The present invention relates to a method and apparatus for the production of flexible articles from a continuous web; and more particularly, a method and apparatus for the making of flexible bags having elastic-like behavior is disclosed.
Flexible articles, particularly flexible bags made of comparatively inexpensive plastic materials, have been widely employed for the containment and/or disposal of various items. As utilized herein, the term “flexible” refers to materials that are capable of being flexed, stretched, or bent, especially repeatedly, such that they are pliant and yieldable in response to externally applied forces. Accordingly, “flexible” is substantially opposite in meaning to the terms inflexible, brittle, or unyielding. Materials and structures that are flexible, therefore, may be altered in shape and structure to accommodate external forces and to conform to the shape of objects brought into contact with them without losing their integrity. Flexible bags of the type commonly available are typically formed from materials having consistent physical properties throughout the structure of the flexible bag including such properties as stretch, tensile, and/or elongation properties. Typically, such flexible bags are utilized as trash bags, body bags, Christmas tree disposal bags, colostomy bags, dry cleaner bags, laundry bags, stock pick bags, and shopping bags. Methods for making such bags are well known in the art. Typical of such prior art is that disclosed in U.S. Pat. No. 4,867,735 issued to Wogelius on Sep. 19, 1989 that discloses a method and apparatus for continuous fabrication of bags from a multilayer thermoplastic film web.
Some flexible bags have also been made from thin films that have deformations formed in them. A known method of forming such films is by passing a continuous web between a pair of matched forming rollers to form an intentional pattern of deformations on the film. One problem that arises when making flexible bags from a film formed in this manner is that, if the film has at least one overlapped layer or is made in a tubular manner, when having deformations formed therein, one layer becomes engaged within the other and is difficult to separate for subsequent processing. A similar problem arises when films such as thermoplastic elastomeric films exhibit excessive blocking characteristics. Blocking is the tendency of a film to adhere to itself. One approach to resolving this problem for continuous webs made in a tubular manner is to inflate the tube of film with air to separate the two formed layers. For example, U.S. Pat. No. 3,857,144 issued to Bustin on Dec. 31, 1974 discloses making a flexible bag in which a polyethylene film is passed between a pair of matched forming rollers and the continuous formed web is then inflated or an air bubble is trapped within the web to separate the two formed layers. Also, illustrative of the state of the art with regard to flexible bags and continuous webs with intentional patterns of deformations formed in them are, for example, U.S. Pat. No. 5,554,093 issued to Porchia et al. on Sep. 10, 1996, U.S. Pat. No. 5,575,747 issued to Dais et al. on Nov. 19, 1996, U.S. Pat. No. 5,723,087 issued to Chappell et al. on Mar. 3, 1998, and U.S. Pat. No. 6,394,652 issued to Meyer et al. on May 28, 2002.
It is frequently difficult to separate the overlaying or overlapping layers of film in which deformations have been formed which can cause problems during subsequent processing. This problem is even more acute when the continuous web from which the flexible bags are made is not in a tubular configuration that can be easily inflated using air. In particular, many flexible bags are made by simply laying at least one thin plastic sheet over another or by folding a sheet or a continuous web over onto itself in an overlapped or “C” fold configuration. In these instances, inflating the continuous web using air is not a practical method to separate the overlapping layers since the air has a tendency to escape through the open edge opposite the fold. Even when a tubular configuration of continuous web is used, an air bubble can have a tendency to leak air out through the deformations or creases formed in the continuous web. Consequently, it is desirable to identify a process for easily separating overlapped layers of a continuous web after patterns of deformations have been formed in the continuous web. Additionally, it is desirable to provide such a process and apparatus capable of producing flexible bags from a continuous web at high speeds in a consistent manner.
The present invention provides a method and apparatus for making flexible articles such as flexible bags and the like from a continuous web of sheet material.
In one embodiment of the present invention, a continuous process for making flexible articles having elastic-like behavior is provided. The process comprises several steps. A sheet material is introduced having one portion of the sheet material overlapped onto another portion of the sheet material. The sheet material is formed into a strainable network. The strainable network includes a plurality of first regions and a plurality of second regions. The first regions are substantially un-deformed and the second regions are formed into disengageable pleat elements. As the overlapped portions of the sheet material are formed they engage each other in the pleat elements. The pleat elements of each overlapped portion become trapped within each other and resist disengagement because of the frictional forces and attractive forces of the sheet material. The overlapped portions of the sheet material are separated using a disengaging means so that the overlapped portions become disengaged and separated from each other upon riding on the disengaging means. Preferably, the disengaging means is in the form of a static opening bar, a dynamic opening bar, or a suction means. More preferably, the flexible article is a flexible bag that is formed from the sheet material.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying drawing figures, in which like reference numerals identify like elements, and wherein:
In this detailed description of the present invention, any patent or non-patent literature referenced herein and the disclosure contained therein is intended to be and is hereby incorporated by reference.
Referring now to
Preferably, flexible bag 10 is constructed from a sheet material 52 that is suitable for containing and protecting a wide variety of items and/or objects contained within interior 12 of flexible bag 10. The term “sheet material” as used herein is the composition or substance from which the articles described herein are made. Various materials known in the art are suitable for constructing sheet material 52 used in flexible bags 10 made in accordance with the present invention. For example, some typical sheet materials 52 for making such flexible bags 10 can be substantially impermeable materials including any polymeric material. Exemplary, but non limiting, polymeric materials can include polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and any polyolefin such as linear low density polyethylene (PE), low density PE, high density PE or polypropylene (PP). Other types of materials may include aluminum foil, thin sheet metal, coated (waxed, etc.) and uncoated paper, coated nonwovens, or can even be substantially permeable materials including any scrims, meshes, wovens, nonwovens, or perforated or porous films, whether predominantly two-dimensional in nature or formed into three-dimensional structures. Such sheet materials 52 may comprise a single composition or layer or may alternatively be a composite or laminate structure of disparate materials or multiple layers, or any combinations thereof.
In yet another embodiment of the present invention, sheet material 52 can be formulated to include a slip agent. Slip agents can bloom to the surface of sheet material 52. In addition to having slip agents incorporated in the composition of sheet material 52, additional slip agents can be applied to the surface of at least a portion of sheet material 52. A slip agent is a compound or composition that can help to reduce the coefficient of friction on the surface of sheet material 52 thereby making the sheet material 52 easier to disengage and separate from any overlapping portion. Slip agents may even prevent portions of sheet material 52 from adhering to each other. Some exemplary slip agents can include, for example, talc (hydrated magnesium silicate), diatomaceous earth, ceramic microspheres, N-Ethylenebisstearammide, erucamide, acrawax C, graphite, or the like. Ceramic microspheres useful herein are commercially available from 3M Corporation under the name Zeeospheres™ ceramic microspheres.
Various articles other than flexible bags 10 can be produced using the present invention including, for example, cartons, cans, containers, bottles, boxes, jars, packages, pouches, plates, wraps, webs, films, sheets, and the like. Some of the numerous product applications for flexible bags 10 made as disclosed herein include, for example, sandwich bags, food storage bags, trash bags, body bags for containment of human or animal remains, Christmas tree disposal bags, colostomy bags, dry cleaning and/or laundry bags, bags for collecting items picked from warehouse inventory (stock pick bags), shopping bags, and the like.
In one embodiment of the present invention, flexible bags 10 can be made from raw materials in that the process begins with the manufacture of a continuous web 53 of sheet material 52 from which a multiplicity of flexible bags 10 is produced. The term “continuous web” as used herein is an integral length of sheet material 52 sufficient to fabricate a multiplicity of flexible bags 10 connected in an edge-to-edge configuration. In another embodiment of the present invention, flexible bags 10 can be made from a previously produced roll or discrete piece of sheet material 52 which is then introduced into the process defined herein.
Referring now to
In a preferred embodiment of the present invention, continuous web 53 can pass through or over cutting station 154 after passing through pinching rollers 122. Cutting station 154 can simply be a blade or a set of blades that can cut or slit continuous web 53 longitudinally as it passes over cutting station 154. In one embodiment of the present invention, a single continuous web 53 can be cut into two or more continuous webs 53 which can then be wound into rolls 11 and stored for future use or, alternatively, one or more of such continuous webs 53 are introduced into additional converting station as described herein. For example, continuous web 53 can be cut by cutting station 154 so as to separate continuous web 53 into four separate continuous webs 53 such that two of the resulting continuous webs 53 are substantially curved having a substantially “C” shaped transverse cross-section and the other two continuous webs 53 are substantially flat. The two flat continuous webs 53 can then be passed through separate folding stations 133 to fold sheet material 52 in order to overlap at least one portion over another and then these continuous webs 53 can be wound onto rolls 11. Alternatively, the two flat continuous webs 53 can be wound into rolls 11 without folding. Likewise the two substantially curved continuous webs 53 can be passed through separate folding stations 133 to overlap at least one portion of sheet material 53 onto another. The substantially “C” shaped cross-section is formed by overlapping or overlaying at least a portion of the sidewalls of sheet material 52 over each other. Thereafter the sidewalls are referred to as being connected through a folded region, which in the present embodiment is bottom fold 22. Alternatively, two flat continuous webs 53 or other discrete pieces of sheet material 53 can be laid into contact with each other and sealed together along a longitudinal edge forming the region referred to as bottom fold 22. Each continuous web 53 of sheet material 52 can then be independently wound into rolls 11 for future use or can be immediately processed according to the present invention.
Once sheet material 52 is produced, it can be introduced into a continuous or discontinuous process for making articles such as flexible bags 10 through transport rollers 123. In this same manner, sheet material 52 can be introduced into multiple converting stations for immediate processing. At various points along the process described herein, continuous web 53 of sheet material 52 can be wound into a roll 11 and stored for future use in this or another process as is known by those of ordinary skill in the art. “Continuous process” as used herein means repetitive, ongoing or continuing steps that are not intended to stop or cease until multiple flexible bags 10 are produced. As used herein, “introduce” can mean pass, feed, insert, engage, flow or push sheet material 52 into the next converting station. At winding station 111, sheet material 52 is wound into rolls 11 of sheet material 52 as is known by those of ordinary skill in the art. Sheet material 52 can be introduced into any one of the numerous converting station by unwinding a previously wound roll 11 of sheet material 52 and introducing it through transport rollers 123.
The processing of continuous web 53 of sheet material 52 continues as sheet material 52 passes through the next converting station which can be an alternative or optional step. This optional step can be closure station 160 which incorporates or forms closure means 30 onto sheet material 52. Closure means 30 is formed at edge 28 and is used to seal or close off interior 12 after flexible bag 10 is filled with contents. Under some circumstances a closure means 30 formed by a lesser degree of encirclement (such as, for example, a closure means disposed along only one side of edge 28) may provide adequate closure integrity. Closure means 30 can be made from a strip of flexible plastic material in accordance with U.S. Pat. No. 4,624,654 issued to Boyd et al. on Nov. 25, 1986.
Other types of closure means 30 may alternatively be utilized including, for example, drawstring-type closures, tieable handle tabs or flaps, twist tie or interlocking strip closures, adhesive-based closures, interlocking mechanical seals with or without slider-type zipper closure mechanisms, removable ties or strips made of plastic or other materials, heat seals, or any other suitable closure means 30 can be used. Such closure means 30 are well known in the art as are methods of manufacturing and making them. Alternatively, closure means 30 of any design and configuration suitable for its intended purpose may be utilized in constructing flexible bags 10 according to the present invention. In yet another alternative embodiment, closure means 30 can be omitted from flexible bag 10. After closure means 30 is incorporated into continuous web 53 of sheet material 52, continuous web 53 of sheet material 52 can be introduced to the next converting station through transport rollers 123.
Now referring to
As sheet material 52 passes between first forming roller 502 and second forming roller 504, disengageable pleat elements 74 are formed into the overlapped portions of sheet material 52. The overlapped portions of sheet material 52 are pressed into contact with each other at first regions 64 and are pressed into engaging contact with one another in second regions 66 where the raised pleat elements 74 are formed. Regions 66 can comprise rows of deeply formed deformations in sheet material 52 of continuous web 53, while regions 64 can comprise intervening un-deformed portions of continuous web 53.
Forming apparatus 500 can form discrete areas having an increased frequency of pleat elements 74 or discrete areas having a decreased frequency of pleat elements 74 in sheet material 52 by increasing or decreasing the concentration of teeth 507 along the circumference of forming roller 502 and along the width of forming roller 502. Likewise, the height of teeth 507 on forming roller 502 can vary within a particular toothed region 506 and along the circumference of forming roller 502 in order to vary the height of corresponding pleat elements 74. Such a configuration of forming apparatus 500 allows pleat elements 74 to be formed in sheet material 52 having predetermined elongation characteristics. As used herein, the term “formed” refers to the creation of a desired three-dimensional structure or geometry upon sheet material 52 that will substantially retain its shape when it is not subjected to any externally applied elongation or other forces. The term “pleat” refers to a formation having a major axis and a minor axis wherein the major axis is equal to or preferably greater than the minor axis.
In accordance with the present invention as illustrated in
Additionally, while it is presently preferred to construct substantially the entire bag body 20 from a sheet material 52 having the structure and characteristics made in accordance with the present invention, it may be desirable under certain circumstances to provide such elastic-like behavior in only one or more portions or zones of bag body 20 rather than its entirety. For example, bag body 20 of flexible bag 10 can have discrete areas where first regions 64 and second regions 66 exist and the strainable network is evident while also having discrete areas of bag body 20 without any such strainable network. These discrete areas can be produced when forming rollers 502, 504 that produce pleat elements 74 are intermittently retracted or removed from being in contact with sheet material 52 as continuous web 53 passes through forming apparatus 500. This intermittent removal or opening of forming rollers 502, 504 allows discrete areas of un-deformed sheet material 52 to be created. Such intermittent removal can be synchronized to create a repeating pattern of discrete areas that are un-deformed while also providing discrete areas that are formed of first regions 64 and second regions 66 in a strainable network. Sealing land 26, first seam 21, bottom fold 22, and second seam 23 (shown in
Sheet materials 52 such as those illustrated and described herein as suitable for use in accordance with the present invention are described in greater detail in commonly assigned U.S. Pat. No. 5,518,801 issued to Chappell et al. on May 21, 1996; U.S. Pat. No. 5,691,035 issued to Chappell et al. on Nov. 25, 1997; and U.S. Pat. No. 5,650,214 issued to Anderson et al. on Jul. 22, 1997; and U.S. Pat. No. 5,723,087 issued to Chappell et al. on Mar. 3, 1998. A flexible bag 10 made from sheet material 52 including the strainable network for use with the present invention is illustrated and described in greater detail in commonly assigned U.S. Pat. No. 6,394,652 issued to Meyer et al. on May 28, 2002. While continuous web 53 has been described in this process along with forming rollers 502, 504, it is understood that a discrete piece of sheet material 52 can be substituted for such continuous web 53 and reciprocating forming plates or any other device can alternatively be used to form the strainable network having first regions 64 and second regions 66. The term “discrete piece” as used herein is an integral length of sheet material 52 sufficient to fabricate only a portion of or only a few flexible bags 10 connected in an edge-to-edge configuration.
Another method of forming sheet material 52 suitable for use in the present invention is vacuum forming. An example of a vacuum forming method is disclosed in commonly assigned U.S. Pat. No. 4,342,314 issued to Radel et al. on Aug. 3, 1982. Alternatively, the sheet material 52 may be hydraulically formed in accordance with the teachings of commonly assigned U.S. Pat. No. 4,609,518 issued to Curro et al. on Sep. 2, 1986. After the strainable network is incorporated into sheet material 52, it can be introduced to the next converting station through transport rollers 123.
After forming continuous web 53 in the manner described, it is frequently difficult to separate overlaying or overlapping layers of sheet material 52 in which pleat elements 74 have been formed. This problem is even more acute when continuous web 53 is not in a tubular configuration that can be easily inflated using air. A similar problem with overlapped layers adhering to each other occurs with continuous webs 53 that are highly blocked. Consequently, in one embodiment of the present invention a means for disengaging pleat elements 74 and/or separating overlapped portions of sheet material 52 is provided. Preferably, continuous web 53 is introduced into pre-opening or disengaging means 130 prior to sheet material 52 being introduced into bag-making machine 32.
Referring now to
As illustrated in
In another embodiment of the present invention illustrated in
In a preferred embodiment of dynamic opening bar 202, illustrated in
As illustrated, idler rollers 206, 208 are constructed in a configuration in which each idler roller 206, 208 is made up of two separate intermediate rollers attached end to end. In particular, idler roller 206 includes first intermediate roller 251 connected end to end with a second intermediate roller 253. Similarly, idler roller 208 is of the same configuration having a first intermediate roller 252 connected end to end with a second intermediate roller 254. Bracket 250 is mounted between first intermediate rollers 251, 252 and second intermediate rollers 253, 254 forming a junction between first intermediate rollers 251, 252 and second intermediate rollers 253, 254. Bracket 250 is shaped somewhat like a “figure 8” and is recessed from the outer diameter of each corresponding roller 251, 252, 253, 254. In this manner, continuous web 53 of sheet material 52 can ride over idler rollers 206, 208 without contacting bracket 250. This configuration enables a wider dynamic opening bar 202 for handling wider continuous webs 53.
An end cap 230 is configured with rounded edges to allow the overlapped portion of sheet material 52 to pass over outer surface 235 without encountering any sharp edges. In one embodiment, end cap 230 is substantially hemispherical at a forward portion and tapers toward rear end 239 in a somewhat “tear drop” shape. End cap 230 is attached to support arm 211 using fasteners that pass through fastener recesses 237 in outer surface 235. Preferably, end cap 230 is aligned with opposite outer segments 216, 218 of idler rollers 206, 208 to assure that no misalignment exists between the ends of idler rollers 206, 208 and end cap 230. Any such misalignment can result in tearing, ripping or disfiguring of sheet material 52 as continuous web 53 rides over dynamic opening bar 202. Consequently, in a most preferred embodiment, end cap 230 is slightly recessed below opposite outer segments 216, 218 of idler rollers 206, 208 and a trailing edge 238 of support arm 211 does not extend beyond rear end 239 of end cap 230.
As illustrated in
Referring now to
In one preferred embodiment of the present invention as illustrated in
Now referring to
In still another embodiment of the present invention as illustrated in
Now referring to
In order to insert and extract dynamic opening bar 202 from within cage 290, middle support rollers 282, 286 in the upper position can be removed so that dynamic opening bar 202 can be lifted out of cage 290. Alternatively, middle support rollers 282, 286 in the upper position can be attached to a hinged frame. In this manner, the hinged frame could be opened moving middle support rollers 282, 286 away from dynamic opening bar 202 for maintenance or other purposes. For example, during start up of continuous web 53 dynamic opening bar 202 can be inserted within the tubular walls when middle support rollers 282, 286 are moved out of position. Middle support rollers 282, 286 are moved back into position in order to maintain dynamic opening bar 202 captive.
In this configuration, continuous web 53 of sheet material 52 can wholly enclose dynamic opening bar 202 which floats within the tubular walls of continuous web 53. The overlapped portions of sheet material 52 ride between forward support rollers 280, 281 of cage 290 and over opposite outer segments 216, 218 of idler rollers 206, 208 on dynamic opening bar 202 thus causing pleat elements 74 to disengage and overlapped portions of sheet material 52 to separate from each other. In this manner, continuous web 53 is threaded between dynamic opening bar 202 and cage 290. The overlapped portions of continuous web 53 of sheet material 52 can ride over opposite sides of dynamic opening bar 202.
Referring now to
In another alternative embodiment of the present invention as illustrated in
In yet another alternative embodiment, as illustrated in
In an alternative embodiment of the present invention, disengaging means 130 can be in the form of an air knife used to disengage and separate overlapped portions of sheet material 52. Air knives are well known by those of ordinary skill in the art in that air can be blown between the overlapped portions of sheet material 52 to disengage pleat elements 74. In still another alternative embodiment, disengaging means 130 can include an air bearing. For example, an air bearing can be a surface disposed between the overlapped portions of sheet material 52 and wherein a layer of air is introduced onto the surface such that sheet material 52 rides on the layer of air. Air bearings of this type are well known in the art. Alternatively, such surfaces can utilize any gas, liquid, gel or flowable solid to form the layer on which sheet material 52 traverses including, for example, nitrogen, oil, glycerol, graphite, grease, water, and any combinations thereof.
Referring back to
The processing of continuous web 53 can continue by introducing continuous web 53 into a bag-making machine 32. Continuous web 53 passes through bag-making machine 32 to form flexible bag 10 including a strainable network having at least two visually distinct regions. For example, flexible bags 10 can be formed from continuous web 53 such that said continuous web 53 has a perforated or tear section adjacent to a sealed section which extends transversely across a width of said continuous web 53. A perforated section adjacent to sealed section can be spaced apart longitudinally from a next pair of similarly configured perforated section and sealed section. One such method of forming such a flexible bag 10 is disclosed in U.S. Pat. No. 4,867,735 issued to Wogelius on Sep. 19, 1989. After flexible bags 10 are incorporated into continuous web 53, continuous web 53 can be introduced to the next converting station through transport rollers 123.
Alternatively, converting station, just ahead of bag-making machine 32 can be a calender station 150 used to process continuous web 53 by flattening or pressing together at least a portion of continuous web 53 to improve bonding or sealing capabilities of sheet material 52. In particular, discrete areas of continuous web 53 should stay in close contact with each other to insure effective sealing, bonding and forming of sheet material 52. Consequently, continuous web 53 can be pretreated by uniformly flattening pleat elements 74 via the application of pressure and heat upon sheet material 52. To form these discrete portions onto continuous web 53 at the required locations, a set of rolls can be used. Continuous web 53 passes between smooth rollers as they are pressed into contact with each other to flatten sheet material 52. In a preferred embodiment, smooth rollers are heated using steam or some other method of heating smooth rollers. As sheet material 52 passes between smooth rollers, pleat elements 74 of second region 66 become substantially planar with the un-deformed first region 64. Smooth rollers flatten or collapse pleat elements 74 while not changing the functional structure of the strainable network. After continuous web 53 passes through this converting station, continuous web 53 can be introduced to the next converting station through transport rollers 123.
The processing of continuous web 53 continues as continuous web 53 is introduced to a folding station 133. Continuous web 53 passes through folding station 133 that is preferably positioned after bag-making machine 32. Folding of continuous web 53 is in a manner that reduces the transverse width of continuous web 53 by overlapping portions of continuous web 53 upon each other. Folding bars 33 comprise folding station 133 and are used in a manner known by those of ordinary skill in the art. After the folding is completed, continuous web 53 can be introduced to the next converting station through transport rollers 123.
The processing of continuous web 53 continues as continuous web 53 is introduced into rewinding station 111 that is preferably positioned after all of the processing of continuous web 53 is completed. Rewinding station winds continuous web 53 into rolls 11 of flexible bags 10. These flexible bags 10 are wound in a manner such that upon unwinding a section of continuous web 53 allows flexible bags 10 to be severed from each other for individual use. Rewinding can include continuous web 53 being wound around a cylindrical core to form rolls 11 of flexible bags 10. Cylindrical cores can be utilized or omitted using winding methods that are known in the art.
Alternatively, once the desired sheet materials 52 are manufactured, comprising all or part of the components to be utilized for bag body 20, flexible bag 10 may be constructed in any known and suitable fashion such as those known in the art for making such flexible bags 10 in a commercially available form. Heat, mechanical, ultrasonic, or adhesive-sealing technologies may be utilized to join various components or elements of flexible bag 10 to themselves or to each other. In addition, bag body 20 may be folded or bonded to construct flexible bag 10 from a single continuous web 53 or a singular discrete piece of sheet material 52 or any combinations thereof.
A further alternative embodiment of the present invention can include taking a roll 11 of previously formed disposable bags or a roll 11 of sheet material 52 and unwinding roll 11 and introducing continuous web 53 from such roll 11 into a process as previously described above. Optionally many additional processing steps can be added either before or after the forming or separating of flexible bags 10 as described herein. Other processing steps can be completed such an alternative converting station illustrated as processing station 127 which can include, for example, printing labels, additional folding, cutting, forming or sealing or any combination of these or other converting processes.
While the process for making flexible bags 10 from a sheet material 52 has been described in a particular order, it is known that these steps can be performed in various orders. For example, a preferred sequencing of the process for making such flexible bags 10 can be to introduce the raw material into an extruder and then blow or cast form continuous web 53. Thereafter, continuous web 53 can be processed through a number of converting station or, alternatively, continuous web 53 of sheet material 52 can be wound onto a roll 11 at any stage during the process. Such a roll 11 of sheet material 52 can then be set aside or introduced into any step of the process desirable. A particularly preferred process involves taking a pre-existing roll 11 of overlapped sheet material 52 and introducing this sheet material 52 into closure station 160. Next sheet material 52 can be introduced into forming apparatus 500 in order to form pleat elements 74 in sheet material 52. Then, sheet material 52 is introduced into separating station 130 in order to disengage pleat elements 74 and to separate the overlapped portions of sheet material 52. Thereafter, sheet material 52 is introduced into bag-making machine 32 to make flexible bags 10.
While particular examples and exemplary methods to introduce continuous web 53 and sheet material 52 have been described, numerous variations of such examples are well know in the art. For example, continuous web 53 or an individual or discrete sheet of precut sheet material 52 having a single-ply can be introduced into forming apparatus 500 and then folded in a folding station 133 and introduced into bag-making machine 32. Alternatively, multiple continuous webs 53 or multiple discrete sheets of sheet material 52 in a flat configuration can be introduced into forming apparatus 500 and then folded in a folding station 133 and introduced into bag-making machine 32. Alternatively, the overlapped portions can be multiple continuous webs 53 or multiple discrete sheets of sheet material 52 sealed at one longitudinal edge to form bottom fold 22. Another alternative can be the introduction of at least one or more continuous webs 53 or discrete sheets of sheet material 52 that are overlapped upon themselves and having pleat elements 74 formed therein that are introduced into disengaging means. Yet another alternative method of introducing continuous webs 53 can be one or more tubes 51 that have pleat elements 74 formed therein can be introduced into disengaging means 130. Still another alternative can be to introduce one or more tubes 51 having pleat elements 74 formed therein that can then be cut, disengaged, separated, folded and then introduced to bag-making machine 32. As illustrated herein it should be apparent to those of ordinary skill in the art that the converting stations and steps described herein can be sequenced in various orders other than those described herein without any undue experimentation.
In yet still another converting station, continuous web 53 of sheet material 52 can be divided, separated, severed or torn apart into individual flexible bags 10 at finishing station 161. Dividing continuous web 53 of sheet material 52 into individual flexible bags 10 can be accomplished by tearing each flexible bag 10 away from continuous web 53 along frangible zone 25. Alternatively, each flexible bag 10 can be separated from continuous web 53 by cutting across the width of continuous web 53 during a severing and sealing step at the location of frangible zone 25. In particular, after flexible bags 10 have been formed, a sever-sealing device can be provided that creates sealed edge 21 and sealed edge 23 using heat or some other means while simultaneously severing or cutting continuous web 53 between sealed edge 21 and sealed edge 23 along frangible zone 25. Cutting continuous web 53 in this manner separates individual flexible bags 10 from the remainder of continuous web 53. Flexible bags 10 can then be stacked together or folded in an interleaved manner. This allows stack 129 of interleaved flexible bags 10 to be placed into a package from which a consumer may extract each individual flexible bag 10 one by one without having to tear one flexible bag 10 from another.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various additional changes and modifications can be made without departing from the spirit and scope of the present invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.