1. Field of the Invention
This invention relates to an apparatus to be embedded within a precast concrete panel or slab to enable the panel to be lifted, laid upon a road bed, raised above the road bed and leveled with respect to adjacent panels. The apparatus has particular application in roadway construction and/or repair where several panels must be laid end-to-end and side-by-side one another.
2. Background Art
As new communities are built, it is essential to have a roadway system to link each community with neighboring communities. Therefore, a series of highways and freeways are constructed to support vehicular traffic. A common technique for building such roadways is to lay a number of heavy precast concrete panels or slabs end-to-end and side-by-side one another. However, all of the panels must be level with respect to one another to establish a smooth and continuous driving surface.
The foregoing is typically accomplished by grading the road bed upon which each concrete panel will be laid. The process of grading requires the availability and deployment of road grading machinery and the manpower to operate the machinery. Where an existing roadway is being repaired and replaced, the road work usually occurs at night and requires that the roadway be closed to traffic. In this case, the new concrete panels must be installed quickly so that the repaired roadway can reopen the next morning. However, having to first grade the road bed before the panels can be laid adds to the labor force, raises the corresponding construction costs, and increases the time necessary to complete the job. What is even more, the completion time is further increased, because convenient lifting points are not readily available by which to lift and position the conventional concrete panel on the road bed.
In general terms, a lifting apparatus is disclosed to be embedded within a precast concrete panel or slab to enable the panel to be lifted off its transport, laid upon an ungraded road bed, and leveled with respect to adjacent panels that are employed during the construction and/or repair of a roadway. In accordance with the preferred embodiment, a lifting apparatus is embedded at each corner of the concrete panel while the panel is being cast in order to establish convenient and reliable lifting points at which the panel is relatively quickly and easily lifted.
The lifting apparatus includes a flat base plate located at the bottom of the concrete panel. A short section of pipe stands upwardly from the base plate. The bottom of a threaded cylindrical sleeve which extends through the panel between the top and bottom thereof is removably received within the pipe so as to engage the base plate. A pair of retaining bars are bent around the sleeve to help anchor the sleeve in place within the precast panel. A threaded end cap is rotated into removable mating engagement with the top of the threaded cylindrical sleeve.
After the concrete panel has been transported to the work site, the end cap is removed from the cylindrical sleeve of the lifting apparatus. A hoisting cylinder having a hoist coupler pivotally connected thereto is positioned on top of the panel, and a threaded lifting bolt is inserted through the hoist cylinder and rotated into detachable connection with the threaded sleeve of the lifting apparatus. The hoist coupler and lifting bolt establish a lifting point at which a crane can engage and lift the panel from its means of transport for relocation atop the road bed so as to lie end-to-end and side-by-side adjacent panels. The crane is then detached from the lifting point, and the lifting bolt is rotated through the sleeve to push the base plate off the sleeve and against the road bed below the panel. The bolt is continuously advanced through the sleeve until the concrete panel is elevated and leveled relative to its adjacent panels. Next, a supply of grout or a similar filler is pumped below the concrete panel by way of grout tubes that run through the panel. The grout fills the space between the bottom of the panel and the ungraded road bed. The lifting bolt is detached from the sleeve, and the sleeve is filled with cement so that the concrete panel establishes a smooth and continuous roadway to support vehicular traffic.
Turning now to the drawings, details are provided of an apparatus having a dual function of enabling a concrete panel or slab to first be lifted and moved to a construction site and then elevated and leveled with respect to a surface upon which the concrete panel is laid. The lifting apparatus herein disclosed has particular application for use during roadway (e.g., freeway) construction and/or repair where a large number of heavy precast concrete panels must be laid end-to-end and side-by-side one another to create a smooth and continuous driveway over which automotive traffic will travel. However, it is to be understood that the apparatus and the method of using this invention are applicable to the construction of any flat surface to be produced by a series of panels or slabs that are manufactured from concrete or the like and are laid over a road bed or a similar support foundation that is typically irregular (i.e., ungraded) and covered with coarse material.
Referring initially to
A hollow cylindrical sleeve 9 is sized so that the bottom thereof is removably received within and surrounded by the upstanding pipe 5. The sleeve 9 has an ideal height of 15 to 17 cm. The sleeve 9 is seated upon the flat base plate 3 so as to be supported by and rise above the pipe 5. With the lifting apparatus 1 embedded in the concrete panel 30 of
A set of screw threads (15 in
After the concrete panel 30 has been manufactured and moved to a work site, the panel must be lifted off its transport and laid in place atop the road bed next to one or more adjacent panels. To accomplish the foregoing, and by way of a second application for the screw threads 15 inside the cylindrical sleeve 9, a threaded lifting bolt 24 is detachably connected to the threaded sleeve 9 of the lifting apparatus 1 that is embedded within the concrete panel 30 (best shown in
More particularly, and referring now to
With the hoisting cylinder 32 connected to the concrete panel 30 by means of the lifting bolt 24 being mated to the threaded sleeve 9 of the lifting apparatus 1 embedded within the panel, a crane 50 (of
After the concrete panel has been laid in place atop the road bed as shown in
As is best shown in
The greater the axial displacement of the lifting bolt 24 through the cylindrical sleeve 9, the higher the concrete panel 30 is lifted above the road bed. The elevation of each corner of the panel 30 is raised by a distance 55 (of
Once the concrete panel 30 has been elevated above the road bed as is necessary to create a level road surface, a urethane grout 40 or any other suitable filler is pumped down each of a series of grout tubes 42 that are embedded within the concrete panel 30 alongside the lifting apparatus 1. As is best shown in
After the pumping process has concluded, the concrete panel 30 has been leveled in the manner just described, and the grout 40 has hardened below the panel 30, the lifting bolt 24 is rotated out of and removed from the sleeve 9. Then, as shown in
Number | Name | Date | Kind |
---|---|---|---|
2772560 | Neptune | Dec 1956 | A |
3431012 | Courtois et al. | Mar 1969 | A |
3590538 | Holt | Jul 1971 | A |
3705469 | Eriksson | Dec 1972 | A |
4000591 | Courtois | Jan 1977 | A |
4017115 | Holt et al. | Apr 1977 | A |
4018470 | Tye | Apr 1977 | A |
4068879 | Torbet et al. | Jan 1978 | A |
4179151 | Tye | Dec 1979 | A |
4204711 | Lancelot et al. | May 1980 | A |
4290638 | Manning | Sep 1981 | A |
5242249 | Grayson | Sep 1993 | A |
6688808 | Lee | Feb 2004 | B2 |
Number | Date | Country |
---|---|---|
10037109 | Feb 1998 | JP |
2011117128 | Jun 2011 | JP |
20110043026 | Apr 2011 | KR |
2011043026 | Apr 2011 | KR |
Entry |
---|
2 Photographs taken Aug. 23, 2010 by Harper Pre-Cast Company during freeway construction of the I-215 East. |
Number | Date | Country | |
---|---|---|---|
20140053475 A1 | Feb 2014 | US |