Environments in which inventories of objects are managed, such as products for purchase in a retail environment, may be complex and fluid. A retail facility may contain a wide variety of products disposed on support structures such as shelves, which bear labels containing product information such as prices, barcodes and the like. The modification of products within the facility, the selection of products on the shelves, and the formatting of the labels, may all change over time, requiring previous labels to be replaced with new labels. The modification of labels is typically performed manually, in a time-consuming and error-prone process. Similar issues may be present in other environments in which inventoried objects are managed, such as in warehouse environments.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Examples disclosed herein are directed to an apparatus for labeling support structures. The apparatus includes a chassis having a locomotive assembly; an effector assembly having a first end coupled to the chassis and a second end movable relative to the chassis; a label modification unit at the second end of the effector assembly, the label modification unit including an image sensor; and a controller coupled to the locomotive assembly, the effector assembly and the label modification unit. The controller is configured to obtain label modification data defining a location relative to a reference feature on a support structure for a label modification operation; control the locomotive assembly to travel to the support structure; detect the reference feature via image data captured at the image sensor; control the effector assembly to place the label modification unit at the location relative to the reference feature; and control the effector assembly and the label modification unit to perform the label modification operation.
Additional examples disclosed herein are directed to a method of modifying low powered displays on support structures, comprising: at a controller of an apparatus: obtaining label modification data defining a location of a low powered display relative to a reference feature on a support structure for modifying content displayed by the low powered display; controlling a locomotive assembly of the apparatus to travel to the support structure; detecting the reference feature in an image captured at an image sensor of the apparatus; controlling an effector assembly of the apparatus to place the label modification unit at the location relative to the reference feature; and controlling effector assembly and the label modification unit to modify content displayed by the low powered display.
The client computing device 105 is illustrated in
The system 100 is deployed, in the illustrated example, in a retail environment including a plurality of support structures in the form of shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110, and generically referred to as a shelf module 110—this nomenclature is also employed for other elements discussed herein). Various other support structures for supporting inventoried retail and/or warehouse items disposed thereon are contemplated, including shelves, racks (including racks for hanging inventoried objects, such as clothing racks), peg boards, and the like.
Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and one or more support surfaces (e.g. an upper support surface 117a-3 and a lower support surface 117b-3 as illustrated in
The labels can include adhesive labels affixed to the shelf edges 118, rewriteable media, low powered displays supported on the shelf edges 118 (e.g. by adhesives or the like), or other suitable labels. The discussion below refers to low powered displays acting as electronic shelf labels supported on the shelf edges 118. In some examples, a low powered display may extend across a shelf edge 118, or a portion thereof, and define multiple electronic labels corresponding to respective products 112. In other examples, the shelf edge 118 may support multiple discrete low powered displays each defining separate labels corresponding to respective products. In other words, the term “label” as employed herein can refer to either a discrete low powered display, or to a region of a strip of a low powered display that defines several such regions (i.e. several labels). The low powered displays may be, for example, zero-power liquid crystal displays, electronic paper or other suitable low powered displays which, after updating the display to display content data, use little to no power maintain the content data on the display.
As will be apparent from
In the illustrated embodiment, the apparatus 103 is deployed within the retail environment, and communicates with the server 101 (e.g. via the link 107) to navigate, autonomously or partially autonomously, along a length 119 of at least a portion of the shelf modules 110. The apparatus 103 is configured to navigate among the shelf modules 110, for example according to a frame of reference 102 established within the retail environment. The frame of reference 102 can also be referred to as a global frame of reference. The apparatus 103 is configured, during such navigation, to track the location of the apparatus 103 relative to the frame of reference 102. In other words, the apparatus 103 is configured to perform localization. The apparatus 103 is equipped with one or more navigation sensors, including but not limited to image sensors, depth sensors, as well as gyroscopes and/or accelerometers, enabling the apparatus 103 to navigate within the environment.
The apparatus 103 also includes an effector assembly 104 bearing a label modification unit, to be discussed in greater detail below. The apparatus 103 is configured, for example responsive to commands received from the server 101, to navigate among the shelf modules 110 and modify the above-mentioned labels on the shelf edges 118 with the effector assembly 104 and associated components. For example, certain labels may require periodic modification to reflect updated prices, reallocation of products 112 among the shelf modules 110, and the like. The server 101 includes a memory storing a repository 120 containing label modification data, for example in the form of a planogram indicating the locations (e.g. in the frame of reference 102) of each shelf module 110, as well as the location of each low powered display on each shelf module. Display locations may be expressed in the repository as a distance along a specified shelf edge 118 relative to a reference feature of the module 110, such as the boundary of the module 110 (e.g. the left side of the module 110). In particular, the display locations may represent the locations of a charging region of the low powered display (e.g. contacts for contact charging, or reception coils for wireless charging). The label modification data in the repository 120 can also contain further data defining each label, the content data (i.e. the content with which the display is to be updated), the product identifier corresponding to the label, and the like.
Turning now to
The apparatus 103 also includes components for controlling and interacting with the above components to modify labels on the shelf edges 118. Turning to
The memory 254 stores computer readable instructions for execution by the processor 250. In particular, the memory 254 stores a control application 258 which, when executed by the processor 250, configures the processor 250 to perform various functions discussed below in greater detail and related to the navigation of the apparatus 103 (e.g. by controlling the locomotive mechanism 204). The application 258 may also be implemented as a suite of distinct applications in other examples. The processor 250, when so configured by the execution of the application 258, may also be referred to as a controller 250. Those skilled in the art will appreciate that the functionality implemented by the processor 250 via the execution of the application 258 may also be implemented by one or more specially designed hardware and firmware components, such as field-configurable gate arrays (FPGAs), application-specific integrated circuits (ASICs) and the like in other embodiments.
The memory 254 also stores a repository 260 containing, for example, a map of the environment in which the apparatus 103 is deployed, for use in navigation among the shelf modules 110. The apparatus 103 may communicate with the server 101, for example to receive instructions to navigate to specified locations (e.g. to a given aisle consisting of a set of modules 110) and initiate label modification operations. Navigation to the specified module 110 is implemented by the apparatus 103 based in part on the above-mentioned map. The repository 260 can also contain label modification data (e.g. received from the server 101) for use in modifying the low powered displays on the shelf modules 110.
As shown in
The power supply 262 is configured to supply power to be transmitted to the low powered display during updates to the low powered display. The power supply 262 is therefore also coupled to the power transmitter 264. The power supply 262 may be configured to supply alternating current (AC) or direct current (DC) according to the type of current required by the power transmitter 264 to transmit power to the low powered display. The power transmitter 264 can be configured to transmit power from the power supply 262 to the low powered display via direct contact or wirelessly.
Referring to
The modification unit 216 further includes a radio transceiver 304 coupled to the processor 250. The processor 250 is configured to control the radio transceiver 304 to transmit content data extracted from the label modification data to the display 310. The display 310 includes a display radio 314 to receive the content data from the radio 304, via a near-field communication or another suitable low power wireless communication. The display radio 314 may be powered by the DC power received from the modification unit 216. In some examples, the power transmitter 264 can include a combiner or a multiplexer configured to combine or select signals from the power supply 262 and the content data from the processor 250. The power transmitter 264 can thus be configured to transmit both power and content data using the coil 302. In such implementations, the display 310 further includes a separator to separate the power and the content data.
Referring now to
The modification unit 216 further includes interface circuitry 364 configured to receive content data from the processor 250 and transmit the content data to the display 360 via the probes 352. In some implementations, the content data and the power may be transmitted via separate probes 352. In other implementations, the power transmitter 264 further includes a combiner configured to combine signals from the power supply 262 and the content data from the processor 250. The power transmitter 264 can thus be configured to transmit both power and content data over the same probes 352. In such implementations, the display 360 further includes a separator to separate the power and the content data.
Returning to
Returning to
The functionality of the apparatus 103, as implemented via execution of the application 258 by the processor 250 will now be described in greater detail, with reference to
At block 405, the apparatus 103 is configured to obtain label modification data. The label modification data can be obtained from the server 101 over the link 107 or via the dock 108. In other examples, the label modification data can be received from the client device 105. The label modification data defines at least one location in the facility for performance of a label modification operation, such as modification of a low powered display to replace previous label content at the location with new label content, writing of a label in a previously unlabeled location, or erasure of a previous label, without placement of a new label. In the present example, the locations are locations on the shelf edges 118 of the shelf modules 110. Further, in the present example, the locations are defined relative to a reference feature on the support structure. More specifically, each display location is defined as an offset distance along a shelf edge 118 of a shelf module 110. The offset distance is defined from a side of the module 110 (e.g. the leftmost side of the module 110, also referred to as the boundary of the module 110). In other examples, various other reference features can be employed to define the locations in the label modification data, such as machine-readable markers (e.g. physical features of the shelf, graphical indicators such as QR codes, or the like) along the shelf edges, ends of a shelf edge 118 within the boundaries of a module 110 (e.g. when a shelf edge 118 does not extend along the full length 119 of the module 110), and the like.
Turning briefly to
As shown above, for each label to be modified, a location is provided (defined by the module and shelf edge identifiers, as well as the offsets). The product identifiers can be employed by the apparatus 103 to retrieve information with which to generate the content data.
Returning to
Thus, the apparatus 103 is configured to navigate to a position at a predefined depth relative to the module 110, approximately half-way along the length 119 of the module 110, from which the effector assembly 104 can reach any portion of the shelf edges 118 of the module 110.
Returning to
The initial location is selected based on the known position (in the frame of reference 102) of the shelf edge 118 identified in the label modification data, as well as on the predetermined position to which the apparatus 103 navigated at block 410, and on a navigational error boundary. For example, the navigational error mentioned above may have been previously characterized as reaching a maximum of about 0.1 m. Further, the height of the apparatus 103 and of the first end 212 of the effector assembly 104 on the apparatus 103 are previously determined, as is the height of the shelf edge 118a identified in the label modification data shown above. In the present example, the reference feature is the boundary 516, and the apparatus 103 is therefore configured to control the effector assembly 104 to place the modification unit 216 at an initial location at the height of the shelf edge 118a, at a horizontal position adjacent to the boundary 516. As a result of the potential for a positional error of up to 0.1 m, the modification unit 216 may be placed at a distance parallel to the length 119 of about 0.85 m (half of the length 119 plus the maximum potential navigational error of 0.1 m).
At block 415 the apparatus 103 is configured to control the image sensor 270 to capture an image. As shown in
Referring to
As will now be understood by those skilled in the art, the position of the image sensor 270 is fixed relative to the position of the modification unit 216. The image sensor 270 need not be centered relative to the modification unit 216, but the position of the image sensor 270 relative to the center of the modification unit 216, and in particular, the power transmitter 264 is nevertheless predetermined. Therefore, the location of a reference feature in an image captured by the image sensor 270 indicates the position of the image sensor itself (and therefore the position of the modification unit 216 and the power transmitter 264) relative to the reference feature.
At block 425, the apparatus 103 is configured to control the effector assembly 104 to place the modification unit 216 at the next location defined in the label modification data. In other words, having established the position of the modification unit 216 relative to the reference feature following an affirmative determination at block 420, the apparatus 103 is configured to move the effector assembly 104 to place the modification unit 216 at the specified offset relative to the reference feature. Taking the label modification data of Table 1 as an example, at block 425 the effector assembly 104 is controlled to place the modification unit 150 mm to the right (in the orientation shown in
At block 430, the apparatus 103 is configured to modify a label at the location specified in the label modification data. The modification of a label at block 430 will be discussed in greater detail in connection with
At block 440, the apparatus 103 is configured to determine whether support structures other than the current support structure are identified in the label modification data and remain to be processed. In the example data shown in Table 1 above, only one module 110 is identified. In other examples, however, the label modification data can identify display locations on a plurality of distinct modules 110. When the determination at block 440 is affirmative, the apparatus 103 returns to block 410 to navigate to the next module 110 in the label modification data. As will now be apparent, during the performance of blocks 415 to 435, the apparatus 103 is configured to remain stationary relative to the current module 110. That is, although the effector assembly 104 and modification unit 216 move, the chassis 200 remains stationary relative to the module 110, thus mitigating or eliminating the accumulation of further navigational errors during the label modification process.
Turning now to
At block 705, having controlled the effector assembly 104 to place the modification unit 216 at the next location at block 425 as shown in
At block 710, the processor 250 can be configured to increment the location of the modification unit 216 based on the features detected at block 705. For example, when a partial display is detected in an image captured at block 705, the processor 250 is configured to increment the location of the modification unit 216, for example to center the modification unit 216 over the partially detected display, or to center the modification unit 216 over a charging region of the detected display, and to then capture a further image via the image sensor 270 and repeat the detection. The processor 250 may process the captured image(s) and adjust the modification unit 216 according to explicit predefined algorithms (e.g. if the detected display is too low, move the modification unit 216 down), based on neural network approaches, or a combination of the above.
For example, referring to
In particular, blocks 705 and 710 may be performed when the charging format is direct contact, and hence the modification unit 216, and in particular the power transmitter 264, are to be precisely located relative to the charging region of the low powered display. In other examples, the processor 250 can be configured to proceed directly to block 715. For example, the location stored in the label modification data may correspond to the offset of the charging region, and hence the modification unit 216 may be correctly positioned after having detected the reference feature.
In some examples, when wireless charging is employed, the modification unit 216 may be configured to transmit power to multiple displays simultaneously, hence a single charging region may be used for each of the multiple displays. The processor 250 can be configured determine an optimal charging location based on the display locations, for example based on machine learning algorithms or based on predetermined instructions (e.g. using a maximum threshold distance from each display). In other examples, the optimal charging location may be predetermined, and the location specified in the label modification data may be the optimal charging location for one or more displays.
Returning to
When employing wireless charging, the processor 250 is configured to control the power supply 262 to apply an alternating current to the coil 302 to generate a magnetic field. In some examples, the processor 250 can further be configured to extend the modification unit 216 towards the shelf edge 118a by a predetermined distance, or by controlling the image sensor 270 to capture one or more images and process the captured image(s) to detect the shelf edge 118a to bring the modification unit 216 closer to the display to increase the efficiency of power transmission by the generated magnetic field. In some examples, the generated magnetic field may be sufficiently large to power multiple low powered displays simultaneously.
For example, referring to
Returning to
At block 725, the processor 250 is configured to transmit content data to the display. For example, the processor 250 can control the radio 304 to communicate with a respective radio of the display to transmit the content data. In some examples, the processor 250 can control the radio 304 to communicate with multiple low powered displays for updating multiple display simultaneously. Referring again to
In other examples, when employing direct contact, the processor 250 can transmit the content data to the circuitry 354 to be sent to the low powered display via the probes 352. The content data can include, for example, clock data, content with which to update the display, and control instructions for updating the display.
At block 730, the processor 250 is configured to determine whether the display has been updated successfully. For example, after a predetermined length of time, the processor 250 can communicate via a wireless communication protocol to confirm that the display was updated successfully. If the processor 250 determines that the display was not updated successfully, the processor 250 is configured to repeat the performance of block 725. In some examples, the processor 250 may determine that multiple displays were successfully updated and record the updates, for example in the repository 260. Accordingly, at block 435, the processor 250 may skip displays for which the content was already modified. In other examples, the processor 250 can control the image sensor 270 to capture one or more images and process the image(s) to detect the content displayed on the low powered display. For example, the processor can detect a barcode or other label features to determine whether the display was updated successfully. When the determination at block 730 is affirmative, the processor is configured to proceed to block 735.
At block 735, having successfully updated the low powered display, the processor 250 is configured to control the power supply 262 to turn off the power and proceed to block 435 of the method 400. For example, the processor 250 can control the power supply 262 to stop supplying power to the power transmitter 264, and the effector assembly 104 to move the modification unit 216 away from the low powered display.
Variations to the above systems and methods are contemplated. For example, in some embodiments, the performance of block 410 of the method 400 includes only placement of the modification unit 216 at an initial location, without navigating to a support structure. In such embodiments, the apparatus 103 may lack a controllable locomotive mechanism, and may instead be moved to the support structure by an operator. Following arrival at the support structure, the operator may activate an input on the apparatus 103 to initiate the performance of block 410 (that is, the control of the modification unit 216).
In another embodiment, the low powered display can be configured to obtain the content data from the server 101, the client device 105, or another access point via a communication link 107. In particular, the low powered display can receive power from the modification unit 216 to power a communications interface to download the content data. Accordingly, the processor 250 can be configured to proceed directly from block 720 to block 730, without transmitting content data to the display.
In a further embodiment, the low powered display can be a smart label including one or more sensors to collect data for transmission to the label modification unit or to the server 101. In particular, at block 725, in addition to or instead of transmitting content data to the smart label, the label modification unit 216 may receive collected sensor data from the smart label. The modification unit 216 can store the collected sensor data in the repository 260 for further processing, such as subsequent transmission to the server 101. In other examples, upon receiving power from the modification unit 216 at block 715, the smart label can be configured to transmit the collected sensor data directly to the server 101, for example via the radio 314. More generally, the label modification unit can transmit power to and receive collected data from other types of sensors, including sensors which do not include label display applications or properties.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
5209712 | Ferri | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5408322 | Hsu et al. | Apr 1995 | A |
5414268 | McGee | May 1995 | A |
5534762 | Kim | Jul 1996 | A |
5566280 | Fukui et al. | Oct 1996 | A |
5704049 | Briechle | Dec 1997 | A |
5953055 | Huang et al. | Sep 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
6026376 | Kenney | Feb 2000 | A |
6034379 | Bunte et al. | Mar 2000 | A |
6075905 | Herman et al. | Jun 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6141293 | Amorai-Moriya et al. | Oct 2000 | A |
6304855 | Burke | Oct 2001 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6549825 | Kurata | Apr 2003 | B2 |
6580441 | Schileru-Key | Jun 2003 | B2 |
6711293 | Lowe | Mar 2004 | B1 |
6721723 | Gibson et al. | Apr 2004 | B1 |
6721769 | Rappaport et al. | Apr 2004 | B1 |
6836567 | Silver et al. | Dec 2004 | B1 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7090135 | Patel | Aug 2006 | B2 |
7137207 | Armstrong et al. | Nov 2006 | B2 |
7245558 | Willins et al. | Jul 2007 | B2 |
7248754 | Cato | Jul 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7373722 | Cooper et al. | May 2008 | B2 |
7474389 | Greenberg et al. | Jan 2009 | B2 |
7487595 | Armstrong et al. | Feb 2009 | B2 |
7493336 | Noonan | Feb 2009 | B2 |
7508794 | Feather et al. | Mar 2009 | B2 |
7527205 | Zhu et al. | May 2009 | B2 |
7605817 | Zhang et al. | Oct 2009 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7693757 | Zimmerman | Apr 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7751928 | Antony et al. | Jul 2010 | B1 |
7783383 | Eliuk et al. | Aug 2010 | B2 |
7839531 | Sugiyama | Nov 2010 | B2 |
7845560 | Emanuel et al. | Dec 2010 | B2 |
7885865 | Benson et al. | Feb 2011 | B2 |
7925114 | Mai et al. | Apr 2011 | B2 |
7957998 | Riley et al. | Jun 2011 | B2 |
7996179 | Lee et al. | Aug 2011 | B2 |
8009864 | Linaker et al. | Aug 2011 | B2 |
8049621 | Egan | Nov 2011 | B1 |
8091782 | Cato et al. | Jan 2012 | B2 |
8094902 | Crandall et al. | Jan 2012 | B2 |
8094937 | Teoh et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8189855 | Opalach et al. | May 2012 | B2 |
8199977 | Krishnaswamy et al. | Jun 2012 | B2 |
8207964 | Meadow et al. | Jun 2012 | B1 |
8233055 | Matsunaga et al. | Jul 2012 | B2 |
8260742 | Cognigni et al. | Sep 2012 | B2 |
8265895 | Willins et al. | Sep 2012 | B2 |
8277396 | Scott et al. | Oct 2012 | B2 |
8284988 | Sones et al. | Oct 2012 | B2 |
8423431 | Rouaix et al. | Apr 2013 | B1 |
8429004 | Hamilton et al. | Apr 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8479996 | Barkan et al. | Jul 2013 | B2 |
8520067 | Ersue | Aug 2013 | B2 |
8542252 | Perez et al. | Sep 2013 | B2 |
8571314 | Tao et al. | Oct 2013 | B2 |
8599303 | Stettner | Dec 2013 | B2 |
8630924 | Groenevelt et al. | Jan 2014 | B2 |
8660338 | Ma et al. | Feb 2014 | B2 |
8743176 | Stettner et al. | Jun 2014 | B2 |
8757479 | Clark et al. | Jun 2014 | B2 |
8812226 | Zeng | Aug 2014 | B2 |
8923893 | Austin et al. | Dec 2014 | B2 |
8939369 | Olmstead et al. | Jan 2015 | B2 |
8954188 | Sullivan et al. | Feb 2015 | B2 |
8958911 | Wong et al. | Feb 2015 | B2 |
8971637 | Rivard | Mar 2015 | B1 |
8989342 | Liesenfelt et al. | Mar 2015 | B2 |
9007601 | Steffey et al. | Apr 2015 | B2 |
9037287 | Grauberger et al. | May 2015 | B1 |
9064394 | Trundle | Jun 2015 | B1 |
9070285 | Ramu et al. | Jun 2015 | B1 |
9072929 | Rush et al. | Jul 2015 | B1 |
9120622 | Elazary et al. | Sep 2015 | B1 |
9129277 | MacIntosh | Sep 2015 | B2 |
9135491 | Morandi et al. | Sep 2015 | B2 |
9159047 | Winkel | Oct 2015 | B2 |
9171442 | Clements | Oct 2015 | B2 |
9247211 | Zhang et al. | Jan 2016 | B2 |
9329269 | Zeng | May 2016 | B2 |
9349076 | Liu et al. | May 2016 | B1 |
9367831 | Besehanic | Jun 2016 | B1 |
9380222 | Clayton et al. | Jun 2016 | B2 |
9396554 | Williams et al. | Jul 2016 | B2 |
9400170 | Steffey | Jul 2016 | B2 |
9424482 | Patel et al. | Aug 2016 | B2 |
9517767 | Kentley et al. | Dec 2016 | B1 |
9542746 | Wu et al. | Jan 2017 | B2 |
9549125 | Goyal et al. | Jan 2017 | B1 |
9562971 | Shenkar et al. | Feb 2017 | B2 |
9565400 | Curlander et al. | Feb 2017 | B1 |
9589353 | Mueller-Fischer et al. | Mar 2017 | B2 |
9600731 | Yasunaga et al. | Mar 2017 | B2 |
9600892 | Patel et al. | Mar 2017 | B2 |
9612123 | Levinson et al. | Apr 2017 | B1 |
9639935 | Douady-Pleven et al. | May 2017 | B1 |
9697429 | Patel et al. | Jul 2017 | B2 |
9766074 | Roumeliotis et al. | Sep 2017 | B2 |
9778388 | Connor | Oct 2017 | B1 |
9779205 | Namir | Oct 2017 | B2 |
9791862 | Connor | Oct 2017 | B1 |
9805240 | Zheng et al. | Oct 2017 | B1 |
9811754 | Schwartz | Nov 2017 | B2 |
9827683 | Hance et al. | Nov 2017 | B1 |
9880009 | Bell | Jan 2018 | B2 |
9928708 | Lin et al. | Mar 2018 | B2 |
9953420 | Wolski et al. | Apr 2018 | B2 |
9980009 | Jiang et al. | May 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996818 | Ren et al. | Jun 2018 | B1 |
10019803 | Venable et al. | Jul 2018 | B2 |
10111646 | Nycz et al. | Oct 2018 | B2 |
10121072 | Kekatpure | Nov 2018 | B1 |
10127438 | Fisher et al. | Nov 2018 | B1 |
10197400 | Jesudason et al. | Feb 2019 | B2 |
10210603 | Venable et al. | Feb 2019 | B2 |
10229386 | Thomas | Mar 2019 | B2 |
10248653 | Blassin et al. | Apr 2019 | B2 |
10262294 | Hahn et al. | Apr 2019 | B1 |
10265871 | Hance et al. | Apr 2019 | B2 |
10289990 | Rizzolo et al. | May 2019 | B2 |
10336543 | Sills et al. | Jul 2019 | B1 |
10349031 | Deluca | Jul 2019 | B2 |
10352689 | Brown et al. | Jul 2019 | B2 |
10373116 | Medina et al. | Aug 2019 | B2 |
10394244 | Song et al. | Aug 2019 | B2 |
10552938 | Morphet | Feb 2020 | B2 |
20010031069 | Kondo et al. | Oct 2001 | A1 |
20010041948 | Ross et al. | Nov 2001 | A1 |
20020006231 | Jayant et al. | Jan 2002 | A1 |
20020059202 | Hadzikadic et al. | May 2002 | A1 |
20020097439 | Braica | Jul 2002 | A1 |
20020146170 | Rom | Oct 2002 | A1 |
20020158453 | Levine | Oct 2002 | A1 |
20020164236 | Fukuhara et al. | Nov 2002 | A1 |
20030003925 | Suzuki | Jan 2003 | A1 |
20030094494 | Blanford et al. | May 2003 | A1 |
20030174891 | Wenzel et al. | Sep 2003 | A1 |
20040021313 | Gardner et al. | Feb 2004 | A1 |
20040084527 | Bong et al. | May 2004 | A1 |
20040131278 | Imagawa et al. | Jul 2004 | A1 |
20040240754 | Smith et al. | Dec 2004 | A1 |
20050016004 | Armstrong et al. | Jan 2005 | A1 |
20050114059 | Chang et al. | May 2005 | A1 |
20050174351 | Chang | Aug 2005 | A1 |
20050213082 | Dibernardo et al. | Sep 2005 | A1 |
20050213109 | Schell et al. | Sep 2005 | A1 |
20060032915 | Schwartz | Feb 2006 | A1 |
20060045325 | Zavadsky et al. | Mar 2006 | A1 |
20060106742 | Bochicchio et al. | May 2006 | A1 |
20060279527 | Zehner et al. | Dec 2006 | A1 |
20060285486 | Roberts et al. | Dec 2006 | A1 |
20070036398 | Chen | Feb 2007 | A1 |
20070074410 | Armstrong et al. | Apr 2007 | A1 |
20070272732 | Hindmon | Nov 2007 | A1 |
20080002866 | Fujiwara | Jan 2008 | A1 |
20080025565 | Zhang et al. | Jan 2008 | A1 |
20080027591 | Lenser et al. | Jan 2008 | A1 |
20080077511 | Zimmerman | Mar 2008 | A1 |
20080159634 | Sharma et al. | Jul 2008 | A1 |
20080164310 | Dupuy et al. | Jul 2008 | A1 |
20080175513 | Lai et al. | Jul 2008 | A1 |
20080181529 | Michel et al. | Jul 2008 | A1 |
20080183730 | Enga | Jul 2008 | A1 |
20080238919 | Pack | Oct 2008 | A1 |
20080294487 | Nasser | Nov 2008 | A1 |
20090009123 | Skaff | Jan 2009 | A1 |
20090024353 | Lee et al. | Jan 2009 | A1 |
20090057411 | Madej et al. | Mar 2009 | A1 |
20090059270 | Opalach et al. | Mar 2009 | A1 |
20090060349 | Linaker et al. | Mar 2009 | A1 |
20090063306 | Fano et al. | Mar 2009 | A1 |
20090063307 | Groenovelt et al. | Mar 2009 | A1 |
20090074303 | Filimonova et al. | Mar 2009 | A1 |
20090088975 | Sato et al. | Apr 2009 | A1 |
20090103773 | Wheeler et al. | Apr 2009 | A1 |
20090125350 | Lessing et al. | May 2009 | A1 |
20090125535 | Basso et al. | May 2009 | A1 |
20090152391 | McWhirk | Jun 2009 | A1 |
20090160975 | Kwan | Jun 2009 | A1 |
20090192921 | Hicks | Jul 2009 | A1 |
20090206161 | Olmstead | Aug 2009 | A1 |
20090236155 | Skaff | Sep 2009 | A1 |
20090252437 | Li et al. | Oct 2009 | A1 |
20090287587 | Bloebaum et al. | Nov 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20100017407 | Beniyama et al. | Jan 2010 | A1 |
20100026804 | Tanizaki et al. | Feb 2010 | A1 |
20100070365 | Siotia et al. | Mar 2010 | A1 |
20100082194 | Yabushita et al. | Apr 2010 | A1 |
20100091094 | Sekowski | Apr 2010 | A1 |
20100118116 | Tomasz et al. | May 2010 | A1 |
20100131234 | Stewart et al. | May 2010 | A1 |
20100141806 | Uemura et al. | Jun 2010 | A1 |
20100161569 | Schreter | Jun 2010 | A1 |
20100171826 | Hamilton et al. | Jul 2010 | A1 |
20100208039 | Setettner | Aug 2010 | A1 |
20100214873 | Somasundaram et al. | Aug 2010 | A1 |
20100235033 | Yamamoto et al. | Sep 2010 | A1 |
20100241289 | Sandberg | Sep 2010 | A1 |
20100257149 | Cognigni et al. | Oct 2010 | A1 |
20100295850 | Katz et al. | Nov 2010 | A1 |
20100315412 | Sinha et al. | Dec 2010 | A1 |
20100326939 | Clark et al. | Dec 2010 | A1 |
20110047636 | Stachon et al. | Feb 2011 | A1 |
20110052043 | Hyung et al. | Mar 2011 | A1 |
20110093306 | Nielsen et al. | Apr 2011 | A1 |
20110137527 | Simon et al. | Jun 2011 | A1 |
20110168774 | Magal | Jul 2011 | A1 |
20110172875 | Gibbs | Jul 2011 | A1 |
20110216063 | Hayes | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110246503 | Bender et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110288816 | Thierman | Nov 2011 | A1 |
20110310088 | Adabala et al. | Dec 2011 | A1 |
20120017028 | Tsirkin | Jan 2012 | A1 |
20120019393 | Wolinsky et al. | Jan 2012 | A1 |
20120022913 | Volkmann et al. | Jan 2012 | A1 |
20120051730 | Cote et al. | Mar 2012 | A1 |
20120069051 | Hagbi et al. | Mar 2012 | A1 |
20120075342 | Choubassi et al. | Mar 2012 | A1 |
20120133639 | Kopf et al. | May 2012 | A1 |
20120307108 | Forutanpour | Jun 2012 | A1 |
20120169530 | Padmanabhan et al. | Jul 2012 | A1 |
20120179621 | Moir et al. | Jul 2012 | A1 |
20120185112 | Sung et al. | Jul 2012 | A1 |
20120194644 | Newcombe et al. | Aug 2012 | A1 |
20120197439 | Wang | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120201466 | Funayama et al. | Aug 2012 | A1 |
20120209553 | Doytchinov et al. | Aug 2012 | A1 |
20120236119 | Rhee et al. | Sep 2012 | A1 |
20120249802 | Taylor | Oct 2012 | A1 |
20120250978 | Taylor | Oct 2012 | A1 |
20120269383 | Bobbitt et al. | Oct 2012 | A1 |
20120287249 | Choo et al. | Nov 2012 | A1 |
20120323620 | Hofman et al. | Dec 2012 | A1 |
20130030700 | Miller et al. | Jan 2013 | A1 |
20130076586 | Karhuketo et al. | Mar 2013 | A1 |
20130090881 | Janardhanan et al. | Apr 2013 | A1 |
20130119138 | Winkel | May 2013 | A1 |
20130132913 | Fu et al. | May 2013 | A1 |
20130134178 | Lu | May 2013 | A1 |
20130138246 | Gutmann et al. | May 2013 | A1 |
20130142421 | Silver et al. | Jun 2013 | A1 |
20130144565 | Miller | Jun 2013 | A1 |
20130154802 | O'Haire et al. | Jun 2013 | A1 |
20130156292 | Chang et al. | Jun 2013 | A1 |
20130162806 | Ding et al. | Jun 2013 | A1 |
20130176398 | Bonner et al. | Jul 2013 | A1 |
20130178227 | Vartanian et al. | Jul 2013 | A1 |
20130182114 | Zhang et al. | Jul 2013 | A1 |
20130226344 | Wong et al. | Aug 2013 | A1 |
20130228620 | Ahem et al. | Sep 2013 | A1 |
20130232039 | Jackson et al. | Sep 2013 | A1 |
20130235165 | Gharib et al. | Sep 2013 | A1 |
20130235206 | Smith et al. | Sep 2013 | A1 |
20130236089 | Litvak et al. | Sep 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130299306 | Jiang et al. | Nov 2013 | A1 |
20130299313 | Baek, IV et al. | Nov 2013 | A1 |
20130300729 | Grimaud | Nov 2013 | A1 |
20130303193 | Dharwada et al. | Nov 2013 | A1 |
20130321418 | Kirk | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130341400 | Lancaster-Larocque | Dec 2013 | A1 |
20140002597 | Taguchi et al. | Jan 2014 | A1 |
20140003655 | Gopalkrishnan et al. | Jan 2014 | A1 |
20140003727 | Lortz et al. | Jan 2014 | A1 |
20140006229 | Birch et al. | Jan 2014 | A1 |
20140016832 | Kong et al. | Jan 2014 | A1 |
20140019311 | Tanaka | Jan 2014 | A1 |
20140025201 | Ryu et al. | Jan 2014 | A1 |
20140028837 | Gao et al. | Jan 2014 | A1 |
20140047342 | Breternitz et al. | Feb 2014 | A1 |
20140049616 | Stettner | Feb 2014 | A1 |
20140052555 | MacIntosh | Feb 2014 | A1 |
20140086483 | Zhang et al. | Mar 2014 | A1 |
20140098094 | Neumann et al. | Apr 2014 | A1 |
20140100813 | Shaowering | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140129027 | Schnittman | May 2014 | A1 |
20140156133 | Cullinane et al. | Jun 2014 | A1 |
20140161359 | Magri et al. | Jun 2014 | A1 |
20140192050 | Qiu et al. | Jul 2014 | A1 |
20140195374 | Bassemir et al. | Jul 2014 | A1 |
20140214547 | Signorelli et al. | Jul 2014 | A1 |
20140214600 | Argue et al. | Jul 2014 | A1 |
20140267614 | Ding et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140277691 | Jacobus et al. | Sep 2014 | A1 |
20140277692 | Buzan et al. | Sep 2014 | A1 |
20140279294 | Field-Darragh et al. | Sep 2014 | A1 |
20140300637 | Fan et al. | Oct 2014 | A1 |
20140316875 | Tkachenko et al. | Oct 2014 | A1 |
20140330835 | Boyer | Nov 2014 | A1 |
20140344401 | Varney et al. | Nov 2014 | A1 |
20140351073 | Murphy et al. | Nov 2014 | A1 |
20140369607 | Patel et al. | Dec 2014 | A1 |
20150015602 | Beaudoin | Jan 2015 | A1 |
20150019391 | Kumar et al. | Jan 2015 | A1 |
20150029339 | Kobres et al. | Jan 2015 | A1 |
20150032304 | Nakamura et al. | Jan 2015 | A1 |
20150039458 | Reid | Feb 2015 | A1 |
20150088618 | Basir et al. | Mar 2015 | A1 |
20150088701 | Desmarais et al. | Mar 2015 | A1 |
20150088703 | Yan | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150106403 | Haverinen et al. | Apr 2015 | A1 |
20150117788 | Patel et al. | Apr 2015 | A1 |
20150139010 | Jeong et al. | May 2015 | A1 |
20150154467 | Feng et al. | Jun 2015 | A1 |
20150161793 | Takahashi | Jun 2015 | A1 |
20150170256 | Pettyjohn et al. | Jun 2015 | A1 |
20150181198 | Baele et al. | Jun 2015 | A1 |
20150212521 | Pack et al. | Jul 2015 | A1 |
20150235157 | Avegliano et al. | Aug 2015 | A1 |
20150245358 | Schmidt | Aug 2015 | A1 |
20150262116 | Katircioglu et al. | Sep 2015 | A1 |
20150279035 | Wolski et al. | Oct 2015 | A1 |
20150298317 | Wang et al. | Oct 2015 | A1 |
20150310601 | Rodriguez et al. | Oct 2015 | A1 |
20150332368 | Vartiainen et al. | Nov 2015 | A1 |
20150352721 | Wicks et al. | Dec 2015 | A1 |
20150363625 | Wu et al. | Dec 2015 | A1 |
20150363758 | Wu et al. | Dec 2015 | A1 |
20150365660 | Wu et al. | Dec 2015 | A1 |
20150379704 | Chandrasekar et al. | Dec 2015 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160044862 | Kocer | Feb 2016 | A1 |
20160061591 | Pangrazio et al. | Mar 2016 | A1 |
20160070981 | Sasaki et al. | Mar 2016 | A1 |
20160092943 | Vigier et al. | Mar 2016 | A1 |
20160012588 | Taguchi et al. | Apr 2016 | A1 |
20160104041 | Bowers et al. | Apr 2016 | A1 |
20160107690 | Oyama et al. | Apr 2016 | A1 |
20160112628 | Super et al. | Apr 2016 | A1 |
20160114488 | Mascorro Medina et al. | Apr 2016 | A1 |
20160129592 | Saboo et al. | May 2016 | A1 |
20160132815 | Itoko et al. | May 2016 | A1 |
20160150217 | Popov | May 2016 | A1 |
20160156898 | Ren et al. | Jun 2016 | A1 |
20160163067 | Williams et al. | Jun 2016 | A1 |
20160171336 | Schwartz | Jun 2016 | A1 |
20160171429 | Schwartz | Jun 2016 | A1 |
20160171707 | Schwartz | Jun 2016 | A1 |
20160185347 | Lefevre et al. | Jun 2016 | A1 |
20160191759 | Somanath et al. | Jun 2016 | A1 |
20160224927 | Pettersson | Aug 2016 | A1 |
20160253735 | Scudillo et al. | Sep 2016 | A1 |
20160253844 | Petrovskaya et al. | Sep 2016 | A1 |
20160260054 | High et al. | Sep 2016 | A1 |
20160271795 | Vicenti | Sep 2016 | A1 |
20160313133 | Zeng et al. | Oct 2016 | A1 |
20160328618 | Patel et al. | Nov 2016 | A1 |
20160328767 | Bonner et al. | Nov 2016 | A1 |
20160353099 | Thomson et al. | Dec 2016 | A1 |
20160364634 | Davis et al. | Dec 2016 | A1 |
20170004649 | Collet Romea et al. | Jan 2017 | A1 |
20170011281 | Dijkman et al. | Jan 2017 | A1 |
20170011308 | Sun et al. | Jan 2017 | A1 |
20170032311 | Rizzolo et al. | Feb 2017 | A1 |
20170041553 | Cao et al. | Feb 2017 | A1 |
20170054965 | Raab et al. | Feb 2017 | A1 |
20170066459 | Singh | Mar 2017 | A1 |
20170074659 | Giurgiu et al. | Mar 2017 | A1 |
20170109940 | Guo et al. | Apr 2017 | A1 |
20170147966 | Aversa et al. | May 2017 | A1 |
20170150129 | Pangrazio | May 2017 | A1 |
20170178060 | Schwartz | Jun 2017 | A1 |
20170193434 | Shah et al. | Jul 2017 | A1 |
20170219338 | Brown et al. | Aug 2017 | A1 |
20170219353 | Alesiani | Aug 2017 | A1 |
20170227645 | Swope et al. | Aug 2017 | A1 |
20170227647 | Baik | Aug 2017 | A1 |
20170228885 | Baumgartner | Aug 2017 | A1 |
20170261993 | Venable et al. | Sep 2017 | A1 |
20170262724 | Wu et al. | Sep 2017 | A1 |
20170280125 | Brown et al. | Sep 2017 | A1 |
20170286773 | Skaff et al. | Oct 2017 | A1 |
20170286901 | Skaff et al. | Oct 2017 | A1 |
20170323253 | Enssle | Nov 2017 | A1 |
20170323376 | Glaser et al. | Nov 2017 | A1 |
20170337508 | Bogolea et al. | Nov 2017 | A1 |
20180001481 | Shah et al. | Jan 2018 | A1 |
20180005035 | Bogolea et al. | Jan 2018 | A1 |
20180005176 | Williams et al. | Jan 2018 | A1 |
20180020145 | Kotfis et al. | Jan 2018 | A1 |
20180051991 | Hong | Feb 2018 | A1 |
20180053091 | Savvides et al. | Feb 2018 | A1 |
20180053305 | Gu et al. | Feb 2018 | A1 |
20180075403 | Mascorro Medina et al. | Mar 2018 | A1 |
20180089613 | Chen et al. | Mar 2018 | A1 |
20180101813 | Paat | Apr 2018 | A1 |
20180108134 | Venable et al. | Apr 2018 | A1 |
20180114183 | Howell | Apr 2018 | A1 |
20180130011 | Jacobsson | May 2018 | A1 |
20180143003 | Clayton et al. | May 2018 | A1 |
20180174325 | Fu et al. | Jun 2018 | A1 |
20180190160 | Bryan et al. | Jul 2018 | A1 |
20180201423 | Drzewiecki et al. | Jul 2018 | A1 |
20180204111 | Zadeh et al. | Jul 2018 | A1 |
20180251253 | Taira et al. | Sep 2018 | A1 |
20180276596 | Murthy et al. | Sep 2018 | A1 |
20180281191 | Sinyayskiy et al. | Oct 2018 | A1 |
20180293442 | Fridental et al. | Oct 2018 | A1 |
20180293543 | Tiwari | Oct 2018 | A1 |
20180306958 | Goss et al. | Oct 2018 | A1 |
20180313956 | Rzeszutek et al. | Nov 2018 | A1 |
20180314260 | Jen et al. | Nov 2018 | A1 |
20180314908 | Lam | Nov 2018 | A1 |
20180315007 | Kingsford et al. | Nov 2018 | A1 |
20180315065 | Zhang et al. | Nov 2018 | A1 |
20180315173 | Phan et al. | Nov 2018 | A1 |
20180315865 | Haist et al. | Nov 2018 | A1 |
20180370727 | Hance et al. | Dec 2018 | A1 |
20190057588 | Savvides et al. | Feb 2019 | A1 |
20190065861 | Savvides et al. | Feb 2019 | A1 |
20190073554 | Rzeszutek | Mar 2019 | A1 |
20190073559 | Rzeszutek et al. | Mar 2019 | A1 |
20190073627 | Nakdimon et al. | Mar 2019 | A1 |
20190077015 | Shibasaki | Mar 2019 | A1 |
20190087663 | Yamazaki et al. | Mar 2019 | A1 |
20190094876 | Moore et al. | Mar 2019 | A1 |
20190108606 | Komiyama | Apr 2019 | A1 |
20190178436 | Mao et al. | Jun 2019 | A1 |
20190180150 | Taylor et al. | Jun 2019 | A1 |
20190197728 | Yamao | Jun 2019 | A1 |
20190236530 | Cantrell et al. | Aug 2019 | A1 |
20190304132 | Yoda et al. | Oct 2019 | A1 |
20190392212 | Sawhney et al. | Dec 2019 | A1 |
20200314333 | Liang et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2835830 | Nov 2012 | CA |
3028156 | Jan 2018 | CA |
104200086 | Dec 2014 | CN |
107067382 | Aug 2017 | CN |
766098 | Apr 1997 | EP |
1311993 | May 2007 | EP |
2309378 | Apr 2011 | EP |
2439487 | Apr 2012 | EP |
2472475 | Jul 2012 | EP |
2562688 | Feb 2013 | EP |
2662831 | Nov 2013 | EP |
2693362 | Feb 2014 | EP |
2323238 | Sep 1998 | GB |
2330265 | Apr 1999 | GB |
2014170431 | Sep 2014 | JP |
101234798 | Jan 2009 | KR |
1020190031431 | Mar 2019 | KR |
WO 9923600 | May 1999 | WO |
WO 2003002935 | Jan 2003 | WO |
WO 2003025805 | Mar 2003 | WO |
WO 2006136958 | Dec 2006 | WO |
WO 2007042251 | Apr 2007 | WO |
WO 2008057504 | May 2008 | WO |
WO 2008154611 | Dec 2008 | WO |
WO 2012103199 | Aug 2012 | WO |
WO 2012103202 | Aug 2012 | WO |
WO 2012154801 | Nov 2012 | WO |
WO 2013165674 | Nov 2013 | WO |
WO 2014066422 | May 2014 | WO |
WO 2014092552 | Jun 2014 | WO |
WO 2014181323 | Nov 2014 | WO |
WO 2015127503 | Sep 2015 | WO |
WO 2016020038 | Feb 2016 | WO |
WO 2018018007 | Jan 2018 | WO |
WO 2018204308 | Nov 2018 | WO |
WO 2018204342 | Nov 2018 | WO |
WO 2019023249 | Jan 2019 | WO |
Entry |
---|
Ross Horrigan, “Industry Solutio: 3D visions helps robots apply label to produce”; 14 pages (Year: 2015). |
International Search Report and Written Opinion for International Application No. PCT/US2019/051312 dated Nov. 15, 2019. |
Meyersohn. Walmart turns to robots and apps in stores, Dec. 7, 2018, retrieved from the Internet at <URL:https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom-store/index.html> on Oct. 29, 2019. |
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017. |
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010. |
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970. |
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/Rsj International Conference on Intelligent robots and Systems, Nov. 2013, pgs. 176-. |
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009). |
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, oct. 2013) (Year: 2013). |
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333. |
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US pp. 243-258, 551. |
Puwwin, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks”,in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011. |
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php. |
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php]. |
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981). |
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation-A Survery of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009). |
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook)20100903_draft.pdf]. |
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint”,International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2005): 248-253. |
Trevor et al., “Tables, Counter, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=pdf. |
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013). |
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference On, IEEE, Piscataway, NJ pp. 3465-2459 (Aug. 23, 2010). |
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9. |
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014. |
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2005). |
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, Pp. 90-99 (2010). |
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (2017-06-21). |
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221. |
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328. |
Kaimo Lin et al., “Seagull: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publishillinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf]. |
Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346. |
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013. |
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, EE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010). |
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984. |
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009. |
Hackel et al., “Contour Detection in unstructured 3D point clouds,”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 19. |
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016). |
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013). |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017. |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/U52013/070996 dated Apr. 2, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/U52020/028183 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020. |
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n. 3, Mar. 2016)(Year: 2016). |
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578. |
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121. |
Kay et al. “Ray Tracing Complex Scenes.” ACM Siggraph Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986. |
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013). |
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-S/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada. |
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008). |
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM Siggraph Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985. |
Li et al., “An improved Ransac for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017). |
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009). |
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 37, 2010, pp. 300-307. |
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011). |
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328. |
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25. |
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 19, pp. 1-20 (2016). |
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641. |
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014. |
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016. |
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016. |
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017. |
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc. |
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn. |
“Swift Dimension” Trademark Omniplanar, Copyright 2014. |
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006. |
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641. |
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8. |
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012. |
Bohm, Multi-Image Fusion for Occlusion-Free Fagade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004). |
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114. |
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700. |
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013. |
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE. |
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017). |
Cook et al., “Distributed Ray Tracing ACM SIGGRAPH Computer Graphics”, vol. 18, No. 3, ACM pp. 137-145, 1984. |
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009. |
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France. |
Douillard, Bertrand, et al. “On the segmentation of 3D Lidar point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011. |
Dubois, M., et al., “A comparison of geometric and energy-based point cloud semantic segmentation methods,” European Conference on Mobile Robots (ECMR), pp. 88-93, 2527, Sep. 2013. |
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972). |
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178. |
Number | Date | Country | |
---|---|---|---|
20200147802 A1 | May 2020 | US |