The present invention relates generally to the art of bag making. More specifically, it relates to bag making machines and a bag making method that create bags from a film or web and form seals and perforations or a line of weakness separating adjoining bags made from the web.
There are many know bag machines. One style is a rotary drum machine. Rotary drum machines are well known, and a detailed description may be found in U.S. Pat. Nos. 6,117,058, 4,934,993, 5,518,559, 5,587,032 and 4,642,084 (each of which is hereby incorporated by reference).
A detailed description of the operation of rotary bag machines may be found in the patents above, but their general operation may be see with respect to
The web is provided through dancer assembly 203 to drum 208. Drum 208 includes a plurality of seal bars 209. The seals bars are heated and create the seals forming the bags from web 201. Web 201 is held against drum 208 (and the seals bars) by a Teflon® coated blanket. The distance between seals created by the drum is related to the bag length (for bags formed end to end) or the bag width (for bags formed by making side seals). End to end bags are formed with one seal from the drum, and side to side bags are formed with a pair of seals. The drum diameter may be adjusted and/or less than all of the seal bars turned on to determine the distance between seals, and hence bag size.
Generally, rotary motion machines registers a downstream rotary knife to perforate between two seals, or beside a seal. Variations due to tension, film gauge variation, machine variations etc., occasionally causes seals to get cut off.
The prior art of
Controller 221 is connected to the various components to control speed, position, etc. Sensors may be used to sense print on the web to form the seals and/or register the perforation (place it in the correct location with respect) to the seal. Also, sensors may detect seals to try and create the perforation in the correct location. Sensing the seal has proven to be difficult. One prior art example of a system that sensed seals is described in U.S. Pat. No. 6,792,807, hereby incorporated by reference. If the perforation is placed too close to one side seal, then the seal may be cut off, rendering the bag useless.
Because sensing the seal is difficult, much waste is generated in bag making, or bags are ruined. The wasted web, (i.e. the web between a seal and the adjacent perforation), or the web used to make the ruined bag, can be very costly, particularly for high speed bag machines where the number of bags made per hour is great.
Another problem of prior art machines is that perforations may be skewed with respect to the seals, because the perforations are created downstream, and the web can wander or stretch. Also, a mechanical perforation knife must be adjusted every few days to continue to perform properly. Generally, sharp mechanical knives cannot be adjusted to change the perforation strength, and they can be costly, complex, and difficult to use.
Other type of bag machines, such as intermittent motion machines (not rotary drum machines) use burn off seals to seal and cut or perforate at the same time but speed is limited to about 300 fpm due to the reciprocating motion, dwell time, and difficulty handling the loose bags. Other intermittent motion machines, such as the CMD Icon, have seal bars with an integral toothed blade. The CMD CM300 machine has oscillating motion to move seal bars that have an integral toothed blade. Generally, intermittent motion machines are not as fast as rotary drum continuous machines, and thus produce far fewer bags per machine hour.
Accordingly, a method and machine for making bags that enhances the ability to locate the perforations close to the seals is desirable. Preferably this can be done without a downstream knife, to avoid problems associated therewith. Also, this is preferably done on a continuous motion machine, to avoid the slowness and difficulties associate with intermittent machines.
A bag machine, according to a first aspect of the invention, includes an input section, a rotary drum, and an output section, wherein a web travels from the input section, to the rotary drum, to the output section. The rotary drum includes at least one seal bar which has a first sealing zone and a weakening zone adjacent the first sealing zone.
The weakening zone is a heated perforator, and/or includes a heating wire, and/or disposed to create an auxiliary sealed area adjacent a perforation, according to various embodiments.
The heating wire has connected thereto a source of power that is at an adjustable voltage or magnitude, and/or pulsed, and/or a feedback loop is provided in other embodiments.
The heating wire is a nickel chromium resistance wire, preferably about 80% nickel and about 20% chromium, and/or disposed to be make intermittent contact with the web, and/or has a resistance of about 4 ohms/ft, and/or disposed in an insert inserted between the sealing zones in various embodiments.
The insert is comprised of glass mica and/or has a plurality of holes disposed along a line in the cross direction in other embodiments.
The weakening zone is disposed to create a line of weakness that varies in intensity, and/or is a separating zone, and/or includes a heat film, and/or includes a toothed blade, and/or includes a row of pins, and/or includes a source of air directed at the web, and/or includes a source of vacuum in various embodiments.
The toothed blade is retractable in accordance with another embodiment.
The seal bars have a second sealing zone such that the weakening zone is adjacent and between the first and second sealing zones in another embodiment. The distance in the machine direction from center to center of the first and second sealing zones is less than about 0.01, 0.1, and 0.30 inches in other embodiments.
The first and second sealing zones include a plurality of independently controlled temperature zones capable of making side seals and tape seals, and/or include cartridge heaters with a plurality of heat zones, and/or include a source of air disposed to cool at least a portion of the first and second sealing zones, and/or include at least one port for directing heated air to the web, and/or include at least one of a source of ultrasonic energy, microwave energy, and/or of radiative heat in various embodiments.
A sealing blanket is disposed to hold the web against the rotary drum and may be made of polyester material with a silicone layer that contacts the web in other embodiments.
The rotary drum has an adjustable diameter in another embodiment.
According to a second aspect of the invention, a bag is made by receiving a web, forming a first seal on the web using a seal bar on a rotary drum, and forming a weakened area adjacent the first seal. The weakened area is formed during at least a portion of the time the first seal is being formed.
The weakened area is formed for less than the time the first seal is being formed, and formed for about half the time the first seal is being formed in various embodiments.
Forming a weakened area includes, forming a consistently weak line, and/or forming a perforation, and/or forming a line of weakness that varies in intensity, and/or separating adjoining bags, and/or applying a vacuum to the web, and/or directing air at the web in other embodiments.
Forming a perforation includes heating a wire, and/or using a heat film, and/or contacting the web with a toothed blade that may or may not be retracted after the perforation is fanned, and/or contacting the web with a row of pins, and/or forming an auxiliary seal adjacent the perforation in various embodiments.
The wire has power applied thereto at an adjustable voltage, and/or that is pulsed in other embodiments.
A signal indicative of heat in the wire is monitored and the power applied is controlled in response thereto in various embodiments.
A second seal is formed such that the weakened area is adjacent and between the first and second seals in another embodiment. The distance from center to center of the first and second seals in the machine direction is less than about 0.50, 0.3, 0.1 and 0.01 inches in various embodiments.
The first and second seals have a plurality of independently controlled temperature zones, and/or are cooled, and/or are formed using ultrasonic energy, microwave energy, and/or radiative heat in various embodiments.
According to a third aspect of the invention a perforator for a rotary bag machine is an insert for a rotary drum including a weakening zone. It may or may not be retrofitted to existing machines.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description and the appended claims.
Before explaining at least one embodiment of the invention in detail it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting. Like reference numerals are used to indicate like components.
While the present invention will be illustrated with reference to a particular bag machine, it should be understood at the outset that the invention can also be implemented with other machines, and using other components. Bag machine, as used herein, includes a machine used to make bags such as draw tape bags, non-draw tape bags, and other bags. Any input section (unwinds and dancers, e.g.) and any output section (winders, folders, e.g.) may be used with the present invention.
Generally, the present invention provides for a rotary bag machine with an input section, a drum section, and an output section. A perforation or line of weakness is formed on the rotary drum, for at least part of the time the seal is being formed. For example, on a rotary bag machine the web might be in contact with the drum for about one-half of the drum cycle, and the perforator formed in one quarter of the drum cycle. The seal bar includes a sealing zone and applies heat as the drum rotates, thus fanning the seal. Seal bars, as used herein, includes an assembly, such as on a rotary drum, that applies heat to and seals the web, and the mounting mechanisms, perforators, etc. Sealing zone, as used herein, includes the portion of a seal bar that creates the seal.
The seal bars can have independently controlled temperature zones, for example for applying more heat to a draw tape portion of a side seal. Independently controlled temperature zones, as used herein, includes temperature zones along a sealing zone that can be controlled or caused to be different temperatures.
A perforator or weakening zone can be mounted on the seal bar, for example as part of an insert. The weakening zone can create a perforation or weakened area as the seal is being formed. The perforation can be created with heat, radiation, or by mechanical contact. Weakening zone, as used herein, includes the portion of a seal bar that creates a weakened area. Weakened area, as used herein, includes an area on the web which is weakened, such as by a perforation or a portion of the web being melted or burned off.
The insert can alternatively include a separating zone for separating adjoining bags. This typically requires more heat than weakening or perforating. Separating zone, as used herein, includes the portion of a seal bar that separates adjoining bags.
If the bag is a side seal bag, made with a pair of seals, the perforator is preferably disposed adjacent and between the pair of sealing zones. Adjacent, as used herein, includes being mounted with or close to. Between the sealing zones, as used herein, means the region, on a single seal bar assembly, between two heated seal tips.
Thus, the perforation is located consistently and correctly next to the seal. Less film is wasted because the distance between the pair of side seals is less. While typical prior bag machines have one inch between side seals, the preferred embodiment provides about 0.5 inches, more preferably 0.3 inches, and most preferably as little as about 0.01 inches between side seals. About, as used herein, includes a magnitude being close enough to a given value to function substantially the same as if the magnitude were the given value.
The perforator replaces a downstream perforator that needed to be readjusted every few days with an insert that does not need readjusting, although it might need to be replaced (such as monthly). Insert, as used herein with reference to a seal bar, includes an assembly mounted on or with the seal bar that is in addition to the sealing zone that creates the seal or seals.
A wide variety of perforators can be used, such as a heating wire, heat film, toothed blades, etc. Heat film, as used herein, includes a film used to apply heat to a specific area. The perforation strength may be adjusted by controlling the amount of heat (or pressure) applied at the perforator. The perforation may be clearly defined, a line of weakness, or a line of weakness that varies in intensity. Line of weakness that varies in intensity, as used herein, includes varying web strength along a line or curve, such as a perforation or such as a line where the web is not removed, but alternates between low and higher strength regions.
Using a heated perforator can advantageously create an auxiliary sealed area at the edge of the perforation or line of weakness. Heated perforator, as used herein, includes a device that uses thermal energy to perforate, through contact, convection, conduction or radiative heat. Heating wire, as used herein, is a wire used to heat, such as by passing electrical current therethrough. Auxiliary sealed area, as used herein, includes a sealed area formed by forming a perforation using heat. The edges of the perforation may include a strip where the web is sealed. This is in addition to the web being sealed by a distinct sealing zone. Radiative heat, as used herein, includes heat in the form of electromagnetic radiation, ultrasonic radiation, thermal radiation, etc.
The heated perforator may include a wire in intermittent contact with the web, to create the perforation pattern. Intermittent contact between the web and a sealing or perforating element, as used herein, includes the web being in contact with the element at some locations and not in contact at other locations, such as contact an d no contact alternations along a cross-machine direction line.
One embodiment provides for retrofitting existing machines by placing an insert on existing seal bars, or by replacing seal bars with seal bars designed to have a weakening zone, such as with an insert.
The blanket may be blankets such as those found in the prior art, although the preferred embodiment includes a blanket that is a Habisit® Silicone Belt, consisting of 2-ply polyester material with ⅛″ ground silicone top cover with an endless length Other blankets, preferably able to handle the high intermittent temperatures (600-800 F) that can be reached while burning a perforation and that have good release characteristics so the film does not stick to the belting, are contemplated in various embodiments, and may be Teflon®, silicon, hybrids, etc.
Turning now to
Drum 200 is preferably one similar to the CMD 1270GDS Global Drawtape System® and has approximately 0.5 seconds of seal dwell time at 600 fpm and has an adjustable diameter to easily change product repeat lengths. It has 4 seal bars equally spaced around the circumference that span across a 50″ web width. This drum can be used for making trash can liners or garbage bags, for example. Other drums could consist of more or less seal bars, larger or smaller diameter, or narrower or wider web widths.
Referring now to
Seal bar 300 preferably has a uniform temperature range across a given width of a web, with an independently controlled temperature zone at the edge for making a side seal while simultaneously making a tape seal with bar 401. Cartridge heater 310 is a custom wound heat zone such as those available from Watlow® or Themal Corp. in the preferred embodiment. The temperature profile for specific or different temperature setting combinations (desirable especially on thin films) may be controlled using compressed air cooling of hot zones, as described below. Air cooling is also used for isolating different temperature zones which are located next to each other but are set at greatly different temperatures such as 300 F (bar 304) for side seals but 450 F (bar 401) for tape seals, in various embodiments.
Referring now to
One alternative embodiment provides for seal bars that form side seals only, with no drawtape seal zone. Another embodiment provides for a seal bar that makes a bottom seal with only one seal (the perforation preferably does not have an auxiliary seal in this embodiment).
Cartridge heater 310 is replaced with a flexible silicone rubber heater 901 and 903, as shown in
An alternative seal bar 1000 is shown in
Another embodiment is seal bar 1200, shown in
Laser or focused light directed with a moving or pivoting mirror or lens is used on other embodiments. The laser can be positioned in the center of drum 200, and a pivoting mirror (or a linear actuator) can be used to direct the laser light through a glass seal bar at the periphery of the drum (again, the glass can be coated for easier release). The seal bar can have a continuous line of glass for forming seals, and alternating intermittent regions of opaque and clear for creating perforations.
Another alternative seal bar 1300 is shown in
Insert 306 has, in the preferred embodiment, a NiCr wire woven into a shape that produces intermittent contact with the web. The NiCr wire is pulsed on for the first half of the dwell time (the time the web is against the seal bar) and allowed to cool the second half of the dwell time so the perforations are non-molten when the web separates from the perforator. This allows a stronger web, reduces film sticking to the wire, and eliminates the chance of the perforation melting shut.
Referring now to
One alternative design is shown in
Another embodiment of the invention includes an insert 2600, shown in
The side view of insert 2600, shown in
The NiCr wire may be turned on and off (current flow) to control temperature of the wire/sealing. For example, the wire may be turned on immediately after contacting the film (or blanket), and turned off immediately after the contact with the film (or blanket) ends. Alternatives include connections other than serial between wires 2701 and 2703, more heat zones (and wire connections/types), controlling heat with external resistors/potentiometers or current magnitude, such as with PWM. If a pot is used the user could adjust the relative temperature by adjusting the pot. Other embodiments include combining these features, or other on/off schemes. This and other embodiments may be used with any other bag where a perforation needs to be placed next to a seal, such as t-shirt bags, including reinforced t-shirt bags, draw tape bags, side seal bags, etc.
The blanket preferably has a 0.05-0.012 in. thick silicone rubber top surface with a matte finish, durometer 70-90 Shore A, initially seasoned with a talc powder. The wire may be held in the holes using a Resbond® high temperature adhesive, injected into the holes using a syringe. Hard or flexible adhesives, or both, alternating, e.g. may be used. Flexible adhesives allow the wire to flex, which can occur when it is heated and cooled. The insert may be held in place with five cone point set screws.
Another alternative is shown in
Other alternatives are shown in
Other alternatives provide for wire 1502 to be round, a rectangular ribbon, straight or woven at a uniform or varying pitch, uniform thickness or non-uniform thickness along their length (to create hot/cold spots), Toss® wire, tapered, or profiled to make two side seals between a burn off cut. Profiled wire may have intermittent copper plating to perforate rather than clean cut. Varying pitch for a woven wire or different bole spacing creates a weakened area of varying weakness, that allows the bag to be tom by hand easier at the edge than in the middle of the web. Other designs contemplated include flexible silicone rubber heaters, thick film heating technology, sintered ceramic, or the like available from Watlow Electric Manufacturing Co. Yet other alternatives include using thin film heating technology mounted on a PNEUSEAL™ rubber inflatable diaphragm that can stay hot all the time but physically move in and out of contact with the film by inflating and deflating the diaphragm.
Other alternatives include a wire that is constantly hot but is physically moved in and out of contact with the web during the seal dwell phase. Hot wire segments (stitches) could be connected to a power source in parallel or in series. Parallel is preferred to reduce the amount of current required. Hot wires are preferably potted into a replaceable insert that can be easily replaced in the field and mass produced. Hot wires could be coated with substance to improve release characteristics.
Alternative perforators include a toothed blade 2301 (see
Another alternative is to use hot compressed air jets 2402 (
The preferred embodiment controls the heat of a burn-perf wire by controlling the voltage of a DC circuit. Preferably the lowest voltage that provides an acceptable perforation is used. For example, a 0.013″ diameter 80/20 NiCr wire woven alternating between 0.25 inch in contact with the web and 0.12 inches below the mica requires approximately 20 watts per inch of web width to burn perforations in 0.75 mil LLDPE film two layers thick at 600 feet per minute. Thus, a 2 inch long perforator would use 10 volts pulsed on for about 0.25 seconds as soon as the film is sandwiched between the perforator and the seal blanket. With a 0.5 second dwell time, the perforation has about 0.25 seconds to cool. The preferred embodiment thus allows the perforation to be quickly heated and cool down. The adjustable voltage is supplied by a DC motor controller in the preferred embodiment. Other embodiments include a mechanical rheostat, potentiometer, or adjustable resistor. An adjustable AC voltage can alternatively be used.
A controller may be used to compensate for resistance changes over the life of the wire. For example, a Toss® controller has current sensing feedback and adjusts voltage accordingly to maintain a more consistent temperature. Cartridge heaters may be controlled with thermocouple feedback using PID temperature control, as is well known in the industry.
The preferred embodiment provides for consistent incoming tension and consistent incoming accumulation to consistently form seals and perforations. The preferred embodiment includes a servo infeed nip with ultrasonic accumulation loop feedback. Alternatives include a mechanical lay-on roll assembly. Static induction pinning is used to help the film lay flat against the sealing blanket.
A tension zone isolator nip, also called a chill roll nip, is used as the web exits the sealing drum area. The preferred embodiment uses a 2″ wide double groove diamond shape is cut into the face of the roll to allow minor air bubbles or wrinkles to flush out rather than build up ahead of the nip.
After leaving the drum the web is provided to folding boards. Hard-board filler plates with ¼″ diameter holes 3″ from the tip of standard V-board with symmetrical geometry near the tip of the V-board are provided to reduce tension surges due to wrinkles or air entrapment. Also, transporting the folded web over two idlers before going through a rubber nip and an additional ¼″ thick air relief blade is inserted between film layers just prior to the rubber nip to allow air to bleed out rather than getting trapped inside wrinkles.
Air cooling of hot zones, briefly referred to above, generally includes ports or channels in seal bar, for example created by drilling or machining, to allow compressed air to flow through a desired zone or zones.
Another embodiment provides for using a single seal bar, with a perforation within the seal. Referring now to
The single seal/perforation may be created using a contoured seal bar, a previous embodiment with the temperature controlled to burn through in places, fine fabric impression (bumpy or textured) blanket, such as a Habasit® WBVT-136 silicone rubber blanket, where the pressure of the “bumps” burns through the plastic.
Another embodiment provides for the seal and perforation to be formed together on a non-circular loop, such as an oval or oblong, or on a shuttle machine. Generally, the invention of these embodiments call for the creation of a seal when and where a perforation is created.
Numerous modifications may be made to the present invention which still fall within the intended scope hereof. Thus, it should be apparent that there has been provided in accordance with the present invention a method and apparatus for making bags that fully satisfies the objectives and advantages set forth above. Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
This application is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 14/966,412 filed Dec. 11, 2015; which application is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 13/558,901 filed on Jul. 26, 2012, which issued as U.S. Pat. No. 9,238,343 on Jan. 19, 2016; which is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 13/219,188 filed on Aug. 26, 2011, which issued as U.S. Pat. No. 8,257,236 on Sep. 4, 2012; which is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 12/463,908 filed on May 11, 2009, which issued as U.S. Pat. No. 8,012,076 on Sep. 6, 2011; which is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 12/159,979 filed Jul. 2, 2008, which issued as U.S. Pat. No. 9,751,273 on Sep. 5, 2017; which is a continuation-in-part of U.S. patent application Ser. No. 11/331,466 filed Jan. 13, 2006, which issued as U.S. Pat. No. 7,445,590 on Nov. 4, 2008; and a continuation-in-part of national stage application of PCT/US2007/000981 filed Jan. 12, 2007, which is a continuation-in-part of U.S. patent application Ser. No. 11/331,466 filed Jan. 13, 2006, which issued as U.S. Pat. No. 7,445,590 on Nov. 4, 2008. The applications noted above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2248471 | Stroop | Jul 1941 | A |
2420983 | Salfisberg | May 1947 | A |
2652879 | Keller et al. | Sep 1953 | A |
2737859 | Allison et al. | Mar 1956 | A |
3030750 | Lowe et al. | Apr 1962 | A |
3054441 | Gex et al. | Sep 1962 | A |
3300365 | Roos | Jan 1967 | A |
3444732 | McKinley | May 1969 | A |
3580142 | Stock et al. | May 1971 | A |
3586821 | Buob | Jun 1971 | A |
3624836 | Rohdin | Nov 1971 | A |
3735673 | Sheehan et al. | May 1973 | A |
3793927 | Emond | Feb 1974 | A |
3933563 | Carlisle | Jan 1976 | A |
3950205 | Hawkins et al. | Apr 1976 | A |
4017351 | Larson et al. | Apr 1977 | A |
4023470 | van der Meulen | May 1977 | A |
4114520 | Achelpohl et al. | Sep 1978 | A |
4464219 | Colombo et al. | Aug 1984 | A |
4567984 | Geitman, Jr. | Feb 1986 | A |
4632667 | McDonald et al. | Dec 1986 | A |
4642084 | Geitman, Jr. | Feb 1987 | A |
4867735 | Wogelius | Sep 1989 | A |
4889522 | Geitman, Jr. | Dec 1989 | A |
4934993 | Geitman, Jr. | Jun 1990 | A |
4976673 | Smith et al. | Dec 1990 | A |
4981546 | Bergevin | Jan 1991 | A |
4991376 | Backman | Feb 1991 | A |
5014978 | Smith et al. | May 1991 | A |
5094657 | Dworak et al. | Mar 1992 | A |
5209800 | Spencer et al. | May 1993 | A |
5308666 | Borchardt | May 1994 | A |
5318237 | Lotto et al. | Jun 1994 | A |
5377929 | Geitman, Jr. et al. | Jan 1995 | A |
5417035 | English | May 1995 | A |
5417638 | Anderson et al. | May 1995 | A |
5447486 | Anderson et al. | Sep 1995 | A |
5518559 | Saindon et al. | May 1996 | A |
5587032 | Saindon et al. | Dec 1996 | A |
5611627 | Belias et al. | Mar 1997 | A |
5683340 | Belias et al. | Nov 1997 | A |
5816990 | Melville | Oct 1998 | A |
5830117 | Anderson | Nov 1998 | A |
5967663 | Vaquero et al. | Oct 1999 | A |
6059458 | Belias et al. | May 2000 | A |
6059707 | Belias et al. | May 2000 | A |
6089753 | Belias et al. | Jul 2000 | A |
6117058 | Sauder | Sep 2000 | A |
6139479 | Heiliger | Oct 2000 | A |
6186436 | Selle et al. | Feb 2001 | B1 |
6222990 | Guardado | Apr 2001 | B1 |
6364241 | Bartels | Apr 2002 | B1 |
6565946 | Perkins et al. | May 2003 | B2 |
6635139 | Bohn | Oct 2003 | B2 |
6648044 | Bohn et al. | Nov 2003 | B2 |
6746389 | Selle et al. | Jun 2004 | B2 |
6951996 | Timans | Oct 2005 | B2 |
7094297 | Ward | Aug 2006 | B2 |
7445590 | Selle | Nov 2008 | B2 |
8012076 | Selle et al. | Sep 2011 | B2 |
8257236 | Selle et al. | Sep 2012 | B2 |
11375781 | Zobell | Jul 2022 | B2 |
20070068632 | Bertram et al. | Mar 2007 | A1 |
20070167304 | Selle | Jul 2007 | A1 |
20130190155 | Selle et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2303723 | Jan 1999 | CN |
0375196 | Jun 1990 | EP |
1795331 | Jun 2007 | EP |
38009 | May 2001 | UA |
60767 | Feb 2006 | UA |
2007084430 | Jul 2007 | WO |
Entry |
---|
Chinese First Office Action, issued in corresponding CN Application No. 200780007725.1 dated Apr. 28, 2010. |
Chinese Second Office Action, issued in corresponding CN Application No. 200780007725.1 dated Jul. 13, 2011. |
Chinese Third Office Action, issued in corresponding CN Application No. 200780007725.1 dated May 24, 2012. |
Chinese Fourth Office Action, issued in corresponding CN Application No. 200780007725.1 dated Dec. 25, 2012. |
Chinese Fifth Office Action, issued in corresponding CN Application No. 200780007725.1 dated Jun. 5, 2013. |
Chinese Sixth Office Action, issued in corresponding CN Application No. 200780007725.1 dated Sep. 17, 2013. |
Chinese Decision on Rejection issued in corresponding CN Application No. 200780007725.1 dated Dec. 18, 2013. |
Chinese Decision on Request for Reexamination in corresponding CN Application No. 200780007725.1, dated Dec. 24, 2014. |
Ukraine Office Action partial translation in corresponding Ukraine Application 2008 09062 dated Jul. 15, 2010. |
European Search Report in corresponding EP Application 07718008.1 dated Dec. 9, 2010. |
EPO Communication in corresponding EP Application 07718008.1 dated Apr. 30, 2012. |
EPO Communication in corresponding EP Application 07718008.1 dated Jan. 30, 2014. |
EPO Communication in corresponding EP Application 07718008.1 dated Oct. 13, 2015. |
International Written Opinion in corresponding PCT Application PCT/US2007/000981 dated Jan. 15, 2009. |
International Search Report in corresponding PCT Application PCT/US2007/000981 dated Jan. 15, 2009. |
International Preliminary Report on Patentability in corresponding PCT Application PCT/US2007/000981 dated May 6, 2011. |
Australia Examination Report in corresponding AU Application 2007207686 dated Feb. 24, 2012. |
Canada Office Action in corresponding CA Application 2635752 dated May 27, 2013. |
Russia Office Action in corresponding RU Application 20081331581.12 dated Sep. 5, 2012. |
Number | Date | Country | |
---|---|---|---|
20210229392 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14966412 | Dec 2015 | US |
Child | 17231145 | US | |
Parent | 13558901 | Jul 2012 | US |
Child | 14966412 | US | |
Parent | 13219188 | Aug 2011 | US |
Child | 13558901 | US | |
Parent | 12463908 | May 2009 | US |
Child | 13219188 | US | |
Parent | 12159979 | Jul 2008 | US |
Child | 12463908 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2007/000981 | Jan 2007 | US |
Child | 12159979 | US | |
Parent | 11331466 | Jan 2006 | US |
Child | PCT/US2007/000981 | US |