This invention relates to a method and an apparatus for lubricating the molten glass contacting surfaces of glass forming molds. More particularly, this invention relates to a method and apparatus of the foregoing character for imparting a layer of carbon soot derived from the partial oxidation of a gas that contains acetylene, such as mapp gas (a mixture of methyl acetylene and propadiene).
As is known, for example, from U.S. Pat. No. 5,958,099 (Morettin) or U.S. Pat. No. 5,679,409 (Seeman), it is desirable to lubricate a molten glass contacting surface of a glass manufacturing machine, for example, an internal surface of a forming mold of such a machine, with a thin layer of carbon soot as a substitute for periodically brushing such a surface with a conventional oil and graphite-based mold dopant. Such a soot coating is obtained by the partial oxidation of a carbonaceous gas, such as acetylene or a mixture of an acetylene-based gas, such as methacetylene and propadiene (occasionally referred to as mapp gas or as MAPD gas) by way of a burner whose flame is directed towards the mold surface to be coated.
The aforesaid Seeman '409 patent describes a mold surface soot-coating system in which a mixture of MAPD gas and oxygen, after igniting by a natural gas-derived pilot flame, is directed toward a surface to be coated. As noted in Seaman '409, because of the inherently intermittent nature of the operation of a soot burner in a glass manufacturing machine, a mixture of MAPD gas and oxygen must be carefully controlled so as to prevent backfiring of the flame from the burner into the burner nozzle (column 3, lines 9-20), and it is understood that the system of the Seeman '409 patent has proven to be capable of operating in a successful manner in sooting glass-making molds of a Hartford 28 rotary tableware glass forming machine, where a single sooting burner can service all molds on a rotating table. In that regard, the pulse rate of a sooting burner for a Hartford 28 tableware machine occurs at a fairly high frequency, and any tendency of backfiring to occur by the backflow of oxygen into the fuel line through an air-fuel mixer can be avoided by careful control of the operating condition of the sooting apparatus.
The Hartford 28 glass making machine does not lend itself to the manufacture of hollow glass containers with restricted openings, however, such as the containers used in packaging various food and beverage products, because such products must be manufactured on a machine with split molds. An individual section (I.S.) machine, for example, as described in commonly-assigned U.S. Pat. No. 6,098,427 (Kirkman), or U.S. Pat. No. 3,617,233 (Mumford), the disclosure of each of which of is incorporated herein by reference, is a two-step forming machine type that operates with split glass-forming molds. In view of the need to provide a separate sooting burner for each of the various machine sections of an I.S. machine, a sooting burner for an I.S. machine will operate much less frequently than one for a Hartford 28 machine. For that reason, heretofore, it has not been possible to adapt a premix type burner of the type taught by the Seeman '409 patent to I.S. machine operation because of backfiring occurring as a result of backflow of oxygen from the fuel oxygen mixer into the fuel line during the relatively long durations between burner firing pulses.
The aforesaid '099 Morretin patent does teach a sooting system for the blank molds of a glass making machine that corresponds to an I.S. machine. This reference, which teaches the use of a mixture of acetylene and oxygen, requires two solenoid valves per burner for each fuel line (26, 27), a first solenoid to permit a low rate of fuel flow until ignition has occurred, and a second solenoid to permit a higher rate of fuel flow after ignition has occurred. The need for a second solenoid in this system adds to its cost. More particularly, this system requires a separate set of solenoids for each I.S. machine section, which is not only costly but can also result in section-bysection oxygen fuel variations over the multiple sections of an I.S. machine.
According to the present invention there is provided a method and an apparatus for sooting glass-contacting surfaces of a mold of a glass manufacturing machine, such as an I.S. machine. In such method and apparatus, which must operate intermittently with longer dwells between pulses than those of a glass tableware manufacturing machine, for example, a Hartford 28 machine, flame is provided by a nozzle surface mixing burner to which separate streams of fuel and an oxidant, such as relatively pure oxygen, are led, so that no backfiring can occur by a backflow through a mixer of oxidant into a fuel line. In the method and apparatus of the present invention, the fuel, which is preferably mapp gas, is burned in a deficiency of the oxidant to produce soot, and the flame from the burning stream is directed into a glass manufacturing mold along its central axis.
To facilitate the practice of the method and apparatus of the present invention, a nozzle design is provided to ensure rapid mixing of the fuel and oxidant immediately downstream of the nozzle, so that all portions of the mold surface to be coated are contacted by the flame from the nozzle for proper sooting of all such portions. This is accomplished by emitting the oxidant (or the fuel) from the nozzle in an annular cluster of streams that partly outwardly diverge from the longitudinal central axis of the nozzle, and by admitting the fuel (or the oxidant) in an annular stream surrounding the cluster of fuel streams and generally parallel to the longitudinal central axis of the nozzle; consequently, the stream of oxidant readily intersects the fuel streams in the cluster of fuel streams to form a combustible mixture very close to the downstream tip of the nozzle, but without permitting backflow of one of the reactants into the nozzle passage for the other reactant during the dwell periods occurring between cycles of an I.S. machine section.
Accordingly, it is an object of the present invention to provide an improved method and apparatus for applying soot to a molten glass contacting surface. More particularly, it is an object of the present invention to provide a method and an apparatus of the aforesaid character that is suitable for intermittent operation, even with relatively long dwell periods between consecutive pulses, to permit the method and apparatus to be applied to a glass container forming machine, such as an I.S. machine.
It is also an object of the present invention to provide a surface-mixing burner that is well suited for use in the practice of the method and apparatus of the present invention.
For a further understanding of the present invention and the objects thereof, attention is directed to the drawing and the following brief description thereof, to the detailed description of the invention, and to the appended claims.
A glass-contacting mold surface sooting system according to the present invention is illustrated generally by reference numeral 10 in
The oxidant line 18 and the fuel line 20 are provided with shutoff valves 34 and 36, respectively, to permit the burner 16 that is supplied therefrom to be shut off without shutting off any other burners to any other I.S. machine sections to be shutoff. In that regard, it is to be understood that each of the shutoff valves 34 and 36 will either be open or close at any given time, depending on whether or not it is desired to use the burner 16. Flow through the oxidant line 18 to the burner 16, while the shutoff valve 34 is open to flow, will either be on or off, depending on the operation of a two-way solenoid valve 38; likewise, flow through the fuel line 20 to the burner 16, while the shutoff valve 36 is open to flow will either be on or off depending on the operation of a two-way solenoid valve 40. Further, to accommodate changes or variations in the length of the oxidant line 18 and the fuel line 20, the oxidant line 18 is provided with a flexible hose 42 and the fuel line 20 is provided with a flexible hose 44. To prevent backflow through the oxidant line 18 and the fuel line 20, the oxidant line 18 is provided with a check valve 46 and the fuel line 20 is provided with a check valve 48. To suppress any flame that may result from a backfiring of the burner 16, the oxidant line is provided with a flash suppressor 50, and the fuel line 20 is provided with a flash suppressor 52.
The fuel and oxidant flowing from the burner 16, as received from the oxidant line 18 and the fuel line 20, will immediately begin to mix and as they exit from the burner 16, with the fuel stream in an annulus surrounding the oxidant stream in the illustrated arrangement. Shortly thereafter, the at least partly mixed fuel and oxidant, which will at least mix by the turbulence associated with their flow in conjunction with normal molecular diffusion, will form a combustible mixture and the combustible mixture will be ignited by a spark from a spark igniter 54 (shown schematically). By maintaining the flow rate of oxidant through the oxidant line 18 at a level substantially less than that required for complete combustion of the fuel flowing through the fuel line 20, at its flow rate, the flame from the burner 16 will be very sooty and soot therefrom will tend to deposit on any surface that is in the flow path of such flame. While
A special surface-mixing burner 216 is shown in
As shown in
The air purge nozzle 74 receives compressed air from a source (not shown) and discharges air in pulses therefrom through downwardly inclined passages 76, which are directed at the electrode 70 and the ground electrode 72, and through upwardly included passages 78, which are directed at the front ofthe nozzle. Head cleaning to remove soot buildup occurs after the sooting head, burner nozzle 216, has left location above the mold, and cleaning occurs in two phases. In the first phase, a flame from the nozzle 216, and air is introduced through the nozzle 74, which further oxidizes the flame to thereby burn any soot buildup from the nozzle 216 and the electrodes 70, 72. During the second phase, the fuel and oxygen flows to the nozzle are briefly discontinued and the spark plug 154 is not energized, and the purge air is left on for a short period of time to mechanically knock off loose soot.
Although the best mode contemplated by the inventors for carrying out the present invention as of the final date hereof has been shown and described herein, it will be apparent to those skilled in the art that suitable modifications, variations, and equivalents from the mode that has been shown and described, without departing from the scope of the invention, such scope being limited solely by the terms of the following claims and the legal equivalents thereof.
This application is a division of application Ser. No. 10/157,620 filed May 28, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10157620 | May 2002 | US |
Child | 11179853 | Jul 2005 | US |