1. Field of the Invention
The present disclosure relates generally to a method for machining a customized surgical implant in the operating room and, more particularly, to a method for machining a custom implant from a bone blank which can include unique individualized keying features for retention in a machining apparatus.
The present disclosure also relates to a machining apparatus for machining customized surgical implants and kits for producing said implants.
2. Description of the Related Art
Currently, bone based bio-implants are either entirely cut and formed at the operating site by a surgeon from a source of allograft (or in the alternative autograft) bone or are supplied by a manufacturer as a fully machined bio-implant. In general, the fully machined bio-implant is able to have a more sophisticated design in that the fully machined bio-implant is designed to be used with a specific surgical instrument and is formed with certain features (i.e., locating grooves, etc.) which are difficult or even impossible to form on-site by a surgeon using hand-held cutting tools. While bio-implants formed on-site lack the sophisticated design features of the fully machined bio-implants, the on-site formed bio-implants have the advantage of being more accurately shaped to match the specific surgical site.
The turn around time for custom bio-implants based on allograft bone is unacceptably long, generally on the order of several weeks to even a month or more. The long turn around time for such custom bio-implants is due to many factors including the need for an aseptic process and terminal sterilization, the need to locate a properly sized piece of bone stock, conflicts and back logs in the production schedule and the need to carry out proper sterility tests.
Therefore, the need exists for a method which will provide the surgeon with a method for customizing and modifying bio-implants intra-operatively and for a method which eliminates the waiting time for making a custom machined bio-implant. In particular, the need exists to provide the surgeon with a cutting machine and apparatus that will provide the surgeon with the means necessary to customize and modify pre-machined bio-implants for a specific surgical site while still retaining most or all of the implant features.
The present invention is directed to a method for machining a surgical implant which comprises:
In one embodiment of the invention, a milling bit produces serrations on the exposed surface of the bone blank, which can then be repositioned, for example, by inverting the bone blank in the clamping device to machine the opposite side of the bone blank.
In another embodiment of the present invention, the abutment surface of the clamping device possesses a second keying element configured and dimensioned to engage the first keying element of the bone blank.
The present invention also includes a milling apparatus for machining a surgical implant and a kit containing, in combination, at least one bone blank and one or more jigs, the jigs being individually receivable into a clamping device.
The expression “bone blank” as used herein refers to the bone and any other biocompatible components utilized as the starting material for the bio-implant of the present invention. The bone blank can be machined in the operating room and a customized surgical implant is thus produced. In one embodiment, the bone blank has already been pre-machined to have certain features. Preferably, the bone blank possesses an instrument interface, which is adapted for cooperation with surgical implantation instruments. In one embodiment, the instrument interface of the bone blank possesses a keying element configured and dimensioned to engage a second keying element present on a clamping device of a machining apparatus utilized to form the bio-implant.
The term “bone” as used herein includes bone for use in a bone blank recovered from any source, including animal and human, that is suitable for implantation into a human. Such bone includes any portion thereof, including cut pieces of bone, bone particles, bone powders and mixtures of bone with other substances known in the art including binders, fillers, plasticizers, wetting agents, surface active agents, biostatic/biocidal agents, bioactive agents, reinforcing components, polymers, and the like. Such bone can be demineralized or non-demineralized.
The term “particle” as applied to the bone component of a bone blank includes bone pieces of all shapes, sizes, thicknesses and configurations such as fibers, threads, narrow strips, thin sheets, chips, shards, powders, etc., that posses regular, irregular or random geometries. It should be understood that some variation in dimension may occur in the production of bone particles, and bone particles demonstrating considerable variability in dimensions and/or size can be used and are within the scope of this invention. Bone particles that are useful herein can be homogeneous and/or heterogeneous and can include mixtures of human, xenogenic and/or transgenic material.
The term “human” as utilized herein in reference to suitable sources of bone refers to autograft bone which is taken from at least one site in the graftee and implanted in another site of the graftee as well as allograft bone which is human bone taken from a donor other than the graftee.
The term “autograft” as utilized herein refers to tissue that is obtained from the intended recipient of the implant.
The term “allograft” as utilized herein refers to tissue, which may be processed to remove cells and/or other components, intended for implantation that is taken from a different member of the same species as the intended recipient. Thus the term “allograft” includes bone from which substantially all cellular matter has been removed (processed acellular bone) as well as cell-containing bone.
The terms “xenogenic” or “xenograft” as utilized herein refers to material intended for implantation obtained from a donor source of a different species than the intended recipient. For example, when the implant is intended for use in an animal such as a horse (equine), xenogenic tissue of, e.g., bovine, porcine, caprine, etc., origin may be suitable.
The term “transgenic” as utilized herein refers to tissue intended for implantation that is obtained from an organism that has been genetically modified to contain within its genome certain genetic sequences obtained from the genome of a different species.
The expression “monolithic bone” as utilized herein refers to relatively large pieces of human or animal bone, i.e., autograft, allograft or xenograft, that are of such size as to be capable of withstanding the sort of mechanical loads to which functioning bone is characteristically subjected. Monolithic bone is to be distinguished from particles, filaments, threads, etc. as disclosed in U.S. Pat. Nos. 5,073,373, 5,314,476 and 5,507,813. It is further to be understood that the expression “monolithic bone” can refer to non-demineralized bone and to bone that has been partially demineralized. The monolithic bone utilized in a bone blank can be provided as a single integral piece of bone or as a piece of bone permanently assembled from a number of smaller bone elements, e.g., as disclosed and claimed in U.S. Pat. No. 5,899,939, the contents of which are incorporated herein by reference. Although monolithic bone can contain factors which are osteogenic, monolithic bone can also contain additional materials, e.g., as disclosed in U.S. Pat. No. 5,290,558, the contents of which are incorporated herein by reference, which will remain with the bone and will be present at the time of implantation. As used herein, “monolithic bone” is understood to have a surface area of at least 1 square centimeter.
The terms “composite” and “aggregate” are used interchangeably herein and refer to a mixture of bone particles and other materials and/or components which can be used in preparing a bone blank.
The terms “whole” and “non-demineralized” are used interchangeably herein and refer to bone that contains its full, or original, mineral content. Non-demineralized bone provides strength to the osteoimplant and allows it to initially support a load.
The term “demineralized” as utilized herein refers to bone containing less than about 95% of its original mineral content and is intended to cover all bone and/or bone particles that have had some portion of their original mineral content removed by a demineralization process. Demineralized bone induces new bone formation at the site of the demineralized bone and permits adjustment of the overall mechanical properties of the osteoimplant.
The expression “fully demineralized” as utilized herein refers to bone containing less than about 8% of its original mineral context.
The expression “partially demineralized” as utilized herein refers to bone that has been demineralized to some minor extent, i.e., to an extent which reduces the original strength of the bone by no more than about 50 percent. “Partially demineralized” bone includes bone that has only had a portion of its surface demineralized. Demineralized bone induces new bone formation at the site of the demineralized bone and permits adjustment of the overall mechanical properties of the bio-implant.
The term “osteogenic” as utilized herein shall be understood as referring to the ability of an implant to enhance or accelerate the growth of new bone tissue by one or more mechanisms such as osteogenesis, osteoconduction and/or osteoinduction.
The term “osteoconductive” as utilized herein shall be understood to refer to the ability of a non-osteoinductive substance to serve as a suitable template or substrate along which bone can grow.
The term “osteoinductive” as utilized herein shall be understood to refer to the ability of a substance to recruit cells from the host that have the potential for forming new bone and repairing bone tissue. Most osteoinductive materials can stimulate the formation of ectopic bone in soft tissue.
The term “shape” as applied to the bone blank herein refers to a process to obtain a determined or regular form or configuration in contrast to an indeterminate or vague form or configuration (as in the case of a lump or other solid mass of no special form) and is characteristic of such materials as sheets, plates, disks, cores, pins, screws, tubes, teeth, bones, portions of bones, wedges, cylinders, threaded cylinders, cages, and the like. This includes forms ranging from regular geometric shapes to irregular, angled, or non-geometric shapes and combinations of features having any of these characteristics. The result of a shaping process to a bone blank is a bio-implant suitable for implantation in a mammal. The term “shape” as used herein also refers to the application of a pattern or texture, e.g., serrations, to the surface of a bone blank to thus form a bio-implant.
The terms “machine tool” and “machining” shall be understood to include all tools that perform at least one mechanical shaping operation brought about by removal of material from the bone blank and include such operations as milling, shaping, drilling, chamfering, beveling, texturizing, surface-patterning, etc.
The term “implantable” as utilized herein refers to a bio-implant device retaining potential for successful surgical placement within a mammal.
The expression “implantable device” and expressions of like import as utilized herein refer to any object implantable through surgical, injection, or other suitable means whose primary function is achieved either through its physical presence or mechanical properties.
The term “polymeric” as utilized herein refers to a material of natural, synthetic or semisynthetic origin that is made of large molecules featuring characteristic repeating units.
Various embodiments of the invention are described below with reference to the accompanying drawings, in which:
The present invention is directed to methods and apparatus for machining a bone blank intra-operatively in the operating room to produce a customized surgical bio-implant.
Bone blanks which can be machined in accordance with the present invention include those made of monolithic bone, or bone composites made from pieces of bone, bone particles, etc. The bone component of the bone blanks can be mineralized, demineralized, partially demineralized and combinations thereof. Such composites are disclosed, for example, in U.S. Pat. Nos. 6,478,825, 6,440,444, 6,294,187, 6,294,041 and 6,123,731, the contents of each of which are incorporated by reference herein. The bone blank, especially where it is made of a composite or aggregate of bone particles, can be combined with one or more biocompatible components such as wetting agents, biocompatible binders, fillers, fibers, plasticizers, biostatic/biocidal agents, surface active agents, bioactive agents, and the like, prior to, during, or after forming the bone blank. One or-more of such components can be combined with the bone by any suitable means, e.g., by soaking or immersing the bone in a solution or dispersion of the desired component, and the like. Where the bone blank is made of bone particles, one or more of such components can also be combined with the bone particles by physically admixing the bone particles and the desired component.
Suitable wetting agents include biocompatible liquids such as water, organic protic solvents, aqueous solutions such as physiological saline, concentrated saline solutions, sugar solutions, ionic solutions of any kind, liquid polyhydroxy compounds such as glycerol, glycerol esters and mixtures thereof. Where the bone blank includes bone particles, the use of wetting agents in general is preferred in the practice of the present invention as they improve handling of bone particles. When employed, wetting agents typically represent from about 20 to about 80 weight percent of the bone forming the bone blank. (In all instances herein where the bone component of the bone blank is made of a composite or aggregate of bone particles, it is to be understood that the weight percent of any additional component of the bone blank is calculated prior to compression of the composite forming the bone blank.) Certain wetting agents such as water can be advantageously removed from the bio-implant, e.g., by heating and lyophilizing the bio-implant.
The use of a biocompatible binder as a biocompatible component is particularly preferred where the bone blank includes a bone composite or aggregate. A biocompatible binder acts as a matrix which binds the bone particles, thus providing coherency in a fluid environment and also improving the mechanical strength of the resulting implant.
Suitable biocompatible binders include biological adhesives such as fibrin glue, fibrinogen, thrombin, mussel adhesive protein, silk, elastin, collagen, casein, gelatin, albumin, keratin, chitin or chitosan; cyanoacrylates; epoxy-based compounds; dental resin sealants; bioactive glass ceramics (such as apatite-wollastonite), dental resin cements; glass ionomer cements (such as Ionocap® and Ionocem® available from Ionos Medizinische Produkte GmbH, Greisberg, Germany); gelatin-resorcinol-formaldehyde glues; collagen-based glues; bioabsorbable polymers such as starches, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polydioxanone, polycaprolactone, polycarbonates, polyorthoesters, polyamino acids, polyanhydrides, polyhydroxybutyrate, polyhydroxyvalyrate, poly (propylene glycol-co-fumaric acid), tyrosine-based polycarbonates, pharmaceutical tablet binders (such as Eudragit® binders available from Hüls America, Inc.), polyvinylpyrrolidone, cellulosics such as cellulose, ethyl cellulose, micro-crystalline cellulose and blends thereof; starches; ethylenevinyl alcohols; polycyanoacrylates; polyphosphazenes; nonbioabsorbable polymers such as polyacrylate, polymethyl methacrylate, polytetrafluoroethylene, polyurethane and polyamide; etc. Preferred binders are polyhydroxybutyrate, polyhydroxyvalerate and tyrosine-based polycarbonates. When employed, binders typically represent from about 5 to about 70 weight percent of the bone composite forming the bone blank.
Suitable fillers include graphite, pyrolytic carbon, bioceramics, bone powder, demineralized bone powder, anorganic bone (i.e., bone mineral only, with the organic constituents removed), dentin, tooth enamel, aragonite, calcite, nacre, amorphous calcium phosphate, hydroxyapatite, tricalcium phosphate, Bioglass® and other calcium phosphate materials, calcium salts, etc. Preferred fillers are demineralized bone powder and hydroxyapatite. When employed, fillers typically represent from about 5 to about 80 weight percent of the bone particle composite forming the bone blank.
Suitable fibers include carbon fibers, collagen fibers, tendon or ligament derived fibers, keratin, cellulose, hydroxyapatite and other calcium phosphate fibers. When employed, fibers typically represent from about 5 to about 75 weight percent of the bone particle composite forming the bone blank.
Suitable plasticizers include liquid polyhydroxy compounds such as glycerol, monoacetin, diacetin, etc. Glycerol and aqueous solutions of glycerol are preferred. When employed, plasticizers typically represent from about 20 to about 80 weight percent of the bone forming the bone blank.
Suitable biostatic/biocidal agents include antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymycin B, tetracyclines, biomycin, chloromycetin, streptomycins, cefazolin, ampicillin, azactam, tobramycin, clindamycin, gentamicin, povidone, sugars, mucopolysaccharides, etc. Preferred biostatic/biocidal agents are antibiotics. When employed, biostatic/biocidal agents typically represent from about 10 to about 95 weight percent of the bone forming the bone blank.
Suitable surface active agents include the biocompatible nonionic, cationic, anionic and amphoteric surfactants. Preferred surface active agents are the nonionic surfactants. When employed, surface active agents typically represent from about 1 to about 80 weight percent of the bone forming the bone blank
Any of a variety of bioactive substances can be incorporated in, or associated with, the bone blank. Thus, one or more bioactive substances can be combined with the bone blank, or where the bone blank is a composite of bone particles, the particles themselves, by soaking or immersing the bone in a solution or dispersion of the desired bioactive substance(s). Bioactive substances include physiologically or pharmacologically active substances that act locally or systemically in the host.
Bioactive substances which can be readily combined with the bone of the bone blank include, e.g., collagen, insoluble collagen derivatives, etc., and soluble solids and/or liquids dissolved therein; antiviricides, particularly those effective against HIV and hepatitis; antimicrobials and/or antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymycin B, tetracyclines, biomycin, chloromycetin, streptomycins, cefazolin, ampicillin, azactam, tobramycin, clindamycin and gentamicin, etc.; biocidal/biostatic sugars such as dextran, glucose, etc.; amino acids; peptides; vitamins; inorganic elements; co-factors for protein synthesis; hormones; endocrine tissue or tissue fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases, etc.; polymer cell scaffolds with parenchymal cells; angiogenic agents and polymeric carriers containing such agents; collagen lattices; antigenic agents; cytoskeletal agents; cartilage fragments; living cells such as chondrocytes, bone marrow cells, mesenchymal stem cells, natural extracts, genetically engineered living cells or otherwise modified living cells; DNA delivered by plasmid or viral vectors; tissue transplants; demineralized bone powder; autogenous tissues such as blood, serum, soft tissue, bone marrow, etc.; bioadhesives; bone morphogenic proteins (BMPs); osteoinductive factor; fibronectin (FN); endothelial cell growth factor (ECGF); cementum attachment extracts (CAE); ketanserin; human growth hormone (HGH); animal growth hormones; epidermal growth factor (EGF); interleukin-1 (IL-1); human alpha thrombin; transforming growth factor (TGF-beta); insulin-like growth factor (IGF-1); platelet derived growth factors (PDGF); fibroblast growth factors (FGF, bFGF, etc.); periodontal ligament chemotactic factor (PDLGF); somatotropin; bone digesters; antitumor agents; immuno-suppressants; permeation enhancers, e.g., fatty acid esters such as laureate, myristate and stearate monoesters of polyethylene glycol, enamine derivatives, alpha-keto aldehydes, etc.; and nucleic acids. Preferred bioactive substances include bone morphogenic proteins and DNA delivered by plasmid or viral vector. When employed, bioactive substances typically represent from about 0.1 to about 20 weight percent of the bone forming the bone blank.
It will be understood by those skilled in the art that the foregoing biocompatible components are not intended to be exhaustive and that other biocompatible components can be added to the bone blank or admixed with bone particles where the bone blank is made of a bone composite.
Where the bone blank comprises a bone composite, after production of the bone composite the composite is subjected to a compressive force of at least about 1,000 psi to produce the bone blank of this invention. Typically, compressive forces of from about 2,500 to about 60,000 psi can be employed with particularly good effect, with compressive forces of from about 2,500 to about 20,000 psi presently being preferred. The compression step will typically be conducted for a period of time ranging from about 0.1 to about 180 hours, preferably from about 4 to about 72 hours. The resulting bone blank possesses a bulk density (measured by dividing the weight of the bone blank by its volume) of at least about 0.7 g/cm3, preferably at least about 1.0 g/cm3. After being immersed in physiological saline for 12-24 hours, the bone blank of this invention possesses a wet compressive strength of at least about 3 MPa. Typically, the wet compressive strength of the bone blank substantially exceeds 3 MPa In most cases (and especially where a predominant amount of nondemineralized elongate bone particles are utilized in the fabrication of the bone composite utilized in the bone blank), the inventors have found that wet compressive strength normally exceeds about 15 MPa and typically ranges from about 15 to about 100 MPA.
To effect compression of the composite, the composite can be placed in a mold possessing any suitable or desired shape or configuration and compressed in a press, e.g., a Carver® manual press.
In addition, the bone in the bone blanks, which includes any bone particles therein, can be mineralized, demineralized, partially demineralized and combinations thereof.
Methods for demineralizing bone, including the surface area of sections of bone, are known. Demineralization procedures remove the inorganic mineral component of bone by employing acid solutions. Such procedures are well known in the art, see for example, Reddi et al., Proceeding of the National Academy of Sciences of the United States of America 69, pp. 1601-1605 (1972), incorporated herein by reference. The strength of the acid solution, the shape and size of the bone and the duration of the demineralization procedure will determine the extent of demineralization. Control of these variables to effect the desired extent of demineralization is well within the purview of those skilled in the art.
Demineralizing bone, using for example, a controlled acid treatment, increases the osteoinductive characteristics of the implant. Demineralization also provides the implant with a degree of flexibility. However, removal of the mineral components of bone significantly reduces mechanical strength of bone tissue. See, Lewandrowski et al., Clinical Ortho. Rel. Res., 317, pp. 254-262 (1995). Thus, demineralization sacrifices some of the load-bearing capacity of mineralized cortical bone and as such is not suitable for all implant designs. Demineralization of the bone will also ordinarily result in bone of slightly smaller dimensions. Such changes of dimension can make it difficult for a configured piece to mechanically engage with surgical instruments, other implants, or the prepared surgical site.
In a preferred demineralization procedure, the bone to be utilized in the bone blank for forming into a bio-implant is subjected to an acid demineralization step followed by a defatting/disinfecting step. The bone is immersed in acid over time to effect demineralization. Acids that can be employed in this step include inorganic acids such as hydrochloric acid as well as organic acids such as formic acid, acetic acid, peracetic acid, citric acid, propionic acid, etc. The depth of demineralization into the bone surface can be controlled by adjusting the treatment time, temperature of the demineralizing solution, concentration of the demineralizing solution, and agitation intensity during treatment.
In the defatting/disinfecting step, the demineralized bone is rinsed with sterile water and/or buffered solution(s) to remove residual amounts of acid and thereby raise the pH. A preferred defatting/disinfectant solution is an aqueous solution of ethanol, the ethanol being a good solvent for lipids and the water being a good hydrophilic carrier to enable the solution to penetrate more deeply into the bone. The aqueous ethanol solution also disinfects the bone by killing vegetative microorganisms and viruses. Ordinarily, at least about 10 to 40 percent by weight of water (i.e., about 60 to 90 weight percent of defatting agent such as alcohol) should be present in the defatting/disinfecting solution to produce optimal lipid removal and disinfection within the shortest period of time. The preferred concentration range of the defatting solution is from about 60 to about 85 weight percent alcohol and most preferably about 70 weight percent alcohol.
In some embodiments of the present invention, the bone utilized in the bone blanks can be only partially demineralized and/or surface demineralized.
Preferred embodiments of the presently disclosed method for machining a surgical bio-implant 100 will now be described in detail with reference to the accompanying drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.
As seen in
According to the present disclosure and as seen in
Turning now to
In operation and in accordance with the present disclosure for machining bio-implants 100, a pre-selected support jig 206 having a surface with a predetermined angle of inclination is placed between the vice clamp 204 and a new bone blank 110 is secured onto the support jig 206 by closing the jaws 205 of the vice clamp 204 thereon. The cranking means 208 is then activated in order to transversely pass the bone blank 110 across the rotating milling drill bit 210, thereby shaping a surface (i.e., an upper or lower weight bearing surface 102 or 104) of the bone blank 110 into the serrated weight bearing surface 106 or 108. Although a serrated milling bit is shown producing serrations on the weight bearing surface 106 or 108, different milling bits can be utilized to provide the bio-implant with differently shaped load bearing surfaces. In order to shape the opposite surface of the bone blank 110 and to complete the formation of the bio-implant 100 (i.e., the other of the upper or lower weight bearing surfaces), the shaped surface of the bone blank 110 is secured on the top of another selected support jig 206 between the jaws 205 of the vice clamp 204 and the bone blank 110 is once again passed across the rotating milling drill bit 210 thereby forming the other of the serrated surface 106 or 108.
Turning now to
As depicted in
The keying elements can be solely compatible for cooperation with the surgical instruments to be employed for implanting as well as for cooperation with the machining apparatus, or where disposable jigs are supplied in a kit with one or more allograft bone blanks, each bone blank can cooperate solely with specific retaining means (i.e., vise clamp, clamping means, etc.) provided in the machining apparatus. The disposable jigs can be made of a plastic such as polyethylene, or other materials such as gelatins, which can be easily sterilized by radiation, but which will be destroyed or damaged by other means of sterilization such as autoclaving. The purpose is to prevent the reuse of the jigs as much as possible by making the jigs incompatible with sterilizing means that are commonly found in clinics or hospitals. The jigs can be made of any other easily radiation sterilizable material, meeting the above requirements.
The keying elements also ensure that the surgeon or technician cannot use the machining apparatus with bio-implants supplied by other manufacturers, or with allograft bone blanks which the surgeon has fashioned himself. Such keying design features can include, for example as described above, a keying system whereby, during the machining operation, the allograft bone blank is retained within the machining apparatus by keying arrangements formed on the instrument face of the allograft bone blank.
Thus, medical personnel can be provided with a packaged kit containing an assortment of interchangeable jigs of various shapes and having various inclinations and at least one bone blank, each bone blank having a keying element adapted to mate with a corresponding keying element in a clamping device of a machining apparatus. The kit can optionally include a machining apparatus with the clamping device and optionally a rotatable milling bit or other such cutting tool. The clamping device is adapted to receive an individual jig and a bone blank supported by the jig.
The machining apparatus itself is adaptable for an operating room environment. In other words, the machining apparatus can be sterilized (preferably by autoclaving) and should not emit an unacceptable amount of contamination into the operating room during use. Power sources for driving the rotating milling drill bits include, air or another compressed gas, electricity, a manual crank, a fly wheel, etc. A manual crank could be used to feed the implant under the milling bit, but other arrangements such as a compressed air cylinder, a spring, etc., can be used.
Preferably, to speed the work and ensure the highest possible precision, machining is carried out in one pass of the allograft bone blank under the rotating milling drill bit. The milling drill bit will form all of the desired features and contours onto the bone blank at once. The milling bit can be horizontal as shown in the figures, or vertical (a face mill) in order to give different finish patterns such as a concave or convex surface, a circular groove pattern, etc.
Returning now to
The interchangeable jigs 116 are pre-sterilized and can be made of polyethylene or other disposable materials and are supplied in a variety of angles in order to create the angle of inclination desired in the bio-implant 100. Alternatively, a single jig can be provided which through simple mechanical means such as adjustable screws, camming surfaces, etc., can be made to provide a range of angles and/or widths and lengths. Angular adjustment of the jig can, if desired, be made after a machining operation to readjust the angle of the bone blank to the machine tool. The dimensions of the bio-implant 100 are determined by the jigs so that no machining skill is needed by the surgeon or technician. A first interchangeable jig 116 (i.e., implant support jig) supports the bone blank 110 during the machining of the first weight bearing surface 102 (see
The bone blank 110 can be held in the machine by a clamp that squeezes the sides of the bone blank, leaving the weight bearing surface 102 or 104 open for machining (see
It is preferable to machine each surface of the bio-implant 100 in one pass using a shaped cutting bit, but it is envisioned that several passes of the cutting bit at different depths or at different directions are also possible, though with added machining complication.
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments.
This application claims the benefit under 35 U.S.C. § 119(e) of earlier filed and copending U.S. Provisional Application No. 60/384,374, filed May 30, 2002, the contents of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/16968 | 5/30/2003 | WO | 6/30/2005 |
Number | Date | Country | |
---|---|---|---|
60384374 | May 2002 | US |