Field of the Invention
The present invention relates to a method and apparatus for magnetic resonance imaging, and particularly, to a method and apparatus for magnetic resonance imaging that make use of a spectrum suppression pulse.
Description of the Prior Art
Magnetic resonance imaging is a bio-magnetic nuclear spin imaging technology developed rapidly along with the development of computed technology, electronic circuit technology, and superconductor technology. In magnetic resonance imaging, human tissue is placed in a static magnetic field B0, and hydrogen nuclei within the human tissue are then excited by a radio-frequency pulse with the same frequency as the precession frequency of the hydrogen nuclei, so as to cause resonance of the hydrogen nuclei (nuclear spins) and absorption of energy, which causes the nucleus spins to be deflected out of alignment with the static field by an amount known as “flip angle.” After the radio-frequency pulse ceases, the hydrogen nuclei emit a radio signal at a specific frequency and release the absorbed energy, which is detected as a radio-frequency signal that is processed by a computer to obtain an image in magnetic resonance imaging.
In order to obtain an image of better quality, signals having a specific spectral composition, such as fat signals, water signals, silica gel signals (breast implants) and so on, often need to be suppressed. For example, in magnetic resonance imaging examinations used for the abdomen, the chest, etc., it is generally required to suppress fat signals, so as to display tissues or lesions of interest in a highlighted way. Many fat suppression techniques have been proposed, such as the FatSat (fat saturation) technique, SPAIR (Spectral Presaturation Attenuated Inversion Recovery) technique, STIR (short inversion time inversion recovery) technique, Dixon water-fat separation technique, and so on. Except for the Dixon technique, the efficacy of all the other techniques is dependent on the flip angle (such as for FatSat) or inversion time (such as for inversion recovery techniques like SPAIR, STIR, etc.) of a fat suppression pulse applied to the human tissue. It is well known that a flip angle refers to the angle of a macro magnetization vector deviating from the static magnetic field B0 under the excitation of a radio-frequency pulse. The size of the flip angle is determined by the intensity and action time of the applied radio-frequency pulse. Inversion time is the time interval between a 180 degree inversion pulse and an excitation pulse in an inversion recovery pulse sequence.
As described above, optimization of fat suppression can be achieved by optimizing the flip angle or inversion time of the fat suppression pulse. In response to this situation, a method for calculating a flip angle of a FatSat pulse has now been proposed. However, this method only takes into consideration the calculation method of the flip angle of the FatSat pulse when a spin echo sequence is used for magnetic resonance imaging, without taking into account a number of excitation pulses applied following each fat suppression pulse in an abdomen magnetic resonance imaging applying a spoiled gradient echo sequence (Spoiled GRE, such as VIBE sequence) of a short radio-frequency pulse interval (TR). Furthermore, the method cannot be used to optimize the inversion time of the fat suppression pulse (such as for inversion recovery pulses like SPAIR, STIR, etc.).
A method for magnetic resonance imaging in accordance with the present invention includes calculating a flip angle and/or inversion time of a spectrum suppression pulse according to a steady state condition of a longitudinal magnetization component of a spectrum composition suppressed by a spectrum suppression pulse and a zero crossing point condition of the longitudinal magnetization component, and acquiring raw magnetic resonance image data by applying a magnetic resonance imaging sequence that includes the spectrum suppression pulse provided with the flip angle and/or the inversion time.
The present invention further encompasses a device for magnetic resonance imaging that has a calculation unit configured to calculate a flip angle and/or inversion time of a spectrum suppression pulse according to a steady state condition of a longitudinal magnetization component of a spectrum composition suppressed by the spectrum suppression pulse and a zero crossing point condition of the longitudinal magnetization component; and a magnetic resonance data acquisition unit operated by a control unit to acquire raw magnetic resonance image data by applying a magnetic resonance imaging sequence that includes the spectrum suppression pulse provided with the flip angle and/or the inversion time.
The spectrum suppression pulse can be a spectrum saturation pulse including, for example, a fat saturation pulse and a water saturation pulse, and a spectrum suppression pulse including a spectrum presaturation attenuated inversion recovery pulse, a short inversion time inversion recovery pulse, and a fluid attenuated inversion recovery pulse.
As can be seen from the abovementioned solution, since the method and device for magnetic resonance imaging in the present invention use a spectrum suppression pulse with an optimized flip angle and/or inversion time to suppress the corresponding spectrum composition signal as much as possible, images of a high quality can be obtained.
In order to make the object, technical solutions and advantages of the present invention more apparent, the present invention will be further described in detail hereinbelow by way of embodiments.
(Embodiment 1)
This embodiment describes a fat suppression pulse as a specific spectrum suppression pulse.
First, MRI sequences involved in the present invention will be briefly described.
As shown in
As can be seen from
As shown in
Hereinafter, k-Space and the k-space center line involved in the present invention will be briefly described.
The mathematical domain known as k-space, also referred to as Fourier space, is an organized set of storage locations in an electronic memory that are filled by the raw data of magnetic resonance signals that are acquired while the pulse sequence is being executed. The entered and stored raw data are converted into images after the Fourier transform is carried out thereon. In the process of acquiring two-dimensional image signals, the size and direction of the frequency encoding gradient field of each magnetic resonance signal remain the same, while the intensity of the phase encoding gradient changes in certain steps, the phase encoding of each magnetic resonance signal changes once, and the captured magnetic resonance signals fill in a line of the k-space in a Ky direction. In the present invention, each excitation pulse of a number of excitation pulses corresponds to a line in the k-space. Contributions of data in different locations of the k-space to the final image are different: data in the center of the k-space mainly determines the signal to noise ratio and contrast information of the image, and signals at the edges of the k-space mainly contribute to information in the aspect of resolution capability of the image.
The optimized fat suppression pulse used in the method for magnetic resonance imaging according to this embodiment will be described below. As described above, the energy efficiency of fat suppression depends largely on the flip angle and inversion time of the fat suppression pulse; hence, the optimization of fat suppression can be achieved by optimizing the flip angle or the inversion time of the fat suppression pulse. Therefore, how to determine the optimized flip angle and inversion time becomes essential. In this regard, this embodiment proposes a general solution, which can be used not only to calculate the flip angle of a fat suppression pulse (such as for FatSat) but also to calculate the inversion time of the fat suppression pulse (for inverted pulses including SPAIR and STIR), and which, at the same time, takes into consideration the situation where each fat suppression pulse in the spoiled gradient echo sequence is followed by a plurality of excitation pulses. The general solution is first described below.
1. Fat Composition Magnetization Vector Expression Deduced from Bloch Equation
Assume that the spoil mechanism of the spoiled gradient echo sequence works ideally, so that the transverse magnetization component in the XY plane is completely spoiled before each excitation pulse (a pulse) and does not contribute to the subsequent excitation pulses. Also assume that the fat suppression pulse (β pulse) only excites the fat composition. In such conditions, according to the classical Bloch equation, the longitudinal magnetization vector representation of the fat composition before each pulse can be as follows:
Mβ(1)=M0 (1)
Mα(1)=M0(1−ETl1)+Mβ(m)·cos(β)·ETl1 (2)
Mα(n)=M0(1−ETrep)+Mα(n−1)·cos(α)·ETrep (3)
Mβ(m+1)=M0(1−ETr)+Mα(N)·cos(α)·ETr (4)
where:
ETl1=exp(−Tl1/T1)
ETrep=exp(−Trep/T1)
ETr=exp(−Tr/T1)
T1: longitudinal relaxation time of fat tissue,
M0: initial magnetization vector of fat tissue,
Mα(n): longitudinal magnetization component of fat before the nth α pulse,
Mβ(m): longitudinal magnetization component of fat before the mth β pulse, and
N: the number of α pulses between two β pulses, i.e. the number of k-space lines filled by each pulse train.
2. Establishment of general formula
Since M0 will be offset during calculation, it can be set as 1, i.e. M0=1.
Therefore, equations (1) to (4) can be written as
Mβ(1)=1 (5)
Mα(1)=A+B·Mβ(m) (6)
Mα(n)=C+D·Mα(n−1) (7)
Mβ(m+1)=E+F·Mα(N) (8)
where
A=1−ETl1 B=cos(β)·ETl1
C=1−ETrep D=cos(α)·ETrep
E=1−ETr F=cos(α)·ETr
According to equations (6) and (7), the following can be deduced:
(where, n=1, 2, 3, . . . , and D≠1, because cos(α)·ETrep≠1)
According to equations (8) and (9), the following can be deduced:
The above equations are deduced by introducing a steady state condition and a zero crossing point condition of a longitudinal magnetization component in the present invention.
The steady state condition is known in the art. In particular, when in a steady state, the longitudinal magnetization component of fat before each f3 pulse should be the same; therefore, the steady state condition is:
Mβ(m +1)=Mβ(m) (11).
Furthermore, based on the features of the aforementioned k-space and k-space filling line, it is recognized that when the longitudinal magnetization component of fat before an excitation pulse corresponding to one or more k-space filling lines is zero, it is possible to obtain optimized fat suppression. In particular, when the longitudinal magnetization component of fat before an excitation pulse corresponding to a k-space center line is zero, it has the best fat suppression. Therefore, the zero crossing point condition of the longitudinal magnetization component can be set as:
Ma(KSpaceCenterLine)=0 (12),
where, KSpaceCenterLine is the index number of a k-space center line.
According to steady state condition (11) and equation (10), the following can be deduced:
MRβ(m)=E+F·C·(DN-1−1)/(D−1)+F·A·DN-1+F·B·DN-1·Mβ(m),
thereby
Mβ(m)={E+F·C·(DN-1−1)/(D−1)+F·A·DN-1}/(1−F·B·DN-1) (13)
In addition, the following can be deduced by combing zero crossing point condition (12) of the longitudinal magnetization component and equation (9):
0=C·(DKSpaceCenterLine-1−1)/(D−1)+A·DKSpaceCenterLine-1+B·DKSpaceCenterLine-1·Mβ(m)
thereby
Mβ(m)={C·(DKSpaceCenterLine-1−1)/(D−1)+A·DKSpaceCenterLine-1}/(−B·DKSpaceCenterLine-1) (14)
According to equations (13) and (14), the following can be deduced:
{E+F·C·(DN-1−1)/(D−1)+F·A·DN-1}/(1−F·B·DN-1)={C·(DKSpaceCenterLine-1−1)/(D−1)+A·DKSpaceCenterLine-1}/(−B·DKspaceCenterLine-1) (15)
The final general formula (15) is thereby deduced. With this formula, a person skilled in the art can easily calculate the flip angle β and the inversion time TlFill and TrFill. Nevertheless, for clarity, the flip angle β of a FatSat pulse and the inversion time TlFill and TrFill of a SPAIR pulse are hereinafter taken as an example, to give examples of calculating the flip angle and the inversion time.
Flip angle β of FatSat pulse:
For a spoiled gradient echo sequence provided with a FatSat pulse, the following parameters can be determined in advance according to the conditions of the magnetic resonance imaging hardware and user requirements and so on: Trep, α, KSpaceCenterLine, N, Tr=TrMin, Tl1=Tl1Min.
According to equation (15), the following can be deduced:
β=arccos(X/ETl1)
where
X=G1/(G1·G4−G2·G3)
G1=C(DKSpaceCenterLine-1−1)/(D−1)+A·DKSpaceCenterLine-1
G2=DKSpaceCenterLine-1
G3=E+F·C·(DN-1−1)/(D−1)+F·A·DN-1
G4=F·DN-1
Therefore, β can be calculated easily.
First inversion time TlFill and second inversion time TrFill of SPAIR pulse:
For a spoiled gradient echo sequence provided with a SPAIR pulse, the following parameters can be determined in advance according to the conditions of the magnetic resonance imaging hardware and user requirements and so on: Trep, α, β=180°, KspaceCenterLine, N, TrMin, Tl1Min. Also, as described above, Tl1=TlFill+Tl1Min, and Tr=TrFill+TrMin.
The influence of TlFill and TrFill on the position where the longitudinal magnetization component of fat is zero is opposite, i.e., a longer TrFill will increase line indexes with a zero fat signal, while a longer TlFill will decrease line indexes with a zero fat signal. Also, for any parameter set, the result of the inversion time will be (TlFill>=0, TrFill=0) or (TlFill=0, TrFill>=0).
Therefore, the first inversion time TlFill and the second inversion time TrFill of the SPAIR pulse can be calculated in the following steps:
Step A: maintaining TrFill=0, i.e. Tr=TrMin, and calculating TlFill.
According to equation (15), the following can be deduced:
TlFill=Tl1−Tl1Min=−T1·ln(X/cos(β))−Tl1Min
where
X=(G1+G2)/{G1·G4+G2/cos(β)−G2·G3}
G1=C·(DKSpaceCenterLine-1−1)/(D−1)
G2=DKSpaceCenterLine-1
G3=E+F·C·(DN-1−1)/(D−1)
G4=FDN-1
Therefore, TlFill can be calculated easily. If TlFill>=0, it means that the current parameter set has calculated the inversion time, where TlFill>=0 and TrFill=0; and if TlFill<0, it means that when TrFill=0, the result set (TlFill, TrFill=0) from the calculation does not meet the requirements, and therefore step B needs to be performed.
Step B: maintaining TlFill=0, i.e. Tl1=TlMin, and calculating TrFill.
According to equation (15), the following can be deduced:
TrFill=Tr−TrMin=−T1 ln(Y/cos(β))−TrMin
where
Y=(G1+G2)/(G1·G4−G2·G3)
G1=C·(DKSpaceCenterLine-1−1)/(D−1)+A·DKSpaceCenterLine-1
G2=B·DKSpaceCenterLine-1
G3=C·(DN-1−1)/(D−1)+A·DN-1−1/cos(α)
G4=B·DN-1
Therefore, TrFill can be calculated easily. If TrFill>=0, it means that the current parameter set has calculated the inversion time, where TlFill=0 and TrFill>=0; and if TlFill<0, it means that for the current parameter set there is no corresponding inversion time, and the result will be TrFill=0, and TlFill=0.
It should be noted that, although in the above example, TrFill=0 is maintained to calculate the corresponding TlFill in step A, and then in step B TlFill is maintained to calculate the corresponding TrFill, this is only an example. It is also permitted, in step A, to maintain TlFill=0 and calculate the corresponding TrFill, and then if necessary, in step B, maintain TrFill and calculate the corresponding TrFill.
The foregoing has described in detail the general solution for calculating an optimized flip angle and inversion time. A method for magnetic resonance imaging according to this embodiment will be described below with reference to
As shown in
(Embodiment 2)
The abovementioned embodiment 1 describes a method for optimizing a fat suppression pulse, and the optimization method can be applied to a water suppression pulse.
In magnetic resonance imaging, in addition to fat suppression, water signals of a human tissue may need to be suppressed by applying, for example, a water saturation pulse and a FLAIR (fluid attenuated inversion recovery) pulse. The general formula (15) given in embodiment 1 of the present invention is applicable to both the water saturation pulse and the FLAIR pulse. More specifically, for the water saturation pulse, an optimized flip angle can be calculated using the same method as the solution for FatSat described in embodiment 1, so as to obtain an optimized water suppression pulse, and imaging can be performed by applying the magnetic resonance imaging method described with reference to
In fact, in addition to the fat suppression pulse and the water suppression pulse, the optimization method described in embodiment 1 of the present invention can be applied to any particular spectrum suppression pulses, and all that needs to be done is to change parameters such as T1 or the center frequency of the suppression pulse and so on. That is to say, the method for magnetic resonance imaging described in embodiment 1 of the present invention can actually be applied to any spectrum suppression pulses.
The method for magnetic resonance imaging according to the present invention has been described in detail above. In the method for magnetic resonance imaging, signals of a specific spectrum composition can be well suppressed by performing imaging using an MRI sequence provided with an optimized spectrum suppression pulse, so that high-quality images can be obtained.
As described above, the optimization method of a spectrum suppression pulse according to one aspect of the present invention has good universality and can be widely used. Also, the energy efficiency of spectrum signal suppression is improved by optimizing the spectrum suppression pulse. In addition, signals of a specific spectrum composition can be well suppressed by performing imaging using an MRI sequence provided with an optimized spectrum suppression pulse, so that high-quality images can be obtained. MATLAB simulation results and in vivo test results from the application of the abovementioned method of the present invention will be described below with reference to
MATLAB Simulation Results
In Vivo Test Results
Arrows below
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventor to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of the inventor's contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0362793 | Sep 2012 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6272369 | Tan | Aug 2001 | B1 |
7292039 | Laub et al. | Nov 2007 | B1 |
7706855 | Priatna et al. | Apr 2010 | B1 |
20050070785 | Ahluwalia | Mar 2005 | A1 |
20080150531 | Hughes | Jun 2008 | A1 |
20080224699 | Hughes | Sep 2008 | A1 |
20080238421 | Kitane | Oct 2008 | A1 |
20100013478 | Abe | Jan 2010 | A1 |
20100268062 | Edelman | Oct 2010 | A1 |
20100296717 | Takizawa | Nov 2010 | A1 |
20110133735 | Yokosawa et al. | Jun 2011 | A1 |
20120161760 | Kuhara | Jun 2012 | A1 |
20120194187 | Rehwald | Aug 2012 | A1 |
20130274592 | Shin | Oct 2013 | A1 |
20140062474 | Zhou | Mar 2014 | A1 |
20140133725 | Feiweier | May 2014 | A1 |
20150042336 | Feiweier | Feb 2015 | A1 |
20150131884 | Kimura | May 2015 | A1 |
20150216428 | Zhou | Aug 2015 | A1 |
20150301138 | Griswold | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
102772206 | Nov 2012 | CN |
Entry |
---|
Greg Brown, “Fat Suppression Techniques,” New Zealand MR Users Meeting, Auckland, NZ, (1996). |
Haacke et al., “Magnetic Resonance Imaging: Physical Principles and Sequence Design,” Chapter 4 (1999). |
Number | Date | Country | |
---|---|---|---|
20140084922 A1 | Mar 2014 | US |