The present invention relates to a method and apparatus for casting articles from metal foam. More specifically, the invention provides a method of casting articles using a low pressure method of introducing metal foam into a die cavity.
Low pressure casting processes are commonly known in the art. Generally, these processes involve an apparatus including a die and a bath containing a molten metal, such as aluminum. The die and bath are fluidly connected with a riser tube. In the known method, the molten metal is forced upwardly through the riser tube, the tube having its lower end extending below the level of molten metal in the bath and having its upper end connected to an aperture in the die cavity. The molten metal is raised by applying gaseous pressure to the molten metal in the bath. The molten metal then rises up the riser tube and into the die cavity, where the metal solidifies. The gaseous pressure is then reduced allowing excess molten metal to fall back down the riser tube and into the bath. The casting is then allowed to cool further, after which the die cavity is opened to remove the casting therefrom. This process results in a solid article made of the metal. Examples of such low pressure casting are provided in U.S. Pat. Nos. 4,860,820 and 4,875,518 and Japanese application publication number 58003769.
In the manufacture of products such as automobiles etc., there is a high demand for components to be made from materials that have a high strength to weight ratio. In order to meet this demand, much emphasis has been placed on finding materials that are considerably low in weight yet maintain the required structural strength. One such material that has been proposed is foamed metal, such as foamed aluminum. Various methods have been proposed for producing metal foam such as in U.S. Pat. Nos. 5,221,324 and 5,622,542. These methods generally involve the bubbling of a gas through a bath of molten metal, thereby creating a metal foam above the bath. The foam is then drawn off the bath and cooled to form a slab. The slab is then cut or worked to form a desired article. The molten metal normally includes additives such as a metal matrix composite (MMC) and preferably other components such as refractory particles and stabilizers etc. to ensure that the foam generated by the process is preserved. That is, the additives are provided to facilitate the stabilization of the cells comprising the foam.
A need exists for a method of forming a metal foam article using a casting type process.
In one embodiment, the present invention provides a method of casting an article from a molten metal comprising: a) providing a bath containing said molten metal; b) providing a die having a die cavity in fluid communication with said bath, the die being located above said bath; c) establishing a pressure within said bath, said pressure being sufficient to cause flow of said molten metal into said die cavity; d) bubbling a gas through said molten metal to form a foam of said molten metal; e) causing said foam to enter and fill said die cavity; f) releasing the pressure in said bath; g) removing said formed article from said die cavity.
In another embodiment, the invention provides an apparatus for casting an article from a foamed molten metal comprising: a bath for containing said molten metal; a heat source for said bath for maintaining the metal in a molten state; a pressurizing means; a pressure releasing means; a gas supply means for bubbling a gas through said molten metal; a die having a die cavity complementary in shape to said article; a channel for establishing a fluid communication between said die cavity and said bath.
As illustrated in
Although the present discussion uses the term “molten metal” throughout, it will be understood that such term includes a MMC as described above and any type of metal or metal alloy. Further, such term will also include a molten metal or alloy that includes any variety of known additives such as refractory materials, stabilizing particles etc.
In operation, the bath is pressurized by passing a gas into the bath through port 22. The pressurization causes the molten metal 14 to rise up through the tube 20 and into the die cavity 18. Once the cavity is filled, the port 22 is opened to release the pressure in the bath thereby causing any remaining molten metal in the tube to re-enter the bath. The molten metal that entered the die cavity will have cooled enough to solidify. Thereafter, the die 16 is opened and the formed article is removed.
As will be appreciated, the porous plug 44 can be substituted by any other known means of introducing the gas. For example, in one embodiment, the plug can be replaced with a gas discharge impeller as is known in the art.
In a preferred embodiment, once the molten metal fills the interior of the die, it is allowed to cool for a period of time prior to introducing the gas through supply port 42. Such cooling of the molten metal causes hardening of the melt adjacent the inner surface of the die cavity. In this manner, once the metal foam occupies the die cavity, the final product is provided with a relatively smooth outer surface, or skin. As will be appreciated, this embodiment is desirable in cases where such smooth outer surface characteristics are needed for either aesthetic or mechanical reasons.
As will also be understood, the purpose of the present invention is to fill the die cavity with a metal foam that will assume the shape thereof. Accordingly, the conditions of temperature, pressure and gas flow rate should be chosen to generate such foam. Further, as is known in the art, the molten metal can include additives for stabilizing the foam generated by the present invention, thereby ensuring that the bubbles formed in the molten metal do not collapse.
As will be understood by persons skilled in the art, when the bath 32 is pressurized, the rise of the molten metal 34 into the die cavity 38 will lead to a reduction in the volume of the molten metal in the bath 32 will decrease thereby leading to a drop in the level of the metal. To accommodate such a drop in level, the tube 39 should be long enough so that the bottom end is maintained submerged in the molten metal 34. Alternatively, the volume of the molten metal 34 should be maintained at a minimum value so as to ensure that the bottom of the tube 39 is continuously submerged therein.
The apparatus of the invention may also include various other modifications as will be apparent to persons skilled in the art. For example, various means may be employed to maintain the bath 32 at the temperature required to keep the metal in the molten state. As indicated above, the bath 32 may be located within a furnace. Alternatively, in another embodiment, the bath 32 may be provided with an internal or external heating element. The apparatus may also include a thermocouple extending into the molten metal to monitor the temperature thereof.
In another embodiment, the port 40 may include a one way valve and be used solely for the purpose of pressurizing the bath. In such case, a further port may be provided for venting the bath to normalize the pressure therein.
Although the present invention has been described in reference to various preferred embodiments, various modifications thereof will be apparent to persons skilled in the art without departing from the spirit or scope of the invention as defined herein.
This application is a divisional of U.S. patent application Ser. No. 10/222,407, filed Aug. 19, 2002, now U.S. Pat. No. 6,840,301, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/312,757, filed Aug. 17, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3214265 | Fiedler | Oct 1965 | A |
3297431 | Ridgway, Jr. | Jan 1967 | A |
3940262 | Niebylski et al. | Feb 1976 | A |
4618427 | VenÅs | Oct 1986 | A |
Number | Date | Country |
---|---|---|
55-84260 | Jun 1980 | JP |
Number | Date | Country | |
---|---|---|---|
20040216855 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60312757 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10222407 | Aug 2002 | US |
Child | 10863384 | US |