This invention generally relates to the logging of subterranean wells. More particularly, the invention relates to the logging of such wells using a fiber optic line and fiber optic sensors.
Prior art logging systems have been deployed via electric wireline and via slickline. Wireline deployed logging systems are able to transmit the data collected by the logging tool real time through the electric line. Although wireline deployed logging systems are able to transmit data real time via the electrical wires, such systems require a grease injector in order to ensure that pressure from the wellbore does not escape around the wireline as it is inserted into a pressurized well during deployment and use. Grease injectors, however, are problematic instruments to use, since they require great care during maintenance and operation, have a tendency to leak under pressure and continual wear, and present an environmental hazard when such leaks occur. Moreover, wireline deployed logging systems are costly to deploy.
On the other hand, current slickline deployed lines are manufactured from solid wire and are not able to transmit the logging tool data real time to surface. Instead, slickline deployed logging systems use memory tools connected to the lower end of the line. In slickline memory logging, the slickline and battery-powered memory tools are lowered downhole on the end of the slickline and the memory tool is used to record the downhole logging tool data for subsequent download and collection at the surface once the tools are retrieved from the well. The advantages of slickline deployed systems are that they are much less costly and easier to deploy than wireline deployed systems, they can be run in the hole and out of the hole faster than braided wire, and they are easier to seal against well pressure at the well head.
Most of the logging tools deployed on wireline or slickline are electrically powered devices. Electrically powered devices include electronics that are very sensitive and that often become damaged in the hard environment of a subterranean wellbore. In addition, some logging tools are memory tools and/or include downhole batteries. It is often difficult to shield or protect these electrical components against the high temperatures and pressures commonly found in a wellbore, which high temperatures and pressures typically deteriorate and damage the electrical components of the tools.
Thus, there exists a continuing need for an arrangement and/or technique that addresses one or more of the problems that are stated above. In particular, the prior art would benefit from a logging system that has the capability of transmitting the logging tool data real time to surface, that is as economical and as easy to deploy as slickline deployed systems, and that does not include the detriments of electrically or battery powered devices.
Some embodiments of the invention include a system and method to log a wellbore, comprising a logging tool adapted to be deployed in a wellbore environment, the logging tool including at least one sensor for taking a measurement of the wellbore environment. The sensor is a fiber optic sensor and the system includes a fiber optic line in optical communication with the sensor. The data measured by the sensor is transmitted through the fiber optic line on a real time basis to the surface, where the data can be processed into a real time display. The fiber optic sensor can be a passive sensor not requiring electrical or battery power. In one embodiment, a continuous tube with one end at the earth's surface and the other end in the wellbore is attached to the logging tool and includes the fiber optic line disposed therein. In other embodiments, the fiber optic line is embedded within a slickline, a braided optical cable, or an electro optical cable.
Sensor 17 may include but are not necessarily limited to a pressure sensor 22, a flow sensor such as spinner 26, a chemical properly sensor 28, or a casing collar locator 30. Each sensor 17 collects its data, and a signal representative of the data is transmitted via the optical fiber 14. Sensors 17 may also include other fiber optic data gathering tools or sensors, including optical fluid analyzers, gamma ray tools, temperatures sensors, chemical property sensors, gyro tools, water detection sensors, gas detection sensors, oil detection sensors, acoustic sensors, differential pressure sensors, spectrometers, inclinometers, relative bearing sensors, distributed temperature sensors, distributed strain sensors, distributed pressure sensors, hydrophones, accelerometers, sonic tools, resistivity sensors, or induction sensors, to name a few.
In this application, the term “logging tool” is a tool that measures at least one parameter of the wellbore, wellbore environment, wellbore fluids, or formation (collectively referred to as “wellbore environment”). Likewise, the term “logging” is the taking of measurements of at least one parameter of the wellbore environment. Logging can occur while the tools are held stationary at a given depth or while the tools are moved up and down in the wellbore while simultaneously gathering data and transmitting the data to the surface through at least one optical fiber. It is understood that the term “logging tool” may include a plurality of sensors, each of which may measure a different parameter. In addition, a plurality of logging tools 12, which with at least one or a plurality of sensors 17, may also be used with some embodiments of this invention.
Sending information on a “real-time basis” or “in real time” refers to sending the information as measurements or other events are occurring. However, “real time” does not require that the information be sent immediately after collection—some delay (due to processing, storage, or other tasks) can occur between collection and transmission). Sending information in real time is distinguished from collecting information with a downhole tool in a well, storing the information in the downhole tool, retrieving the downhole tool to the well surface, and offloading the stored information from the tool to surface equipment.
In one embodiment, the fiber optic line 14 is disposed within a conduit 32, which may protect the fiber optic line 14 from the harsh wellbore fluids and environment. Conduit 32 also protects fiber optic line 14 from strain that may otherwise be induced during the deployment, logging and recovery operations of the tools and optic fiber tube. Logging tool 12, as well as sensors 17, may be attached to the conduit 32; therefore, the fiber optic lie 14 located within the conduit 32 does not bear the full weight of the logging tool 12. In one embodiment, conduit 32 is a small diameter tube, such as 3/16 inches, that has a wall thickness large enough to support the logging tool 12 in addition to the weight of the tube and optic fibers disposed therein. In another embodiment, conduit 32 is a coiled tubing string 37 (as shown in
In one embodiment, conduit 32 may be deployed on a reel such that the tube, optical fibers, and tools can be recovered a plurality of times from wells. The tools can subsequently be disconnected at surface, and the reel with the tube and optic fibers can thus be transported to other wells where tools can be reconnected to the tube and then re-deployed in a different well. In one embodiment, conduit 32 is a continuous tube that extends from the surface to the downhole logging tool(s) 12.
Wellhead 34 is located at the top of wellbore 5. Conduit 32 with fiber optic line 14 therein is passed through a stuffing box 36 or a packing assembly located on wellhead 34 as well as a lubricator 70. Stuffing box 36 provides a seal against conduit 32 so as to safely allow the deployment of logging system 12 even if wellbore 5 is pressurized.
Conduit 32 may be deployed from a reel 38 that may be located on a vehicle 40. Several pulleys 42 may be used to guide the conduit 32 from the reel 38 into the wellbore 5 though the stuffing box 36, lubricator 70, and wellhead 34. Based on the size of the conduit 32, deployment does not require a coiled tubing unit (if conduit 32 is not a coiled tubing or is not deployed within a coiled tubing) nor a large winch truck. Reel 38, in one example implementation, has a diameter of approximately 22 inches. Being able to use a smaller reel and vehicle than conventional coiled tubing reels and vehicles with electrical and braided wire deployment logging systems dramatically reduces the costs of the operation. In the embodiment using a coiled tubing string, reel 38 has a diameter appropriate to accommodate such coiled tubing and the deployment and recovery equipment is the same as that use with coiled tubing deployment and recovery.
Fiber optic line 14 is connected to an acquisition unit 44 that is normally located at the surface and may be located in the vehicle 40. Acquisition unit 44 receives the optical signals sent from the logging tool 12 through the fiber optic line 14. Acquisition unit 44, which would typically include a microprocessor and an opto-electronic unit, delivers the data (the optical signals) to a processor, which processes the data and enables the presentation of the data to a user at surface. Delivery to the user can be in the form of graphical display on a computer screen or a print out or the raw data transmitted from the logging tool 12. In another embodiment, acquisition unit 44 is a computer unit, such as a laptop computer, that plugs into the fiber optic line 14. In another embodiment, the data is transmitted at surface to a network, such as the Internet, and presented to users via a portion on the network. The surface acquisition unit 44 processes the optical signals or data from the downhole logging tools and optical fiber to provide the chosen data output to the operator. The processing can include data filtering and analysis to facilitate viewing of the data.
An optical slip ring (rotary connection) 39 is functionally attached to the reel 38 and enables the connection and dynamic optical communication between the fiber optic line 14 and the acquisition unit 44 while the reel is turning and running the tube into the well or pulling the tube out of the well. The optical slip ring 39 interfaces between the fiber optic line 14 that is turning with the reel and the stationary optic fiber at the surface. The slip ring 39 thus facilitates the transmission of the real tie optical data between the dynamically moving optic fiber inside the moving reel 38 and the stationary acquisition unit 44 at surface. In short, the slip ring 39 allows for the communication of optical data between a stationary optical fiber and a rotating optical fiber.
In one embodiment, a plurality of fiber optic lines 14 are disposed in conduit 32. The use of more than one fiber line 14 provides redundancy to the real time transmission of the data from the logging tool 12 to the surface, ability to use multiple logging tools, as well as increased optical power transmission to down hole tools and other device such as power sources. The use of more than one fiber optic line 14 also allows for both single and multimode optical fiber to be run.
In another embodiment as shown in
In another embodiment as shown in
In another embodiment as shown in
In one embodiment as shown in
In another embodiment (not shown), an optical transmitter may be located downhole. In this embodiment, the downhole optical transmitter sends the optical signals through the fiber optic line 14 and to the acquisition unit 44 depending on the measurements take by the tools. In this embodiment, the downhole optical transmitter may be linked to a downhole battery for power.
In one embodiment, modulator 48 may be a reflector, such as a mirror or fiber grating.
Sensor 17 may include a spinner 26, as shown in
In another embodiment, the modulator 48 on the disc 29 is omitted. Instead, a mirror is placed behind the disc 29 such that the disc 29 is interposed between the optical fiber 14 and the mirror. The disc 29 has one or more openings such that as the disc 29 rotates, an opening is intermittently aligned with the optical fiber 14 and the mirror to allow light from the optical fiber 14 to pass through the opening to the mirror and reflected light to pass through the opening from the mirror back to the optical fiber. This effectively provides a shutter effect, where the mirror is intermittently exposed to light from the optical fiber 14. The rotational speed of the disc 29 determines the frequency at which light is reflected from the mirror back to the optical fiber.
The FBG 119 shifts the reflected wavelength of the optical signal being sent downhole each time strain is applied to optical fiber 14. The wavelength shift is then detected at the surface by the acquisition unit 44, which information can be used to determine the revolutions per unit time of the blades 31, thereby enabling the determination of the flow rate of the fluid propelling the blades 31. Instead of using piezoelectric material 118, a piezoelectric coating may be applied to optical fiber 14 in order to supply the required strain. In this embodiment, the FBG 119 can be part of the modulator 48. Alternatively, a fiber interferometer may be used instead of an FBG.
Sensor 17 may also include a casing collar locator 30, as shown in
Alternatively, the modulator 48 of
Various other types of fiber optic measurement, sensing, and transmission techniques may be used with the system, depending on the type of sensor 17. For instance, chemical sensors may include fiber optic lines doped or coated with a particular reactant that reacts only when it comes into contact with a target fluid or chemical (such as sulfur, water, or hydrogen sulfide). The reaction of the reactant then causes a specific change on the fiber optic line 14 which in turn causes a specific change ion the optical signal being returned by the sensor 17 from the downhole environment to the surface through the fiber optic line 14 (such as a change in intensity, frequency, polarization state, or phase). Acquisition unit 44 receives this return optical signal and discerns the relevant information from the sensor 17 by identifying the specific change imparted by the sensor 17 on the return optical signal. Fiber optic pressure sensors function in similar ways.
The fiber optic line 14 also allows a distributed temperature measurement to be taken along the length of the fiber optic line 14 or the plurality of optic fiber lines disposed inside the conduit 32 (
It is noted that if more than one sensor 17 is used in the logging tool 12, the fiber optic line 14 may have to be split into a plurality of fiber optic lines, each being connected to a different sensor 17. Either wavelength division multiplexing (WDM) or time division multiplexing (TDM) may be used to interrogate the sensors 17 in this configuration. Optical couplers may also be used to facilitate this configuration. In another embodiment, a separate fiber optic line 14 is used for each sensor 17, with each fiber optic line 14 being disposed in the conduit 32.
In one embodiment, conduit 32, with fiber optic line 14 therein, may also be used to actuate downhole devices. Conduit 32 may be pressurized with a fluid, wherein the pressurized fluid actuates downhole tools such as a packer 50 or a perforating gun 52 (see
In another embodiment, the downhole tools described above may be activated by optical signals sent through the fiber optic line 14 (instead of pressure signals sent through the conduit 32). In this embodiment, the downhole tool is functionally connected to the fiber optic line 14 so that a specific optical signal frequency, signal, wavelength or intensity activates the downhole tool. A photovoltaic converter can be used to facilitate the reception of the optical signal and conversion of the optical signal into activation energy for downhole tools. Such photovoltaic converters can convert optical energy into electrical or even mechanical energy. In another related embodiment, the downhole tool is connected to a fiber optic line 14 that is not used for logging data transmission to the surface.
In another embodiment, pressure pulses through the conduit 32 and optical signals through a fiber optic line 14 can both be sent to activate the downhole tools. In one embodiment, pressure pulses through the conduit 32 and optical signals through a fiber optic line 14 can be sent simultaneously to activate different downhole tools. In another embodiment, data in the form of optical signals can be transmitted through the fiber optic line 14 at the same time pressure signals are transmitted through the conduit 32. In yet another embodiment, data in the form of optical signals and activation commands in the form of optical signals can be sent simultaneously through the fiber optic line 14.
The attached figures show the use of logging system 10 is a land well. However, logging system 10 can also be used in offshore wells on platforms or located subsea.
In operation and in relation to
The surface optical transmitter 20 sends an unmodulated signal to the logging tool 12. In the embodiment including a modulator 48, the modulator 48 modulates the signal so as to encode the data onto the signal that returns to the acquisition unit 44. In the embodiment not including a modulator 48, the sensor 17 reflects a return optical signal back to the acquisition unit 44 with the relevant measurement encoded therein. In either case, the data measured by the logging tool 12 is sent to the acquisition unit 44 in real time.
Logging tool 12 may be lowered so that spinner 26 and the other sensors 17 are adjacent perforations 54 and formation 57 so as to obtain accurate and real time data of the parameters adjacent to such perforations 54 and formation 57. In the embodiment in which the fiber optic line 14 is also used as a distributed temperature measurement system, the distributed temperature measurements may be used to approximately determine flow along the length of the wellbore 5 (including across different perforations), since flow acts to change the temperature along the wellbore and hence the fiber optic line 14. Furthermore, this inferred distributed flow profile along the well can subsequently be correlated with the spinner logging tool located on the lower end of the conduit 32. Using the distributed temperature measurement to approximately determine flow indicates to an operator which areas or perforations in the wellbore 5 should be correlated with the logging tool 12, such as by taking the real flow measurement using spinner 26. Casing collar locator 30 may be used to identify the location of casing collars and therefore determine the depth of the logging tool 12.
The downhole tools, such as packer 50 and perforating gun 52, may be activated at any point by way of pressure signals or hydraulically transmitted energy through the conduit 32 or optical signals through a fiber optic line 14. Having the ability to perforate a formation and then log the relevant formation in the same trip saves time and money.
Once the logging operation is completed, the logging tool 12 is raised by reversing reel 38. It is appreciated that reel 38 and the relative size of conduit 32 enables the repeated and simple deployment and retrieval of logging tool 12. Placing reel 38 on vehicle 40 or otherwise making the reel portable enables the logging system 10 to be used in multiple wellbores.
By use of an all-optical system (fiber optic transmission line 14 and sensors 17) in some embodiments, the detriments of electrical devices are avoided. This is particularly helpful in high-temperature, high-pressure wells, such conditions being extremely harsh on electrically powered devices. Compared to electrical tools, additional benefits of an all optical system include that optical tools are much less susceptible to shock or vibrations encountered during transportation to or deployment within a wellbore, optical tools are lighter, and optical tools may cost less. In other embodiments, both optical and electrical components are used.
According to another embodiment, a tracer injection tool 300 (shown in
The piston 318 is moveable along a longitudinal direction (indicated as L) of the tracer injection tool 300. A spring 320 applies a forces against the piston 318 to apply pressure against the tracer fluid within the chamber 312. Optionally, a port 322 is provided to enable outside wellbore pressure to be communicated into a chamber 324 in which the spring 320 is located. The outside wellbore pressure applies a hydrostatic pressure against the piston 318. The spring 320 is positioned between the piston 318 and a fixed wall 326.
In operation, in response to an optical signal transmitted down the optical fiber 302, the converter 304 converts the signal to cause the valve 306 to open to allow the tracer fluid in the channel 314 to flow out of the port 308 into the surrounding wellbore environment. The tracer injection tool 300 is lowered to a specific wellbore interval, at which point the valve 306 is opened to inject the tracer fluid into the wellbore fluid. This allows a well operator to track fluid flow within the wellbore.
A modified version of the tool shown in
Alternatively, a fiber optic sampler does not include a moveable piston as in the fiber optic sampler discussed above. Instead, the sampler includes a bottle or other chamber that contains a vacuum. When a valve controlled by an optical signal communicated down the optical fiber is opened, wellbore fluid rushes into the bottle, after which the valve can be closed.
According to another embodiment, a spectroscopy tool 400 includes an optical fiber 402 and a channel or chamber 404 that contains a fluid to be analyzed by use of spectroscopy. The optical fiber 402 has a first segment 404 that is coupled by a coupler 406 to a second optical fiber segment 408. The second optical fiber segment 408 is coupled to the fluid channel or chamber 404, and a third optical fiber segment 410 is coupled to the other side of the fluid channel or chamber 404. A delay element 412 is optionally provided in the third optical fiber segment 410 to provide some type of delay to light returning back to the surface.
In operation, incoming light is transmitted over the optical fiber 402 that is transferred from the optical fiber segment 404 to the second optical fiber segment 408. The incoming light passes through the fluid channel or chamber 404. Different types of fluid absorb or attenuate light at different wavelengths differently. After passing through the fluid channel or chamber 404, the attenuated or modulated light proceeds through the optical fiber segment 410, passes through the delay element 412 (if present) and is communicated through the coupler 406 back to the first optical fiber segment 404. The attenuated or modulated light is transmitted up the optical fiber 402 back to the surface.
In a different embodiment of a spectroscopy tool, shown in
In yet another embodiment, a refraction measurement tool is provided by placing an end of the optical fiber into a fluid. Light is transmitted through the optical fiber into the fluid. The amount of light reflected by the fluid is proportional to the index of refraction of the fluid in relation to the optical fiber or to an optical window in front of the optical fiber. The measured index of refraction provides an indication of the type of fluid (e.g. gas or liquid).
According to yet another embodiment,
FBGs 458, 460, and 462 are provided on each of respective fiber optic segments 444, 446, and 448. Different orientations of the mass 442 cause different strains to be applied on the optical fiber segments, 444, 446, and 448, which in turn cause the FBGs 458, 460, and 462 to modulate the optical signals passing through respective signals differently.
In yet another embodiment, it is possible to optically identify the position of the main axis of a tool in relational to the magnetic force. This can be performed by using magneto-strictive materials, optically interrogating a compass or magnetically interrogating a compass and encoding the signal to a fiber in a manner similar to the casing caller locators described above.
According to further embodiments, a resistivity measurement tool 620 includes a housing 622 that contains optical fibers 624 and 626, as well as electrodes 628, 630, 632, and 634 for measuring the resistivity of the surrounding formation. The optical fiber 626 receives transmitted light from a surface, with the transmitted light received by a detector 628 that converts the optical signal to electrical signal. The electrical signal is provided to electrodes 628 and 634, which generate a current into the surrounding formation. The current is received by electrodes 630 and 632, with the current having a characteristic determined by the resistivity of the surrounding formation. The current received by the electrode 630 and 632 is converted to electrical voltage that drives a piezoelectric (PZT) element 636. The piezoelectric element 636 is provided adjacent an optical interferometer 642 that is located between two FBGs 638 and 640. The optical interferometer 642 causes a change in the path length of the optical signal in the optical fiber 624. This modulating enables surface equipment to detect the resistivity of a formation that is being tested. In addition to measuring formation resistivity, the tool 620 can also be used to determine water volume fraction estimation in multi-phase flows, corrosion surveillance, and others.
In another implementation as shown in
In other embodiments, optical fiber technology can be used in other applications. For example, an array of FBG sensors can be added to an optical fiber to provide multi-point temperature, strain, pressure, acoustic pressure, and a variety of other measurements. Alternatively, optical fiber gyroscopes can be used to aid the navigation into complexed wells. Also, several kinds of optical hydrophones and accelerometers can be used.
In yet another application, a combination of hydrophones or accelerometers with piezoelectric transducers powered by light to generate an acoustic signal, such as a “ping,” can be used. This enables the implementation of a sonic tool to measure sound velocities, as an example.
To enhance flexibility, an array of sensors or other devices can be coupled to an optical fiber, with filters provided to enable each sensor or device to operate at a different wavelength. For example, as shown in
While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of the invention.
This claims the benefit under 35 U.S.C. §119(e) of the following U.S. Provisional Applications: Ser. No. 60/434,093, entitled “Method and Apparatus for Logging a Well Using a Fiber Optic Line and Sensors,” filed Dec. 17, 2002; and Ser. No. 60/407,084, entitled “Optical Fiber Conveyance, Telemetry, and Application,” filed Aug. 30, 2002, all of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/03785 | 8/29/2003 | WO | 00 | 10/3/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/020789 | 3/11/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6693660 | Hemmings | Feb 2004 | B2 |
20010029863 | Hemmings | Oct 2001 | A1 |
20050034857 | Defretin et al. | Feb 2005 | A1 |
20050263281 | Lovell et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060157239 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60434093 | Dec 2002 | US | |
60407084 | Aug 2002 | US |