The inventions described below relate to the field of magnetic sensor calibration, and more specifically to methods and apparatus for calibrating two-axis and or three-axis magnetic field sensors for use in celestial object locators.
Calibration of magnetic field sensors intended for detection of the magnetic field of the earth may be performed using the earth's magnetic field as a reference. However the presence of structural steel, electrical wiring and motors as in buildings and factories significantly disrupts the earth's magnetic field, and may generate additional magnetic fields and yield imprecise results.
What is needed are methods and apparatus for producing one or more stable and predictable magnetic fields that may be used to calibrate two and or three-axis magnetic field sensors.
The methods and devices described below provide for calibration of multi-axis sensors such as two or three-axis magnetic field sensors with an artificial magnetic calibration field, or a sequence of magnetic calibration fields, that overwhelm the earth's magnetic field and any other extraneous magnetic fields that may be present in the calibration area. The calibration field or fields are produced with a known relationship to the test stand or jig on which a two and or three-axis magnetic field sensor is secured. The calibration fields are oriented to produce fields that have generally parallel lines of force (relative to the sensor to be calibrated) with minimal curvature or discontinuity. For each coil or calibration field, data from each sensor may be collected and analyzed to enable one or more correction factors to be determined for each sensor. The correction factors may be provided to the apparatus in which the magnetic sensor is secured to correct sensor data and provide more accuracy.
In an alternative technique, a single magnetic field source may be used and the sensor jig may enable two or three degrees of freedom to orient the sensor jig and the sensor secured thereon in two or three orthogonal positions to perform the necessary calibration of the sensor. For example, the x-direction sensor may be calibrated with the sensor jig in a first position with the X-sensor oriented parallel to the calibration field. To calibrate the y-sensor the jig may be oriented 90° from the first position into a second position to place the y-sensor parallel to the calibration field. If a third sensor axis is available it may be calibrated by orienting the sensor jig 90° from both the first and second positions into a third position with the Z-axis sensor oriented parallel to the calibration field. At each position, data from each sensor may be collected and analyzed to enable one or more correction factors to be determined for each sensor. The correction factors may be provided to the apparatus in which the magnetic sensor is secured to correct sensor data and provide more accuracy.
Celestial object locating device 10 of
Electronics 15 may include one or more subassemblies such as board 15C and microprocessor 16 of
Calibration system 30 of
Controller 25 may also vary the intensity of each applied magnetic calibration field to collect field strength data 35. Field strength data 35 may be used by controller 25 to generate field strength correction factors 19 that may be used by microprocessor 16 to correct field strength data 35 to accurately determine the real orientation of viewing axis 29 relative to the earth's magnetic field.
While the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Other embodiments and configurations may be devised without departing from the spirit of the inventions and the scope of the appended claims.
This application claims priority from copending U.S. patent application Ser. No. 11/607,293 filed Nov. 30, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11607293 | Nov 2006 | US |
Child | 11849917 | US |