Method and apparatus for making a vibration-responsive intrusion detection barrier

Information

  • Patent Grant
  • 4978943
  • Patent Number
    4,978,943
  • Date Filed
    Monday, December 18, 1989
    35 years ago
  • Date Issued
    Tuesday, December 18, 1990
    34 years ago
Abstract
A new and improved apparatus and process for continuously forming an intrusion detection barrier coil from a strip of barbed metal tape is provided. The apparatus includes a series of rollers for deforming the central portion of the barbed metal tape into a generally U-shaped configuration, as well as a dispenser for depositing an elastomeric filler material into the U-shaped tape, and a mechanism for feeding a continuous length of vibration-sensitive electrical cable in the elongated, U-shaped tape. Thereafter, the composite assembly of U-shaped barbed tape, elastomeric and electrical cable is continuously forced through a set of opposed rollers so as to roll form the U-shaped section into a generally circular, closed configuration. The composite structure is then bent by a series of offset rollers in a generally horizontal plane to form a helical coil of intrusion detection barbed tape. The subject process is performed in a continuous manner as the strip of barbed tape is advanced through a roll forming station to define the U-shaped central portion of the tape, through the stations wherein the elastomeric filler material and vibration-sensitive cable are fed into the U-shaped central portion of the barbed tape, through the roll forming station wherein the cable and filler material are encased within the barbed tape, and through the edge bending station wherein the composite barbed tape is formed into a helical coil.
Description
Claims
  • 1. A method for continuously forming an intrusion detection barrier, said method comprising the steps of:
  • providing a barbed tape having an elongated central supporting portion and a plurality of barb clusters extending unitarily therefrom;
  • forming a longitudinally extending channel in said central supporting portion;
  • feeding an elastomeric filler material into the channel;
  • feeding an elastomeric filler
  • placing an elongated vibration-sensitive cable in the channel; and
  • forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material, whereby the filler material prevents accumulation of moisture between the cable and the barbed tape and enhances the transmission of vibrations to the cable, with the steps of forming the channel, feeding the filler, placing the cable in the channel and forming the central supporting portion around the cable being carried out substantially simultaneously at a plurality of spaced locations along the barbed tape.
  • 2. A method for continuously forming an intrusion detection barrier as in claim 1 wherein said step of forming a longitudinally extending channel in said central supporting portion is performed in a sequence of operations which progressively enlarges the cross-sectional size of the channel.
  • 3. A method for continuously forming an intrusion detection barrier as in claim wherein the longitudinally extending channel is formed in said central supporting portion by rolling the barbed tape between two cooperating rollers.
  • 4. A method for continuously forming an intrusion detection barrier as in claim 3 wherein the barbed tape is successively rolled between a plurality of sets of cooperating rollers to progressively increase the cross-sectional size of the channel.
  • 5. A method for continuously forming an intrusion detection barrier as in claim 1 including the step of transversely scoring the elongated central supporting portion of the barbed tape at longitudinally spaced locations to facilitate termination of the vibration-sensitive cable with electrical end connectors.
  • 6. A method for continuously forming an intrusion detection barrier as in claim 1 including the further step of edge bending the formed barbed tape and vibration-sensitive cable in a generally horizontal plane to form a generally helical intrusion detection barrier.
  • 7. A method for continuously forming an intrusion detection barrier as in claim 1 wherein said step of forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material is effected by roll forming the barbed tape using two opposed rollers.
  • 8. A method for continuously forming an intrusion detection barrier as in claim 7 further including the step of forcing the vibration-sensitive cable into the filler material in the channel prior to the step of forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material.
  • 9. A method for continuously forming a helical intrusion detection barrier, said method comprising the steps of:
  • providing a barbed tape having an elongated central supporting portion and a plurality of barbed clusters extending unitarily therefrom;
  • transversely scoring the elongated central supporting portion of the barbed tape at longitudinally spaced locations to facilitate termination of the helical intrusion detection barrier with electrical end connectors;
  • forming a longitudinally extending channel in said central supporting portion;
  • feeding a controlled amount of an initially flowable filler material into the channel;
  • placing an elongated vibration-sensitive cable in the channel;
  • forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material; and
  • edge bending the formed barbed tape and vibration-sensitive cable in a generally horizontal plane to form the helical intrusion detection barrier, with the steps of scoring the barbed tape, forming the channel, feeding the filler, placing the cable in the channel, forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material, and edge bending being carried out substantially simultaneously at a plurality of spaced locations along the barbed tape.
  • 10. A method for continuously forming a helical intrusion detection barrier as in claim 9 wherein said step of forming a longitudinally extending channel in said central supporting portion is performed in a sequence of operations which progressively enlarges the cross-sectional size of the channel.
  • 11. A method for continuously forming a helical intrusion detection barrier as in claim 9 wherein the longitudinally extending channel is formed in said central supporting portion by rolling the barbed tape between two cooperating rollers.
  • 12. A method for continuously forming a helical intrusion detection barrier as in claim 11 wherein the barbed tape is successively rolled between a plurality of sets of cooperating rollers to progressively increase the cross-sectional size of the channel.
  • 13. A method for continuously forming a helical intrusion detection barrier as in claim 9 wherein said step of forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material is effected by roll forming the barbed tape using two opposed rollers.
  • 14. A method for continuously forming a helical intrusion detection barrier as in claim 13 further including the step of forcing the vibration-sensitive cable into the filler material in the channel prior to the step of forming the central supporting portion of the barbed tape around the vibration-sensitive cable and the filler material.
  • 15. An apparatus for continuously forming a helical intrusion detection barrier including a vibration-sensitive electrical cable disposed within the central support portion of an elongated strip of metallic barbed tape comprising:
  • drive means;
  • first forming means connected to said drive means for forming a longitudinally extending channel along the central support portion of the elongated strip of metallic barbed tape;
  • dispensing means for dispensing an elastomeric filler material into said channel;
  • feeding means for inserting a continuous length of vibration-sensitive electrical cable in said channel of said metallic barbed tape;
  • second forming means for deforming said central portion of the metallic barbed tape so as to encase said vibration-sensitive cable therein; and
  • edge forming means for bending the intrusion detection barrier in a generally horizontal plane to form the helical intrusion detection barrier, with the first and second forming means, the dispensing means, the feeding means, and the edge forming means operating substantially simultaneously at a plurality of spaced locations along the length of the metallic barbed tape.
  • 16. An apparatus for continuously forming a helical intrusion detection as in claim 15 further including scoring means for transversely scoring the elongated central supporting portion of the barbed tape at longitudinally spaced locations to facilitate termination of the vibration-sensitive cable with electrical end connectors.
  • 17. An apparatus for continuously forming a helical intrusion detection barrier as in claim 15 wherein said first forming means comprises a series of sets of cooperating rollers connected to said drive means for progressively enlarging the cross-sectional size of the channel formed in the central support portion of the elongated strip of metallic barbed tape.
  • 18. An apparatus for continuously forming a helical intrusion detection barrier as in claim 15 wherein said second forming means comprises two opposed rollers, the axes of which are oppositely inclined to the vertical, with the nip of said rollers being disposed so as to encase said vibration-sensitive cable within the central portion of the metallic barbed tape.
  • 19. An apparatus for continuously forming a helical intrusion detection barrier as in claim 15 further including roller means for forcing the vibration-sensitive electrical cable into the filler material in the channel of the central supporting portion of the barbed tape.
  • 20. An apparatus for continuously forming a helical intrusion detection barrier as in claim 15 wherein said edge forming means comprises a plurality of rollers, one of which is transversely adjustable relative to the longitudinal axis of the intrusion detection barrier in order to control the diameter of the helical intrusion detection barrier.
  • 21. An apparatus for continuously forming an intrusion detection barrier including a vibration-sensitive electrical cable disposed within the central support portion of an elongated strip of metallic barbed tape comprising:
  • drive means;
  • first forming means connected to said drive means for forming a longitudinally extending channel along the central support portion of the elongated strip of metallic barbed tape;
  • dispensing means for dispensing an elastomeric filler material into said channel;
  • feeding means for inserting a continuous length of vibration-sensitive electrical cable in said channel of said metallic barbed tape; and
  • second forming means for deforming said central portion of the metallic barbed tape so as to encase said vibration-sensitive cable therein, with the first and second forming means, the dispensing means, and the feeding means operating substantially simultaneously at a plurality of spaced locations along the length of the metallic barbed tape.
  • 22. An apparatus for continuously forming an intrusion detection barrier as in claim 21 further including scoring means for transversely scoring the elongated central supporting portion of the barbed tape at longitudinally spaced locations to facilitate termination of the vibration-sensitive cable with electrical end connectors.
  • 23. An apparatus for continuously forming an intrusion detection barrier as in claim 21 where said first forming means comprises a plurality of sets of opposed rollers for progressively increasing the cross-sectional size of the channel in the central support portion of the elongated strip of metallic barbed tape.
  • 24. An apparatus for continuously forming an intrusion detection barrier as in claim 22 wherein said scoring means comprises a fixed anvil and a movable anvil driven by a power cylinder, with said movable and fixed anvils being respectively disposed on opposite sides of the barbed tape.
  • 25. An apparatus for continuously forming an intrusion detection barrier as in claim 23 wherein said first forming means comprises four sets of opposed rollers, with each of said rollers being connected via a gear train to the drive means for simultaneous operation thereof.
CROSS-REFERENCE TO RELATED APPLICATION

The subject application is a continuation-in-part of U.S. application Ser. No. 274,414, filed Nov. 18, 1988, now U.S. Pat. No. 4,906,975, issued Mar. 6, 1990, by Anthony J. Casella, John W. Mainiero, Michael R. Mainiero, and Anthony R. Zagami, entitled VIBRATION-RESPONSIVE INTRUSION DETECTION BARRIER, and assigned to the assignee of the subject application. Helical barbed tape is widely employed to define an elongated antipersonnel barrier that may be mounted on the ground, at the base of a fence or at the top of a supporting structure. The typical helical barbed tape comprises an elongated helically formed central support from which spaced apart clusters of barbs extend. Each cluster of barbs typically comprises a total of four barbs, with a first pair of barbs extending from a root on one side of the central support and a second pair of barbs extending from a second root on the opposite side of the central support. Each barb is an elongated generally flat member having opposed converging edges which intersect at a very sharp point. The barbs on opposed sides of the central supporting portion may be offset relative to the central support. An early version of a helical barbed tape of this general type is shown in U.S. Pat. No. 3,463,455 which issued to Meckel. Helical barbed tapes of the general type shown in U.S. Pat. No. 3,463,455 have received very substantial commercial success in view of their exceptional performance as an antipersonnel barrier. Several improvements to the original Meckel barbed tape configuration have been made in recent years. In particular, double coil barbed tape barriers have been developed comprising an outer coil defining a helix having a first pitch and an inner coil defining a helix having a second pitch. The inner coil has been suspended generally centrally within the outer coil by a plurality of multistrand twisted cables extending therebetween. The use of inner and outer coils defining different respective pitches creates a substantially enhanced antipersonnel barrier. In particular, an intruder attempting to move between adjacent loops of the outer coil is likely to be stopped by the inner coil. Another attempt to improve the basic structure of Meckel's U.S. Pat. No. 3,463,455 is shown in U.S. Pat. No. 4,503,423 which issued to Joseph J. Mainiero et al on Mar. 5, 1985. In particular, U.S. Pat. No. 4,503,423 shows a single coil structure wherein adjacent loops in the coil are welded to one another at a plurality of spaced apart locations about each loop. The weldment between adjacent turns on the helical barbed tape is intended to continuously maintain opposed major surfaces of adjacent turns of the coil in abutting face-to-face surface contact to prevent longitudinal, radial or pivotal movement of adjacent turns relative to one another at the attachment points. The rigid permanent weldment of adjacent coils at a plurality of such attachment points defines a barrier much like the old concertina barrier which is intended to prevent intruders from slipping between adjacent coils. Many helical barbed tape products include a helically extending reinforcing wire about which the central helical support of the barbed tape is wrapped. An early version of a barbed tape product of this general type is shown in U.S. Pat. No. 2,908,484 which issued to Uhl on Oct. 13, 1959. The typical barbed tape product of this general type is manufactured by first wrapping a longitudinally extending barbed tape around the reinforcing wire, and then forming the combined tape and reinforcing wire into a helical configuration. Several other improvements to helical barbed tape antipersonnel barriers have recently been made. For example, U.S. Pat. No. 4,718,641 which issued to Michael R. Mainiero on Jan. 12, 1988 and which is assigned to the assignee of the subject application is directed to a helical barbed tape with reinforced barbs. The reinforcements formed in the barbs, as shown in U.S. Pat. No. 4,718,641, substantially increase the strength of the barbs, and thereby enable the use of a thinner gauge metal with no negative effects on the performance of the barbed tape. U.S. Pat. No. 4,718,641 also shows that a reinforcing wire can be used in combination with the barbed tape with reinforced barbs. The reinforcing wire provides further support for the central supporting portion of the barbed tape, thereby further ensuring the specified performance of the product even with a thinner gauge metal material for the tape. The intrusion prevention art further includes electronic detection devices. In particular, it has been considered desirable to combine the physical barriers provided by helical barbed tape with an electronic detection means such that an attempt to breach the physical barrier will be electronically detected. The typical breach that should be protected against should include attempts to pass between coils, to cut the helical barbed tape and/or to crush the barrier with wooden planks, vehicles or the like. One attempt to combine electronic intrusion detection devices with a barbed tape is shown in the above referenced U.S. Pat. No. 4,503,423. In particular, U.S. Pat. No. 4,503,423 attempts to use the helical barbed tape as a wave guide. A microwave transmitter is disposed at one end of the elongated helical barbed tape shown in U.S. Pat. No. 4,503,423 and directs a signal generally centrally through the helix defined by the barbed tape. A receiver is disposed at the other end of the barbed tape to receive the microwave signals from the transmitter. Variations in the received microwave signal may be indicative of an intrusion attempt. Another prior art attempt to combine intrusion detection into an antipersonnel barrier is shown in U.S. Pat. No. 4,680,573 which issued to Ciordinik et al. on July 14, 1987. Ciordinik shows a single coil barbed tape similar to the above referenced Uhl structure. However, the reinforcing wire shown in the single coil of U.S. Pat. No. 4,680,573 includes an electrical or optical conductor. The signal carried by the electrical or optical conductor will be varied or broken if the barbed tape or barbed wire is cut or crushed. Although the apparatus shown in U.S. Pat. No. 4,680,573 may be effective for detecting certain types of breaches to the antipersonnel barrier, it will be ineffective for detecting any type of breach that does not cut or substantially crush the wire. The prior art also includes the combination of a standard chain link or barbed wire fence in combination with a linear length of coaxial cable transducer extending along the length of the fence and capable of producing an alarm when an intrusion or compromise of the fence is attempted. This prior art teaching is shown, for example, in U.S. Pat. No. 3,763,482 which issued to Burney et al. on Oct. 2, 1973. The apparatus shown in U.S. Pat. No. 3,763,482 includes a coaxial cable with a dielectric filler comprising a radially polarized electret which develops and transmits a signal along the cable in response to deformations of the cable at any point along its length. In particular, the cable shown in U.S. Pat. No. 3,763,482 may be clamped to a chain link or barbed wire fence in a generally linear disposition to generate an electrical signal in response to an attempt by an intruder to climb or cut the fence. Still another prior art system is marketed under the trademark "PERISTOP" by Bigotec AG of Aaron, Switzerland, and comprises a galvanized hollow steel wire containing an insulated copper conductor. The "PERISTOP" wire may be installed inside a conventional barbed tape concertina. The "PERISTOP" apparatus is similar to the above referenced U.S. Pat. No. 4,680,573 to Ciordinik et al. in that it is responsive only to the destruction or cutting of the wire. U S. Pat. No. 4,818,972 is a continuation-in-part of the above referenced U.S. Pat. No. 4,718,641 and was filed by the inventors herein and is assigned to the assignee of the subject invention. U.S. Pat. No. 4,818,972 shows the helical barbed tape with reinforced barbs and further including a central vibration-sensitive reinforcing cable, such as an electret cable, a piezoelectric cable or a vibration-sensitive geophone transducer cable. A general discussion of vibration-sensitive electret coaxial cables, geophone transducer cables or piezoelectric transducer cables is provided in Intrusion Detection Systems Principles of Operation and Application by Robert L. Barnard which was published in 1981 by Butterworth Incorporated of Woburn, Massachusetts. Despite the desirable features found in certain of the above referenced helical barbed tape antipersonnel barriers and certain electronic detection systems, it is desired to provide significant advances in the combination of these two art areas. In particular, the prior art electronic intrusion detection systems generally did not perform adequately as an antipersonnel barrier, while most prior art helical barbed tapes did not provide adequate detection of attempts to breach the physical barrier. With the exception of the above referenced U.S. Pat. No. 4,818,972, the prior art attempts to combine intrusion detection with helical barbed tape antipersonnel barriers have been responsive to cuts in the helical barbed tape and/or complete crushing of the helical barbed tape, but not to most other attempts to breach the physical barrier. Some other prior art attempts to marry these two technologies, such as the wave guide in the above referenced U.S. Pat. No. 4,503,423, have provided structures that would perform under laboratory conditions, but which were impractical when applied in the field. In view of the above, it is an object of the subject invention to provide an effective antipersonnel barrier that is operative to detect attempts to breach the physical barrier. Another object of the subject invention is to provide an antipersonnel barrier that is responsive to cuts and crushing of the wire as well as any significant movement within the barrier. It is an additional object of the subject invention to provide an intrusion detection system wherein an intrusion detection wire is physically protected by an array of antipersonnel barriers. Still another object of the subject invention is to provide an antipersonnel barrier and intrusion detection system wherein the intrusion detection portions of the system are supported relative to the system for preventing false alarms. Yet another object of the subject invention is to provide an antipersonnel barrier and intrusion detection system wherein the sensitivity of the intrusion detection system is readily adjustable. It is a further object of the subject invention to provide an antipersonnel barrier that is easily and inexpensively manufactured and installed. Another object of the subject invention is to provide an intrusion detection system wherein electronic components are protected from environmental moisture. It is still a further object of the present invention to provide a new and improved apparatus for manufacturing, in a continuous manner, a vibration-responsive intrusion detection barrier. It is another object of the present invention to provide a new and improved process for manufacturing, in a continuous process, a vibration-responsive intrusion detection barrier. The subject invention is directed to a new and improved apparatus and process for continuously forming a helical barbed tape which comprises a vibration-sensitive cable as a central reinforcing wire. The vibration-sensitive cable may be one of the known types of cables, including electret coaxial cables, geophone transducer cables, piezoelectric transducer cables and others. The preferred vibration-sensitive cable, as explained in greater detail herein, employs linear induction means to sense vibrations. The vibration-sensitive cable is surrounded by the central supporting portion of the elongated helically formed barbed tape. The vibration-sensitive cable may be at least partly surrounded by a filler material disposed intermediate the cable and the central supporting portion of the helical barbed tape. The filler material may be a silicone or other such initially flowable material. The filler helps transmit vibrations to the cable and prevents the accumulation of water or corrosive environmental deposits between the vibration-sensitive cable and the helical barbed tape. In some environments, the accumulation of moisture or corrosives could cause a degradation of the product and/or its performance. The helical barbed tape with the vibration-sensitive cable therein may be used independently or may be attached to another structure, fence or barrier. A preferred embodiment of the barrier of the subject invention is directed to a double coil helical barbed tape comprising an outer coil and an inner coil supported generally centrally within the outer coil. The inner coil comprises the vibration-sensitive cable as explained above. The inner coil may define a pitch which is greater than the pitch defined by the outer coil. Additionally, the inner coil may define a helix generated in the opposite direction from the helix of the outer coil. The outer coil preferably is defined by a helical barbed tape having a generally flat or slightly arched central supporting portion from which spaced apart clusters of barbs extend. Thus, the central supporting portion of the outer coil need not be wrapped around a reinforcing wire. The pitch of the outer coil may be controlled by spacer wires and/or by connecting means for generally holding adjacent coils in proximity to one another at a plurality of locations about each loop. In particular, the connecting means between adjacent loops may define a substantially rigid connection, such as welding, or mechanical means for providing a less rigid connection and/or a controlled amount of movement at selected points between adjacent loops. The inner helical barbed tape with the vibration-sensitive cable securely mounted therein may be supported relative to the outer coil of helical tape by a plurality of strap means extending in generally radial directions between the inner and outer barbed tapes. The strap means may be welded to both the inner and outer barbed tapes or mechanically connected to at least one of the inner and outer helical barbed tapes. The strap means or other such means supporting the inner helical barbed tape within the outer helical barbed tape may also define the connection means between adjacent loops of the outer helical barbed tape. The apparatus of the subject invention may further comprise electrical signal processing means for identifying vibration-related signals generated by the vibration-sensitive cables within the helical barbed tape. The electrical means may be variable to adjust the sensitivity of the apparatus. The subject invention may further comprise alarm means for generating alarm signals in response to signals sensed by the vibration-sensitive cable. The alarm means may be operative to identify a particular location of a sensed vibration signal. The subject invention is further directed to a method for continuously making a helical barbed tape with a vibration sensitive cable therein. The method comprises the step of forming an elongated channel in the blanked tape. A filler material is then urged into the channel in a metered amount. The vibration-sensitive cable is then laid in the channel and the channel is formed substantially around the cable, such that the cable is supported relative to the barbed tape by the filler. The filler is metered to substantially fill all voids and to enhance the transmission of vibrations from the tape to the cable. The method steps may be carried out simultaneously at a plurality of spaced apart locations to define a continuous method. The method of the subject invention may further comprise the step of continuously bending the cable in a horizontal plane so as to form the vibration-sensitive cable into a helical configuration. Still further, the subject invention provides a new and improved apparatus for continuously manufacturing a vibration-sensitive cable. The apparatus preferably includes a power supply for simultaneously driving a series of rollers for forming an elongated channel in a strip of metal tape that has been blanked to form barbs along the length thereof. The elongated central portion of the tape is formed to have a generally U-shaped cross-section in the central portion thereof. The apparatus also includes a dispensing means for dispensing a controlled amount of elastomeric material into the U-shaped channel of the barbed tape, as well as a vibration-sensitive cable supply station for feeding a continuous length of cable into the U-shaped channel portion of the tape. The apparatus also includes additional roller means for roll forming the central portion of the metal tape about the vibration-sensitive cable and the elastomeric material to form a continuous structure. The latter is then driven through an additional series of rollers of the subject apparatus so as to bend the composite cable/tape structure in a generally horizontal plane and into a helical coil configuration. The subject apparatus may include an additional station for scoring the blanked metal tape at selected locations across the width thereof to facilitate removal of the metal tape from the vibration-sensitive cable preparatory to providing electrical connectors at the opposite ends of the vibration-sensitive barrier coil.

US Referenced Citations (19)
Number Name Date Kind
RE30814 Mainiero Dec 1981
2908484 Uhl Oct 1959
3010701 Klemm Nov 1961
3463455 Meckel Aug 1969
3763482 Burney et al. Oct 1973
3947835 Laymon Mar 1976
3956743 Geiszler et al. May 1976
4028925 Mainiero Jun 1977
4040603 Mainiero Aug 1977
4365239 Mongeon Dec 1982
4503423 Mainiero et al. Mar 1985
4509726 Boggs et al. Apr 1985
4680573 Ciordinik et al. Jul 1987
4718641 Mainiero Jan 1988
4760295 Macalindin Jul 1988
4777476 Dank Oct 1988
4818972 Mainiero et al. Apr 1989
4829286 Zvi May 1989
4906975 Casella et al. Mar 1990
Non-Patent Literature Citations (3)
Entry
Intrusion Detection Systems by Robert L. Barnard 1981 (pp. 71-74).
"Peristop" Brochure-Bigotec AG, Aaron, Switzerland.
"Guardwire 300 Series" Brochure; Printed in U.K.-Guardwire of Kingsfield Industrial Estate, Derby Road, Wirksworth, Derby DE4 4BG, England-Complete Brochure.
Continuation in Parts (1)
Number Date Country
Parent 274414 Nov 1988