version of a digital copy of the satellite signal x(t). The satellite signal reconstruction block 2248 outputs the reconstructed satellite digital signal xrecon to combiner 2238.
The combiner 2238 combines the reconstructed satellite digital signal xrecon with the composite digital signal zn from the downconverter/ADC 208. Specifically, the combiner 2238 subtracts the reconstructed satellite digital signal xrecon from the composite digital signal zn to generate a terrestrial component of the composite digital signal zn. In this example, the terrestrial component of the composite digital signal zn represents the remaining portion of the terrestrial signal y(t) not canceled from the composite signal z(t) at the combiner 204.
Still referring to
The interference cancellation block 224 also stores a block (e.g., current block) of samples of the reference terrestrial digital signal yn from the terrestrial transmitter in the reference frame buffer 2242. The reference terrestrial digital signal yn is a digital signal representing the reference terrestrial signal y(t). According to at least one example embodiment, the reference frame buffer 2242 may have the capacity to store 1 or 2 blocks of samples of the reference terrestrial digital signal yn.
Still referring to
The cancellation signal generation block 2246 generates the interference cancellation signal yEST(t) based on the block of samples of the reference terrestrial digital signal yn stored in the reference frame buffer 2242, but with appropriately adjusted timing, phase and amplitude.
An example method for estimating time delay Δ{tilde over (t)} and frequency offset Δ{tilde over (f)} will now be described. In this example embodiment, the method is performed at the detector 2244 in
yRX(t)=√{square root over (P)}yTX(t−Δt)·e2πΔft+ω(t) (1)
In Equation (1), P is the power of the received terrestrial signal yRX(t) relative to the transmission power of the transmitted terrestrial signal yTX(t), and ω(t) is the Gaussian noise. The actual time delay Δt represents the round trip delay (RTD) of the signal traveling from the terrestrial transmitter 222 to the satellite receiver antenna 201. The actual frequency offset Δf is a result of the Doppler effect due to satellite motion.
Assuming that the time delay Δt is an integer multiple of sample duration T, each received sample yRX
yRX
In the above equation, M is an additional delay with respect to the nominal delay D, expressed as a number of samples. The additional delay M is related to the time delay Δt and given by Equation (3) shown below.
In Equation (3), M represents the instantaneous variation of the time offset with respect to the nominal offset D.
In estimating time delay and frequency offset, the detector 2244 calculates a correlation Ck between a stored block of samples from reference frame buffer 2242 and the stored blocks of samples from buffer 2240. Each block of samples includes the same number of samples—namely N samples. The number N may be determined based on empirical data at a network controller.
The detector 2244 calculates the correlation Ck between the block of samples from the reference frame buffer 2242 and each of the blocks of samples from the buffer 2240 according to Equation (4) shown below.
Ck=Σn=0N−1yRXn+k·(yTXn)*·(yRXn+k+q·(yTXn+q)*)* (4)
In Equation (4), the ‘yTXn’ notation represents the samples from the reference frame buffer 2242 and the ‘yRXn’ notation represents the samples from the buffer 2240. The notation ( )* represents complex conjugate, and q is a parameter that indicates the distance between the samples represented by yRXn+k and yRXn and respective samples yTXn+k and yTXn. According to example embodiments, parameter q determines the accuracy of the frequency offset estimate. The larger q becomes, the more accurate the estimate becomes. The value of q may be determined experimentally for a given accuracy requirement. Typically, q may be on the order of between about 10N to about 100N. A correlation is computed for each block of received samples in the buffer 2240, which are indexed by k=0, ±1, ±2, . . . , K.
According to example embodiments, a single correlation Ck given by Equation (4) is used to estimate both time delay and frequency offset between signals. The estimate of the time delay Δ{tilde over (t)} is obtained by maximizing the amplitude of correlation Ck over index k=0, ±1, ±2, . . . , ±K. That is, the time delay is estimated by identifying the index k associated with the maximum correlation value Ck. As discussed herein, the maximum correlation value is referred to as Ck
In one example, identification of the maximum correlation Ck
|Ck
The estimated time delay Δ{tilde over (t)} is then calculated based on the index kmax associated with the maximum correlation value Ck
Δ{tilde over (t)}=(D+kmax)T (6)
As noted above, D is the nominal delay and T is the sample duration. Stated another way, the estimated time delay Δ{tilde over (t)} may be calculated as a function of the index kmax, the nominal delay D and the sample duration T.
According to example embodiments, the estimated time delay Δ{tilde over (t)} given by Equation (6) is valid when the condition given by Equation (7) is met.
(D−K)T≦Δt≦(D+K)T (7)
Consequently, in choosing the search window [−K, K], the values of D and K are chosen such that condition (7) is satisfied. The search window [−K, K] may be selected automatically or by a human network operator based on empirical data.
The frequency offset is also estimated based on the maximum correlation value Ck
The estimated frequency offset Δ{tilde over (f)} between the transmitted and received terrestrial signals is given by Equation (8) shown below.
As noted above, q is a parameter indicating a distance between pairs of samples and T is the sample duration used in generating the samples. The value arg(Ck
In Equation (9), Im(Ck
According to example embodiments, the estimated time delay Δ{tilde over (t)} and frequency offset Δ{tilde over (f)} are used in the cancellation signal generation block 2246 to adjust the time and frequency of the reference terrestrial signal y(t) in order to generate the cancellation signal yEST(t). The cancellation signal generation block 2246 is designed to adjust for the time delay and frequency offsets such that Δ{tilde over (t)}=D·T and Δ{tilde over (f)}=0 in the steady state.
Still referring to
The example embodiment shown in
In the example embodiment shown in
Rather than extracting payload data SAT_SIG_PAYLOAD as in the example embodiment shown in
The satellite signal decoder 2102 outputs the required satellite information REQ_SAT_INFO to the modulator 2104 of the terrestrial transmitter 222, which then modulates the payload data TER_SIG_PAYLOAD accordingly to generate digital samples yTER
In the example embodiment shown in
According to at least some example embodiments, information regarding the satellite signal, which is required by the terrestrial transmitter, may be obtained from the satellite signal at the location of the terrestrial transmitter. Advantageously, in accordance with at least some example embodiments, this information need not be transmitted by another (e.g., auxiliary) transmission network and the required information may be obtained more accurately.
The foregoing description of example embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular example embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application No. 61/597,993, filed on Feb. 13, 2012, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6125124 | Junell et al. | Sep 2000 | A |
6236695 | Taylor | May 2001 | B1 |
6459745 | Moose et al. | Oct 2002 | B1 |
6510308 | Thomas et al. | Jan 2003 | B1 |
6684057 | Karabinis | Jan 2004 | B2 |
6859641 | Collins et al. | Feb 2005 | B2 |
7747292 | Mezer et al. | Jun 2010 | B2 |
8116419 | Jiang et al. | Feb 2012 | B2 |
8401509 | Gupta et al. | Mar 2013 | B1 |
20020039383 | Zhu et al. | Apr 2002 | A1 |
20020181438 | McGibney | Dec 2002 | A1 |
20020197958 | Collins et al. | Dec 2002 | A1 |
20030052819 | Jacomb-Hood et al. | Mar 2003 | A1 |
20040142660 | Churan | Jul 2004 | A1 |
20050041693 | Priotti | Feb 2005 | A1 |
20050129149 | Kuntz | Jun 2005 | A1 |
20060036365 | Chiayee et al. | Feb 2006 | A1 |
20060088133 | Chen et al. | Apr 2006 | A1 |
20100008458 | Jiang et al. | Jan 2010 | A1 |
20110130091 | Sombrin et al. | Jun 2011 | A1 |
20110181463 | Chopard et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
0227393 | Dec 1986 | EP |
0772310 | May 1997 | EP |
1724946 | Nov 2006 | EP |
1734679 | Dec 2006 | EP |
102006001436 | Feb 2006 | KR |
Entry |
---|
Fang Zhi et al., “A Frequency Offset Estimation Algorithm for OFDM Systems”, Journal of Electronics (CHINA), vol. 25, No. 1, Jan. 2008. |
“System Specifications for Satellite Services to Handheld Devices (SH) below 3 GHz”, Digital Video Broadcasting, DVB. |
Stein, S., “Algorithms for Ambiguity Function Processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Col. ASSP-29, No. 3, Part 02, pp. 588-599, Jun. 1, 1981. |
Hong Jiang et al., “A Correlation for the Detection of Time and Frequency Offsets: Appendix II”, IEEE Transactions on Broadcasting. vol. 55, No. 4, pp. 752-760, Dec. 2009. |
International Search Report dated Nov. 4, 2009. |
Written Opinion dated Nov. 4, 2009. |
International Preliminary Report on Patentability, dated Jan. 27, 2011, issued in International Application No. PCT/US2009/003881. |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2013/025014 dated Mar. 20, 2013. |
Daniel Sauvet-Goichon, “Planning Aspects of Satellite and Terrestrial Digital Sound Broadcasting”, International Journal of Satellite Communications, vol. 13, pp. 215-221, Jan. 1, 1995. |
International Preliminary Report and Written Opinion for corresponding International Patent Application No. PCT/US2013/025014 mailed Aug. 28, 2014. |
Korean Office Action mailed Jun. 19, 2015. |
Number | Date | Country | |
---|---|---|---|
20130208655 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61597993 | Feb 2012 | US |