The present invention relates generally to methods and devices to cross occlusions in interventional and surgical applications with simultaneous or nearly simultaneous intravascular imaging, and in particular, to a magnetically guidable energy delivery or occlusion crossing apparatus and methods of using same together with intravascular ultrasound imaging.
Many medical interventions rely on the delivery to a target location of energy, such as electrical energy, inside the body of a patient. For example, an occlusion in a blood vessel such as a partial or total occlusion may be vaporized, at least partially, by delivering a suitable electrical current to the occlusion.
There currently exist magnetically guided guidewires, which are typically relatively long and relatively thin wires at the end of which a magnet is located. The guidewire is typically used in conjunction with a catheter that is slid over the guidewire after the wire has been advanced through a desired path. In use, the guidewire protrudes a relatively small distance in front of the catheter when there is a need to either steer the catheter at a junction, or guide the catheter through a relatively tortuous path. Then, a magnetic field may be applied to guide the guidewire through a predetermined path. Thereafter, the catheter is slid over the guidewire. The guidewire can have an electrode at the tip that can be used to deliver RF energy at the tip for local ablation and removal of tissue. In the local vicinity of the tip of such a device, however, it is important to ensure that the wall of the blood vessel that is being ablated is not perforated, and that only the blockage within the vessel is ablated.
There is a need to provide novel remotely steerable devices that can not only be navigated efficiently and deliver energy effectively to or effectively push through occlusion at a desired lesion site in the patient anatomy, but can also provide local imaging that can help ensure that ablation is occurring safely away from vessel walls. The present invention is designed to provide such a method and an apparatus.
In a broad aspect, the invention provides an occlusion crossing apparatus in the form of an energy delivery apparatus for delivering electrical energy at a target location, the energy delivery apparatus being usable in combination with a magnetic field. The energy delivery apparatus can be in the form of a guidewire that acts as an electrical conductor or it can be in the form of a catheter that incorporates a lead that acts as an electrical conductor, in addition to having sufficient flexibility in its distal portion to be navigated efficiently through tortuous anatomy. An electrode at the wire or apparatus tip is used for delivering the electrical energy at the target location, the electrode being electrically coupled to the electrical conductor and located at a predetermined location therealong; also included is a guiding element mounted to the electrical conductor in a substantially spaced apart relationship relative to the electrode, the guiding element including a magnetically responsive material. The energy delivery apparatus is constructed such that a movement of the guiding element causes a corresponding movement of the electrode. An external magnetic field is applied to move the guiding element in order to position the electrode substantially adjacent to the target location.
In one embodiment, the invention provides an occlusion crossing apparatus in the form of a magnetically steered device for pushing through an occlusion at a target location, the occlusion crossing apparatus being usable in combination with a magnetic field.
Further included as part of the catheter apparatus is at least one ultrasonic transducer. The ultrasonic transducer can emit and receive ultrasonic energy and can comprise a piezoelectric element. When multiple transducers are used, they can be located in ring-like fashion around the circumference of the energy delivery apparatus. Each transducer has leads that pass through the energy delivery apparatus and connect to an ultrasound system through a suitable connector at the proximal end of the device. The latter can be a catheter of suitably small diameter. For non-specific purposes of illustration only, the device diameter can be in the range 2-6 French or 0.66-2 mm. The transducers could be used to image independently or in phased array form to acquire a circumferential imaging pattern and to view multiple directions near-simultaneously in real time. If the transducers are placed close enough to provide overlapping fields of view, a continuous ring-like annular field of view can be obtained.
The energy delivery apparatus in one embodiment can comprise the imaging catheter including the ultrasonic transducers together with an electrode at one location along the catheter circumference spaced away from the transducers, with the catheter incorporating magnetic elements that can be used to steer the device by application of an external magnetic field. When this electrode is used for ablation, the transducers can be used to provide an image in a circumferential wedge-like sector that is across from the electrode location. In this imaging view, if the vessel wall is visible close to the catheter, it indicates that the device electrode is relatively well centered and it is safe to ablate, as long as the device diameter is no more than about half the healthy vessel diameter.
The transducers could transmit an ultrasound beam directed radially away from the imaging catheter, in which case, the device is a side-viewing catheter, or it could transmit an ultrasound beam angled away from the axis of the device at an angle less than 90 degrees, in which case, the image obtained is an oblique view and the catheter is an oblique-viewing device.
In another embodiment, the imaging catheter is distinct from the energy delivery apparatus, but contains a passage through which the energy delivery apparatus in the form of a magnetic RF guidewire is passed. The RF guidewire has an electrode for RF energy delivery to tissue for creation of an opening through a lesion. The channel or passage in the imaging catheter through which the RF wire passes can be centrally located in one embodiment, or it can be eccentrically located in another embodiment with respect to the long axis of the imaging catheter. When the ultrasound image shows that the vessel wall is close to the imaging catheter, the magnetic RF guidewire can be suitably steered in a direction slightly away from the vessel wall for ablation purposes at the wire tip by application of a suitable external magnetic field.
When only a single ultrasound transducer is used, the ultrasound image obtained from the catheter is in the form of a somewhat narrow circular sector. In this case, the catheter can be rotated or torqued about its long axis to obtain images from several such sectors. Such rotation of the device can be performed manually or it can be done under remote control by the use of at least one motor and a suitable drive mechanism which mechanically grips the device.
In some embodiments of the invention, when the catheter is directly used to ablate, a heat shield is located between the electrode and the transducers and guiding element(s) to prevent excessive heating of the latter two components. This improves the thermal insulation between the components and therefore further prevents de-magnetization of the magnetically responsive material present in the guiding element(s) and damage to the transducers. In another embodiment, where the imaging catheter is used together with an RF wire, the tip of the catheter is built from heat resistant material to ensure adequate thermal separation of the catheter's ultrasonic transducers from the RF guidewire electrode tip.
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of certain embodiments thereof, given by way of example only with reference to the accompanying drawings.
In one embodiment of the invention as shown in
In an alternate embodiment depicted in
With a single ultrasonic transducer, the image produced at a time is in the form of a sector. The imaging catheter can be rotated or torqued about its axis so that several sectors of data are obtained for a more complete circumferential view of the vessel interior. In one mode of image acquisition with such a system, the ultrasound imaging system can acquire multiple sectors in sequence and display them in integrated form in a single circular display to image most of the interior of the vessel out from the catheter. The rotation of the device can be manually performed by the user/physician, or as shown in
In an alternate embodiment, the magnetically steered guidewire used with the ultrasound imaging catheter is not a Radio Frequency guidewire but rather a guidewire that is capable of mechanically pushing through a lesion. Such a guidewire, for instance, can comprise at least one guiding element constructed from a magnetically responsive material such as Neodymium-Iron-Boron, Platinum-Cobalt alloy, or other ferromagnetic or paramagnetic material. More than one guiding element can be used, for example a combination of a Neodymium-iron-Boron permanent magnet and a magnetized flexible coil built from Platinum-Cobalt alloy. For example, the latter combination can yield a magnetically steered guidewire that is both easily steered magnetically and can support a relatively large mechanical push force for crossing through an occlusion.
One embodiment of the apparatus of the present invention is shown in
In one embodiment of the energy delivery apparatus of the present invention as shown schematically in
In another embodiment illustrated schematically in
In an alternate embodiment, and as illustrated in
The magnetic RF guidewire in some embodiments of this invention includes an electrically insulating material substantially covering the electrically conducting wire shaft and made of a dielectric material with a relative dielectric constant preferably smaller than about 3. Non-limiting examples of potential insulation materials include Teflons®, such as polytetrafluoroethylene (PTFE), fluorinated ethylene propylene copolymer (FEP), perfluoroalkoxy (PFA), or ethylene and tetrafluoroethylene copolymer (ETFE, for example Tefzel®), or coatings other than Teflons®, such as polyetheretherketone plastics (PEEK™), parylene, certain ceramics, or polyethylene terpthalate (PET), or a range of other polymers. It should be emphasized that these materials are listed as non-limiting examples only, and any other suitable material with the appropriate dielectric properties could also be used as insulation. In some embodiments, the electrically insulating material forms a layer that extends substantially radially outwardly from the electrical conductor.
The heat shield shown in the embodiment in
Such a heat shield could be made out of a substantially thermally insulating material, for example, and non-limitingly, polytetrafluoroethylene (PTFE), which has a thermal conductivity of about 0.3 W/m-K. In this embodiment, the heat shield may have a thickness of at least about 0.025 mm. In other embodiments, the thickness of the heat shield may vary, depending on the thermal conductivity of the material being used. In some embodiments of the invention, the heat shield includes polytetrafluoroethylene (PTFE). The use of PTFE is advantageous as, in addition to having suitable thermal insulation properties, PTFE is also an electrically insulating material (having a dielectric strength of about 24 kV/mm) and, therefore, contributes to the prevention of arcing between the electrode and any metallic material that may be present in the guiding element. In alternate embodiments, other materials, such as for example, Zirconium Oxide, may be used for the heat shield.
In some embodiments of the invention, the guiding component(s) of either the integrated energy delivery apparatus or the magnetic RF guidewire include permanently magnetized components such as, for example a neodymium magnet, a platinum-cobalt magnet, or any other suitable heat-resistant magnets. A heat resistant magnet, for the purpose of this description, is defined as a magnet that has relatively low probabilities of being adversely affected in its magnetization by a delivery of electrical energy through the electrode. However, in alternative embodiments of the invention, each of the guiding components can include any other suitable magnetically responsive material such as, for example, a ferromagnetic, a paramagnetic, or a diamagnetic material.
In some embodiments of the invention, the electrical conductor of the body of the RF guidewire defines a conductor wider section and a conductor narrower section. The conductor narrower section is positioned distally relatively to the conductor wider section. The conductor wider section has a cross-sectional area that is substantially larger than the cross-sectional area of the conductor narrower section. The conductor narrower section increases the flexibility of the distal end section of the RF guidewire while the conductor wider section allows for maintaining a relatively large rigidity at the proximal end of the RF guidewire. This allows to relatively easily steer the conductor distal end while allowing to relatively easily manipulate the energy delivery apparatus into the body vasculature of the patient. In addition, having a conductor wider section of a relatively large cross-sectional area reduces ohmic losses when the electrical current is delivered to the RF electrode.
In some embodiments of the invention, the conductor wider and narrower section are substantially cylindrical and define respective conductor wider and narrower section outer diameters. Therefore, in these embodiments, the conductor wider section outer diameter is substantially larger than the conductor narrower section outer diameter. When the conductor material is Nitinol, a conductor narrower section having a conductor narrower section outer diameter of about 0.0027 inches or less has been found to be particularly well suited for use in relatively small body vessels.
In alternative embodiments of the invention, the electrical conductor is made more flexible substantially adjacent the conductor distal end than substantially adjacent the conductor proximal end in any other suitable manner such as, for example, by using different materials for manufacturing the conductor proximal and distal regions. It has been found that one suitable material for manufacturing the actual conductor is Nitinol. Indeed, Nitinol shows super-elastic properties and is therefore particularly suitable for applying relatively large deformations thereto in order to guide the energy delivery apparatus through relatively tortuous paths. Also, since the energy delivery apparatus typically creates channels inside biological tissues through radio frequency perforations, in some embodiments of the invention, the energy delivery apparatus typically does not need to be very rigid. In other embodiments, it is desirable that at least a substantial proximal section of the energy delivery apparatus have sufficient mechanical rigidity. Such rigidity or stiffness aids the use of the energy delivery apparatus as a rail to support and guide other therapeutic devices, such as catheters to the desired target location. Accordingly, a relatively stiff material, such as stainless steel can also be used as a substantial portion of the conductor.
It is desirable that preferably an insulation coating thickness of at least 0.002 inches, and still more preferably 0.003 inches is used as the insulation coating thickness. It is also preferable that the dielectric coating have a dielectric constant that is smaller than about 3, and more preferably smaller than about 2.5, and still more preferably smaller than about 2. For a 0.014″ (outer) diameter guidewire, this means that the conductor wire has a diameter of about 0.010 inches or smaller, and more preferably about 0.008 inches or smaller. As another example, in the case of a 0.018″ (outer) diameter guidewire, the conductor wire has a diameter of about 0.014 inches or smaller, and more preferably about 0.012 inches or smaller. In some applications it is desirable to use a wire conductor material that possesses a certain amount of mechanical stiffness. Thus, in the case of Nitinol, it is often desirable to use a wire conductor diameter of about 0.012 inches along the major proximal portion of the wire. Equivalently, if stainless steel is used as the wire conductor, it is desirable to use a wire conductor diameter of about 0.008 inches along the major proximal portion of the wire.
The above considerations can also be expressed in terms of ratios. For instance it is preferable that along the major proximal portion of the wire, the ratio of the insulation coating thickness to the wire conductor diameter is greater than about 0.18, and still more preferable that this ratio is greater than about 0.36, in the case of a 0.014″ (outer) diameter guidewire. In the case of a 0.018″ (outer) diameter guidewire, it is preferable that along the major proximal portion of the wire, the ratio of the insulation coating thickness to the wire conductor diameter is greater than about 0.13, and still more preferable that this ratio is greater than about 0.23.
In some embodiments of the invention, the energy delivery apparatus is used such that a channel is created at least partially through the occlusion. This channel may be created by delivering energy through the electrode and advancing the apparatus distal end into the occlusion simultaneously or after delivering energy. Alternatively or additionally, the channel could be enlarged by varying the magnetic field direction to make adjustments in the steering orientation of the energy delivery apparatus and ablating with each orientation change. This channel enlargement can be performed after an initial channel has been created by pulling back or by advancement of the energy delivery apparatus (either the magnetic RF guidewire or the integrated energy delivery apparatus), with steering adjustments throughout to enlarge the channel. Repeated passes of this process can also be performed to ensure that an adequately large channel is created.
It has been found that the claimed energy delivery apparatus is particularly well suited for creating channels in occlusions that are located at a bifurcation in the body vessel. Indeed, in prior art devices, the presence of the occlusion at the bifurcation typically pushes the apparatus distal end of prior art devices through the non-occluded branch of the body vessel, which therefore makes the creation of channels through the occlusion relatively difficult. By using the magnetic field, the apparatus distal end may be oriented such that the electrode remains substantially adjacent to the occlusion until at least a portion of a channel is created into the occlusion which allows the distal end of the energy delivery apparatus to be received within the occlusion, such that the energy delivery apparatus is guided away from the non-occluded branch.
In specific embodiments of the invention, the electrical conductor used for RF energy delivery is between about 40 centimeters and about 350 centimeters in length. In more specific embodiments of the invention, the electrical conductor is between about 65 centimeters and 265 centimeters in length. The electrode is typically less than about 4 millimeters in length.
In some embodiments, the heat shield 28 may be between about 0.05 cm and about 0.20 cm in length, and between 0.025 and about 0.05 cm in thickness. In one particular example, the heat shield material is about 0.1 cm in length, and about 0.035 cm in thickness.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in various combinations in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the present invention has been described hereinabove by way of certain embodiments thereof, it can be modified, without departing from the subject invention as defined in the appended claims.
This application claims priority to both U.S. Provisional Patent Application No. 61/019,231, filed Jan. 4, 2008 and U.S. Provisional Patent Application No. 60/989,112, filed Nov. 19, 2007, the entire disclosures of which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
61019231 | Jan 2008 | US | |
60989112 | Nov 2007 | US |