The invention is directed to a method and apparatus for making an absorbent composite from a continuous tow.
An absorbent composite is a component of a disposable absorbent garment. Such garments include, but are not limited to, infant diapers or training pants, adult incontinence products, and feminine hygiene products. Typically, the absorbent composite comprises mixtures of fibrous material (e.g., wood pulp or fluff) and a superabsorbent polymer (SAP) that are sandwiched between strata, such as tissues, nonwovens, and permeable and impermeable films.
It is known to use continuous tow in the manufacture of absorbent composites. See Japanese Kokoku 60-26537, US SIR H1565, and U.S. Pat. Nos. 6,068,620; 6,253,431; and 6,543,106. Each is discussed below.
Japanese Kokoku 60-26537 discloses an absorbent structure made of crimped acetate tow and pulverized pulp but no SAP. Referring to
U.S. Statutory Invention Registration H1565 discloses an absorbent structure made of crimped acetate tow and SAP that is preferably adhered to the opened tow by a binder. The tow is opened with a Korber & Co. Model AF2 machine (a common machine used in the manufacture of cigarette filters) and subsequently a mixture of binder and SAP or binder then SAP is added to the tow.
U.S. Pat. No. 6,068,620 discloses an absorbent core made of fibrous crimped acetate tow and SAP between an upper and lower layer. Referring to
U.S. Pat. Nos. 6,253,433 and 6,543,106 disclose a method of making an absorbent structure from crimped acetate tow and SAP. Referring to
There is, however, a need for more practical processes and apparatus to make an absorbent composite.
A method and apparatus for making an absorbent composite from continuous tow is disclosed. The method and apparatus includes the steps of or means for spreading a crimped tow; de-registering the crimped tow; shaping the de-registered tow; and distributing a particulate onto the shaped tow. The line speed of the particulate laden, shaped tow is greater than 190 m/min.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
a, 6b, 6c, and 6d are elevational views of a portion of the particulate distribution mechanism of the present invention.
Referring to the drawings wherein like numerals indicate like elements, there is shown in
The absorbent composite discussed herein is for use in manufacture of absorbent garments. Absorbent garments include, for example, diapers or training pants, adult incontinence products, and feminine hygiene products. The absorbent composites disclosed herein are particularly useful in the absorbent cores and garments disclosed in U.S. Patent Publications Nos. 2003/0105442; 2003/0114814; 2003/0135177; and 2003/0135178, each is incorporated herein by reference.
Tow is a large strand of continuous manufactured fiber filaments without definite twist, collected in a loose, band- or rope-like form, usually held together by crimp. Suitable tows materials include, but are not limited to, polyolefins, polyesters, polyamides, cellulosics, and mixtures thereof. Of these, cellulosic fibers are preferred. Cellulosic fibers include rayon, acetate (cellulose acetate), and triacetate (cellulose triacetate) fibers. Acetate tow is most preferred. For example, an acetate tow may consist of about 2,500 to about 25,000 fibers having an individual denier of from about 1 to about 15, preferably from 2 to 10, and most preferably 3 to 8. The total denier of a single acetate tow band may range from about 2,500 to about 125,000, preferably 15,000 to 75,000, and most preferably 20,000 to 40,000. The tow is preferably crimped, with about 5 to about 40 crimps per inch (2 to 16 crimps per cm), preferably, 25 to 30 crimps per inch (10 to 12 crimps per cm). The fibers of the tow may have any cross-sectional shape, including ‘y,’ ‘x,’ round, crenulated, dog bone or combinations thereof. The tow may include a finish, the finish comprising about 0.3% to about 5% by weight of the tow, preferably, 0.5 to 2.0%. The tow's cross-sectional dimensions may range from about 25 mm to 100 mm in width, preferably, 40 to 60 mm, and about 1 to 10 mm in height, preferably 2 to 5 mm. Tows are commercially available and are delivered in compressed bales.
In
Bale 12 is preferably located at a right angle to the travel of the tow through the de-registering-apparatus 40, tow shaping apparatus 54, and particulate distribution apparatus 56. The bale may be located at any location, including a position inline with the foregoing apparatus. However, location at the right angle is preferred to allow easy access to the bale for changing out depleted bales and to allow easier visual inspection of the tow by an operator.
Tow 14 is delivered to spreading apparatus 13 from bale 12. Apparatus 13 guides between two locations and spreads the tow. Spreading apparatus 13 preferably has at least two banding jets. These banding jets work to spread and stabilize the tow as it moves through the rest of apparatus 10. Tow 14 is drawn from bale 12 and guided through rings 16 to a first banding jet 18. Banding jet 18 is a device that is used to spread (i.e., increase the width) and stabilize the tow 14. Banding jet 18, see
Tow carrier structure 26 carries tow 14 leaving banding jet 18 over the distance from jet 18 to the rest of apparatus 10. Guide roller 28, located at the distal end of carrier 26, re-orients the tow for entry into the rest of the apparatus 10.
Second banding jet 30 receives tow 14 from guide roller 28. The second banding jet 30,
Cabinet 38 (shown in phantom) contains de-registering apparatus 40 that receives tow 14 from spreading apparatus 13. Cabinet 38 acts as a shielding device to prevent contaminates such as adhesives from gumming up or fouling the roll surfaces of the de-registering apparatus 40 and as a safety device. While cabinet 38 is preferred, other means can be used to accomplish the shielding function, such as, for example, curtains, air curtains, wire cages. Cabinet 38 will be discussed in greater detail below.
De-registering apparatus 40, which is preferably contained within cabinet 38, has at least two pairs of rollers 42 and 48. In de-registration, the individual crimped filaments of the tow are de-registered (or opened) and prepared for shaping. Roller pair 42 has a metal-faced roller 44 and a rubber-faced roller 46 (rubber-faced refers to any elastic polymer). Roller pair 48 also has a metal-faced roller 50 and a rubber-faced roller 52 (rubber-faced refers to any elastic polymer). The metal-faced rollers are driven and have diameters of 160 mm. The rubber-faced rollers have diameters of 250 mm. The pair of rollers 42 and 48 may be vertically oriented (as shown), horizontally oriented, or at some angle therebetween. Metal-faced rollers 48 and 50 may be smooth, grooved, threaded, textured, or combinations thereof. When grooved or threaded, the ratio of open surface to flat surface may nominally range from 90:10 to 10:90, preferably with 25:75; 50:50; and 75:25, and most preferred, 75:25. The rubber-faced rollers are preferably placed opposite one another in the pairing as shown, but they may be disposed on the same side, preferably on the side closest to apparatus 54, so that fibers in the tow do not foul in the open surface of the metal rollers. The nip pressure between each roller pairs 42 and 48 is two (2) bars with a 70 mm diameter pressure cylinder. The roller pair 48 has greater surface speed than roller pair 42. When cellulose acetate tow is used, the ratio of roller speed for pair 48 (S48) to pair 42 (S42) may range from 1≦S48/S42≦2, and S48/S42 is preferably 1.1–1.7, and most preferred 1.3–1.4.
Optionally, a liquid application station 53 located after de-registration apparatus 40 may be used. Such liquids may be used to, for example, facilitate binding of fibers in the tow or particulate to the tow, or deodorize or scent the absorbent composite, or add an anti-microbial agent to the composite, or alter the hydrophilicity of the tow. Such liquids include water, hydrophilic liquids (such as alcohols, glycols, dimethyl sulfide, ketones, ethers and the like), plasticizers (such as triacetin), surfactants, and solutions containing plasticizers, surfactants and the like. Liquid application station 53 may include spray nozzles, disk applicators, rotating brush applicators, wick contact rolls, and the like, as is known in the art.
Tow shaping apparatus 54 receives the tow 14 from de-registering apparatus 40. Tow shaping apparatus 54 is used to shape the opened tow into a predetermined cross-sectional shape, preferably a generally rectangular cross-section, for use in the absorbent garment. Other cross-sectional shapes are also possible, they include: circular, oval, square, channeled, and grooved. A preferred tow shaping apparatus 54 is illustrated in, for example, U.S. Pat. No. 6,253,431, incorporated herein by reference. Another tow shaping apparatus 54 is illustrated in U.S. Pat. No. 5,331,976, incorporated herein by reference. When tow-shaping apparatus 54 has a 70 mm width, banding jet 18 has a width (W1) of 62.5 mm and banding jet 30 has a width (W2) of 65 mm. When apparatus 54 has a width of 110, W1 is 82.5 mm and W2 is 108 mm. When apparatus 54 has a width of 120, W1 is 102.5 mm and W2 is 118 mm. Additionally, apparatus 54 includes a dancer (not shown) that controls the thickness of the shaped tow as it exits apparatus 54. The dancer is preferably a plate pivotally mounted within apparatus 54 and adapted to have bearing engagement with the tow along the tow's width. The dancer controls the thickness of the tow to ensure uniform thickness of the tow and to enable the line speeds disclosed hereinafter. The dancer is also illustrated in U.S. Patent Publications 2003/0130638; 2003/0135176; 2003/0143324, each is incorporated herein by reference.
Particulate distribution apparatus 56 is located at the distal end of tow shaping apparatus 54. Particulate distribution apparatus 56 is used to distribute particulate in a predetermined manner onto and/or into the opened, shaped tow and will be discussed in greater detail below. Particulate particularly includes SAP, but also includes other solid materials, such as adhesives, fragrances, wood pulp, deodorizers, anti-microbial agents, and the like. Particulate distribution apparatus 56 is further described in U.S. Patent Publications Nos. 2003/0130638; 2003/0132762; 2003/0135176; and 2003/0143324, each is incorporated herein by reference.
Wind-up apparatus 60 is used to sandwich the particulate laden, shaped tow between strata (for example, tissues, nonwovens, and permeable and non permeable films). Apparatus 60 is conventional and driven. Strata 100 from unwind apparatus 62 is fed through a plurality of guide rollers 106 and passed by an adhesive applicator 64 to a vacuum apparatus 58. Adhesive applicator 64 may be any adhesive applicator, but preferably is a hot melt adhesive applicator. Vacuum applicator 58 is coupled to a vacuum source 104 (see
The line speed, as measured at the vacuum drum 58, is preferably greater than 190 m/min, preferably greater than 225 m/min, and most preferably greater than 250 m/min. The maximum line speed is about 300 m/min. The ratio of tow speed exiting from cabinet 38 to the line speed at the vacuum drum 58 is greater than 1 and less than 3, preferably between 1.8 to 3.0, and most preferably about 2.4. This allows accumulation of the tow in the tow shaping apparatus 54. Additionally, line speed can be used to control particulate distribution apparatus 56. Coupling line speed to apparatus 56 minimizes particulate (e.g., SAP) loss during ramp up and ramp down of apparatus 10.
Additionally, static elimination devices (not shown) may be placed in apparatus 10 adjacent the tow band to decrease static charges that may accumulate on the tow band. Placement of those devices is within the skill of the art. Further, the driven rollers are preferably coupled or controlled (not shown) in a conventional manner to facilitate start-up, shutdown, and vary line speeds during operation.
In
Referring to
The distribution of the particulate is controlled, in part, by an orifice 118,
The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3017309 | Crawford et al. | Jan 1962 | A |
3095343 | Berger | Jun 1963 | A |
3226773 | Paliyenko | Jan 1966 | A |
3262181 | Hawkins et al. | Jul 1966 | A |
3546722 | Watson | Dec 1970 | A |
4468845 | Harris | Sep 1984 | A |
4522616 | Hyde et al. | Jun 1985 | A |
5331976 | St.Pierre | Jul 1994 | A |
H1565 | Brodof et al. | Jul 1996 | H |
6068620 | Chmielewski | May 2000 | A |
6253431 | Ames et al. | Jul 2001 | B1 |
6543106 | Ames et al. | Apr 2003 | B1 |
20030105442 | Johnston et al. | Jun 2003 | A1 |
20030114814 | Baker et al. | Jun 2003 | A1 |
20030130638 | Baker | Jul 2003 | A1 |
20030132762 | Delzer et al. | Jul 2003 | A1 |
20030134559 | Delzer et al. | Jul 2003 | A1 |
20030135176 | Delzer et al. | Jul 2003 | A1 |
20030135177 | Baker | Jul 2003 | A1 |
20030135178 | Hansen | Jul 2003 | A1 |
20030143324 | Delzer et al. | Jul 2003 | A1 |
20030150551 | Baker | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
60-26537 | Oct 1982 | JP |
Number | Date | Country | |
---|---|---|---|
20050066496 A1 | Mar 2005 | US |