Method and apparatus for managing interference in a communication device

Abstract
A system that incorporates teachings of the present disclosure may include, for example, a matching network including a tunable reactance circuit configured to be coupled to at least one of a transmitter portion and a receiver portion of a communication device, wherein the tunable reactance circuit is adjustable to a plurality of tuning states, and wherein the determination of a tuning state is based on parameters associated with a detected interference. Additional embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to communication device operations, and more specifically to a method and apparatus for managing interference in a communication device.


BACKGROUND

The quality of wireless communications between wireless access points such as Wireless Fidelity (WiFi) or cellular base stations and portable mobile devices such as cell phones and laptop computers can depend on many factors. For example, an antenna's performance in a portable device can be impacted by its operating environment. Multiple use cases can exist for radio handsets, which include such conditions as the placement of the handset's antenna next to a user's head, or in the user's pocket or the covering of an antenna with a hand, which can significantly impair wireless device efficiency. Similarly, the quality of wireless communications can be affected by network topology and location of the mobile device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an illustrative embodiment of a communication device;



FIG. 2 depicts an illustrative embodiment of a portion of a transceiver of the communication device of FIG. 1;



FIGS. 3-4 depict illustrative embodiments of a tunable matching network of the transceiver of FIG. 2;



FIGS. 5-6 depict illustrative embodiments of a tunable reactive element of the tunable matching network;



FIGS. 7-8 depict illustrative embodiments of portions of communication devices with tunable matching networks;



FIG. 9 depicts a method operating in portions of the communication device of FIGS. 7-8;



FIG. 10 depicts an illustrative embodiment of a portion of communication devices including a power and phase detector;



FIG. 11 depicts an illustrative embodiment of a frequency diagram for the communication device of FIG. 10;



FIGS. 12-16 depict illustrative embodiments of portions of communication devices including power and phase detectors;



FIGS. 17-18 depict illustrative embodiments of exemplary timing diagrams;



FIG. 19 depicts an illustrative embodiment of a portion of a communication device including a power and phase detector;



FIG. 20 depicts an exemplary diagrammatic representation of a machine in the form of a computer system within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies disclosed herein.





DETAILED DESCRIPTION

One embodiment of the present disclosure entails a computer-readable storage medium comprising computer instructions to detect an existence of an interferer and determine a tuning state of a matching network having a tunable reactance, where the determination of the tuning state is based on whether the interferer exists and is based on information from at least one of an open-loop or closed-loop feedback configuration.


One embodiment of the present disclosure entails a matching network, comprising: a tunable reactance circuit configured to be coupled to at least one of a transmitter portion and a receiver portion of a communication device, wherein the tunable reactance circuit is adjustable to a plurality of tuning states, and wherein the determination of a tuning state is based on whether an interferer exists and is based on information from at least one of an open-loop or closed-loop feedback configuration of the tunable reactance circuit.


One embodiment of the present disclosure entails a method comprising detecting interference with a communication device based on an existence of an interferer and determining a tuning state of a variable matching network of the communication device based on whether the interferer exists.


One embodiment of the present disclosure entails a communication device comprising a controller to determine a tuning state of a variable matching network that controls one or more operational characteristics of one of a receiver portion and a transmitter portion of the communication device, where the controller is operable to detect an existence of an interferer and determine the tuning state based on whether the interferer exists and based on information from at least one of an open-loop or closed-loop feedback configuration.


One embodiment of the present disclosure entails a method comprising detecting an existence of an interferer that is interfering with a communication device; determining a tuning state of a variable matching network of the communication device based on whether the interferer exists; and adjusting the variable matching network based on the determined tuning state only when the existence of the interferer is not detected.


One embodiment of the present disclosure entails a method comprising detecting interference with a communication device sourced by an interferer; and determining a tuning state of a variable matching network of the communication device based on the detected interference.


One embodiment of the present disclosure entails a method comprising determining parameters of interference with a communication device, the interference being sourced by an interferer; and adjusting a tuning state of a variable matching network of the communication device based on the interference parameters.


One embodiment of the present disclosure entails a matching network comprising a tunable reactance circuit configured to be coupled to at least one of a transmitter portion and a receiver portion of a communication device, wherein the tunable reactance circuit is adjustable to a plurality of tuning states, and wherein the determination of a tuning state is based on parameters associated with a detected interference.


One embodiment of the present disclosure entails a non-transitory computer-readable storage medium comprising computer instructions to determine interference with a communication device; and adjust a tuning state of a variable matching network of the communication device based on parameters associated with the interference.



FIG. 1 depicts an exemplary embodiment of a communication device 100. The communication device 100 can comprise a wireless transceiver 102 (herein having independent transmit and receiver sections, a user interface (UI) 104, a power supply 114, and a controller 106 for managing operations thereof. The wireless transceiver 102 can utilize short-range or long-range wireless access technologies such as Bluetooth, WiFi, Digital Enhanced Cordless Telecommunications (DECT), or cellular communication technologies, just to mention a few. Cellular technologies can include, for example, CDMA-1×, WCDMA, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, and next generation cellular wireless communication technologies as they arise.


The UI 104 can include a depressible or touch-sensitive keypad 108 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 100. The keypad 108 can be an integral part of a housing assembly of the communication device 100 or an independent device operably coupled thereto by a tethered wireline interface (such as a flex cable) or a wireless interface supporting for example Bluetooth. The keypad 108 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 104 can further include a display 110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 100. In an embodiment where the display 110 is a touch-sensitive display, a portion or all of the keypad 108 can be presented by way of the display.


The power supply 114 can utilize common power management technologies (such as replaceable batteries, supply regulation technologies, and charging system technologies) for supplying energy to the components of the communication device 100 to facilitate portable applications. The controller 106 can utilize computing technologies such as a microprocessor and/or digital signal processor (DSP) with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other like technologies.



FIG. 2 depicts an illustrative embodiment of a portion of the wireless transceiver 102 of the communication device 100 of FIG. 1. In GSM applications, the transmit and receive portions of the transceiver 102 can include common amplifiers 201, 203 coupled to a tunable matching network 202 and an impedance load 206 by way of a switch 204. The load 206 in the present illustration can be an antenna as shown in FIG. 1 (herein antenna 206). A transmit signal in the form of a radio frequency (RF) signal (TX) can be directed to the amplifier 201 which amplifies the signal and directs the amplified signal to the antenna 206 by way of the tunable matching network 202 when switch 204 is enabled for a transmission session. The receive portion of the transceiver 102 can utilize a pre-amplifier 203 which amplifies signals received from the antenna 206 by way of the tunable matching network 202 when switch 204 is enabled for a receive session. Other configurations of FIG. 2 are possible for other types of cellular access technologies such as CDMA. These undisclosed configurations are contemplated by the present disclosure.



FIGS. 3-4 depict illustrative embodiments of the tunable matching network 202 of the transceiver 102 of FIG. 2. In one embodiment, the tunable matching network 202 can comprise a control circuit 302 and a tunable reactive element 310. The control circuit 302 can comprise a DC-to-DC converter 304, one or more digital to analog converters (DACs) 306 and one or more corresponding buffers 308 to amplify the voltage generated by each DAC. The amplified signal can be fed to one or more tunable reactive components 504, 506 and 508 such as shown in FIG. 5, which depicts a possible circuit configuration for the tunable reactive element 310. In this illustration, the tunable reactive element 310 includes three tunable capacitors 504-508 and an inductor 502 with a fixed inductance. Other circuit configurations are possible, and thereby contemplated by the present disclosure.


The tunable capacitors 504-508 can each utilize technology that enables tunability of the capacitance of said component. One embodiment of the tunable capacitors 504-508 can utilize voltage or current tunable dielectric materials such as a composition of barium strontium titanate (BST). An illustration of a BST composition is the Parascan® Tunable Capacitor. In another embodiment, the tunable reactive element 310 can utilize semiconductor varactors. Other present or next generation methods or material compositions that can support a means for a voltage or current tunable reactive element are contemplated by the present disclosure.


The DC-to-DC converter 304 can receive a power signal such as 3 Volts from the power supply 114 of the communication device 100 in FIG. 1. The DC-to-DC converter 304 can use common technology to amplify this power signal to a higher range (e.g., 30 Volts) such as shown. The controller 106 can supply digital signals to each of the DACs 306 by way of a control bus of “n” or more wires to individually control the capacitance of tunable capacitors 504-508, thereby varying the collective reactance of the tunable matching network 202. The control bus can be implemented with a two-wire common serial communications technology such as a Serial Peripheral Interface (SPI) bus. With an SPI bus, the controller 106 can submit serialized digital signals to configure each DAC in FIG. 3 or the switches of the tunable reactive element 404 of FIG. 4. The control circuit 302 of FIG. 3 can utilize common digital logic to implement the SPI bus and to direct digital signals supplied by the controller 106 to the DACs.


In another embodiment, the tunable matching network 202 can comprise a control circuit 402 in the form of a decoder and a tunable reactive element 404 comprising switchable reactive elements such as shown in FIG. 6. In this embodiment, the controller 106 can supply the control circuit 402 signals via the SPI bus which can be decoded with common Boolean or state machine logic to individually enable or disable the switching elements 602. The switching elements 602 can be implemented with semiconductor switches or micro-machined switches such as utilized in micro-electromechanical systems (MEMS). By independently enabling and disabling the reactive elements (capacitor or inductor) of FIG. 6 with the switching elements 602, the collective reactance of the tunable reactive element 404 can be varied.


The tunability of the tunable matching networks 202, 204 provides the controller 106 a means to optimize performance parameters of the transceiver 102 such as, for example, but not limited to, transmitter power, transmitter efficiency, receiver sensitivity, power consumption of the communication device, a specific absorption rate (SAR) of energy by a human body, frequency band performance parameters, and so on.


To achieve one or more desirable performance characteristics which a designer can define, the communication device 100 can be placed in an anechoic chamber. In this configuration, the designer can perform calibration measurements of performance parameters of the communication device 100 such as Total Radiated Power (TRP), Total Isotropic Sensitivity (TIS) or Radiated Harmonics measurements, receiver efficiency, transmit power efficiency, and power consumption, just to mention a few. For a multi-frequency band communication device 100, the calibration measurements can be performed per band or per sub-band.


Additionally, the calibration measurements can be performed under a number of use cases of the communication device 100 utilizing a phantom body that emulates the composition of a human body. For instance, a communication device 100 having a housing assembly of a flip design, the communication device 100 can be placed next to an ear of the phantom when the flip is open to emulate a typical conversational use case. In a hands-free application such when a user utilizes a Bluetooth headset or when the communication device 100 is in standby mode, the communication device 100 can be placed on a hip of the phantom with the flip closed. Calibration can be performed on other use cases such as antenna up, or down, speakerphone feature “ON” with communication device 100 held with a phantom hand but away from the phantom head. Any number of use cases can be applied to each frequency band and sub-band if desirable.



FIG. 7 depicts an exemplary embodiment of a portion of a communication device 700 (such as device 100 in FIG. 1) having a tunable matching network which can include a number of components such as a directional coupler 710, a detector(s) 720, a High Voltage Application Specific Integrated Circuit (HVASIC) 730 and a tuner 740 (such as an Adaptive Impedance Matching Module (AIMM) tuner)). The tunable matching network can include various other components in addition to or in place of the components shown, including components described above with respect to FIGS. 1-6. The tunable matching network can be coupled to an antenna 780 and a transceiver (or transmitter and/or receiver) for facilitating communication of signals between the communication device and another device or system. In this exemplary embodiment, the communication device 700 is in proximity to an interferer 790 which is interfering with the transmission and reception of signals by the device. Various RF levels are depicted which include a desired range for the transmission level of 0 to +33 dBm. The present disclosure contemplates other RF levels being utilized or encountered. As can be seen, the introduction of the interferer 790 can result in undesired tuning of the device 700.



FIG. 8 depicts an exemplary embodiment of a portion of a communication device 800 (such as device 100 in FIG. 1) having a tunable matching network which can include a number of components such as a coupler 810, a detector(s) 820, a High Voltage Application Specific Integrated Circuit (HVASIC) 830 and a tuner 840 (such as an Adaptive Impedance Matching Module (AIMM) tuner)). The tunable matching network can include various other components in addition to or in place of the components shown, including components described above with respect to FIGS. 1-6. The tunable matching network can be coupled to an antenna 880 and a transceiver (or transmitter and/or receiver) for facilitating communication of signals between the communication device and another device or system. In this exemplary embodiment, the communication device 800 is in proximity to an interferer 890 which is disrupting the tuner control loop, such as the measurement of the antenna VSWR by the device.


Device 800 can include one or more components that allow for the detection of the interferer and an adjustment to the tuning technique based on the interferer detection. For instance, in one exemplary embodiment, the AIMM algorithm can act as a look-up table of tuning states but subject to updating the tuning state when valid measurements can be made. When a measurement is determined to be invalid, then the device can utilize the last known valid tuning state for the particular use case. Other adjustments to the tuning technique can also be utilized. For instance, the tuning can be delayed, such as for a predetermined period of time, until a valid measurement can be made. In another embodiment, if a valid measurement cannot be made within the predetermined time period then the last known valid tuning state for the particular use case can be utilized for tuning.


In one embodiment, isolation between antennas inside the device 800 can be maintained in order to reduce the power of internally generated interferers (such as WiFi and Bluetooth) that are detected at the coupler outputs. The particular level of isolation that is utilized can vary. Examples of multiple antenna systems in communication devices, such as diversity antenna systems, are described in U.S. patent application Ser. No. 13/005,122 filed on Jan. 12, 2011, the disclosure of which is hereby incorporated by reference in its entirety.


In another embodiment, one or more filters 850 can be coupled to the coupler 810. The particular type of filter can vary and can include BT/WiFi elimination filters or BP filters. For example, these filters can be band rejection or band “suckout” circuits. The filter can be a single filter coupled to the reflection output of the coupler 810, but the present disclosure contemplates filters coupled to both outputs of the coupler. In one embodiment, 2.4 GHz elimination filters can be coupled to the output ports of the directional coupler, although other filter ranges can also be utilized.


In one embodiment, a filter 860 (such as a BP filter) can be incorporated into the coupler 810. For instance, since couplers can be built in a multi-layer dielectric structure, filter elements can be incorporated into the structure to deploy the types of band reject or elimination filters desired.


While the previous embodiments have described the use of a directional coupler to detect the VSWR or impedance of the tunable matching network as the source of feedback for the algorithm controlling the tunable network, there are other possible components, techniques and/or means to determine the impedance of the network, or to supply inputs to an algorithm designed to tune the tunable matching network. Known methods for determining impedance matching can also be utilized with the exemplary embodiments described herein. It should be noted that the techniques to avoid and mitigate interfering signals described herein can be applied to other means of determining feedback for the control algorithm.


In another embodiment, a peak detector 870 and an average detector 875 can be coupled to or included within the sensor IC 820 to determine the presence of amplitude modulation such as through comparing forward to reverse output data on constant envelope signals. In one embodiment, the peak and average measurements on the difference between the forward and reverse signals can ignore the transmitter's intentional modulation but detect amplitude modulation from the beat note which is generated by the combination of the desired and interfering signals being present simultaneously.


The exemplary embodiments described herein allow a communication device to mitigate the effects of an interferer that is generating interference that is affecting the communication device. In one embodiment, the device can implement a multi-thread antenna tuning algorithm. For instance, an open loop look-up table can operate to store the nominal tuning state for each band, sub-band, mechanical position, speaker state, etc. (use cases). When transmitting, the algorithm can run to determine if a better tuning state can be found, and can continuously improve it. The tuning state in the look up table can be replaced as the algorithm finds better tuning states for the particular use case in operation. Each Return Loss (RL) or impedance measurement can be checked for validity before the algorithm is allowed to update the tuning state. If an RL measurement is deemed invalid (such as for a single iteration) then the tuner state may not be changed.


Method 900 can begin with step 902 in which an RF signal is analyzed in order to perform impedance matching using one or more of the components and/or systems described above, including the AIMM tuner 840. In one embodiment, the AIMM algorithm can act as a look-up table of tuning states, which can be updated based on measurements that are determined to be valid. Method 900 can be based on closed-loop and/or open-loop feedback. For instance, the RF signal can be analyzed using closed-loop feedback in combination with open-loop feedback, such as based on stored information that is correlated to a physical state of the device (e.g., in a flipped-open position). The present disclosure also contemplates performing one or more of the steps of method 900 based on only open-loop feedback or based on only closed loop feedback. In step 904, the tuning state can be determined based on the analysis and the feedback described above.


Measurements can then be validated in step 906, such as to detect the existence of an interferer. Validation can be performed in a number of different ways. In one embodiment, a number of return loss phase measurements can be taken over time. A comparison of the maximum to minimum values can be done, and validity can be based on the range being less than a predetermined threshold. For instance, if an interfering signal is present for only some of the measurements, an assumption can be made that the phase of the interfering signal will be different from that of the transmission forward and reflected signals. The timing of the measurements can be long enough such that one burst of a WiFi or other interfering transmission would not be present in all of the measurements, and at least one measurement would fall in between transmission bursts. In another embodiment, the measurements can be processed with respect to the forward and reverse power measurements (amplitude) which are coincident with the phase measurements to determine which are valid and which were made in the presence of an interferer, and ignore only those measurements, while using the valid measurements in the algorithmic computations.


In another embodiment in which the detectors are complete receivers, the forward and reverse demodulated data can be compared to detect interference. For example, complete receivers as detectors in both the forward and received sampled signal paths (such as shown in FIG. 8) can be utilized. These receivers can be tuned specifically to the frequency of the transmitted signal and can thus ignore any interfering signals not on the same frequency or channel. This aspect will eliminate virtually all possible interfering signals in a normal implementation. Also, in this example, the forward and reverse samples should have the same modulation as the desired transmitted signal. If an interferer is present, the receiver may either have the selectivity to ignore the interferer or the received signal may be disrupted and the demodulated data would not match the desired transmitted data. In this latter case, the measurements of forward and reverse power can then be ignored as being invalid.


In one embodiment, multiple fast samples can be taken to detect peaks/nulls that are indicative of interference. For instance, an interfering signal mixing with the desired signals can create a “beat note” in the amplitude. By taking amplitude measurements at very high speeds, method 900 can detect the effective amplitude modulation. If the amplitude modulation exceeds the desired transmitted signal modulation then the measurement can be designated as invalid.


In another embodiment, phase measurements can be analyzed and compared to a threshold for erratic shift (for example applying a 50 ohm exclusion) Phase measurements between non-coherent signals (such as between an interferer and a desired signal) can give random results. Phase measurements between coherent signals (such as the forward and reflected signals) which are close to 50 ohms can also give random results. Phase measurements between coherent signals that are not very close to 50 ohms are relatively stable. If phase signals are erratic (such as change by more than a certain amount between two readings or a standard deviation greater than a certain value or some other method of detecting erratic measurements) then the reflected signal may be an interferer. In one embodiment, the algorithm can be turned off only if both erratic phase is present and the return loss is larger than a certain value (away from 50 ohms).


In another embodiment, sampling can be performed during transmission and when the transmitter is off. For instance, DTX can be used in WCDMA/CDMA to find times when the transmitter is off. In GSM or other Time Division systems, intervals between transmit bursts can be used. A threshold can be compared and applied to a reflected input. If the measured levels during transmission are too close to the levels when the transmitter is off, then the measurement can be deemed invalid. In one embodiment, multiple measurements can be used to detect pulsed interferers.


In one embodiment, an AIMM engagement threshold and Reflection Loss (RL) targets based on detected reflected input (when not transmitting) can be varied. When the transmitter is not active, a measurement of the reflected port can be taken. This measurement can be used to detect an interferer and measure its amplitude. The amplitude of the interferer can be used to set a threshold for the reflected power below which the measurement would be deemed invalid. The interferer level could also be used to adjust the RL target of the algorithm's figure of merit under interferer conditions.


In another embodiment, measurements can be performed both before and after known transmit power level changes and then changes can be compared to predicted change. For instance, the cellular handset controller has knowledge of the power level at which it is transmitting and also the size of any intentional changes to the transmitted power level. To test for the presence of an interferer, the tuning can be kept static and the detected powers/return loss can be measured. If the detected change in power measurements are not within a preset tolerance of the known intentional change, the measurement can be determined to be degraded by an interferer, and measurements can be deemed invalid.


In one embodiment, tuning can be prevented if the RL detected is greater than zero. For instance, if the measured RL is greater than zero (or a predetermined value to allow measurement uncertainty or other variations), then the existence of an interferer has been determined. The predetermined value can further include design knowledge of the tuner and antenna load in a specific application.


If the measurements are determined to be valid then the tuning can be performed as in step 910 to achieve the impedance matching. If on the other hand, the measurements are deemed invalid (such as through the existence of an interferer) then the algorithm can ignore the last inputs and retain the previous tuning state as in step 910. The algorithm can then continue normally and take the next scheduled measurements and again gauge the validity of those measurements. The algorithm can maintain the last known good tuning state until valid measurements allow the algorithm to continue tuning the matching network according to the figure of merit.


Method 900 can apply a number of thresholds in determining the validity of the measurements and detecting the existence of an interferer. For example, the cellular handset controller has knowledge of the power level at which it is transmitting. The AIMM algorithm can be disabled if the known transmit power level is below a predetermined threshold.


Detected levels of interference can be used to set the AIMM on/off control. For example, reflected power measurements that exceed certain thresholds can be invalidated. The thresholds can be dynamic and set as a function of the known transmitted power level, and also as a function of the RL target for the particular channel/use case currently being tuned. As another example, detected level of forward power can be monitored. The cellular handset controller has knowledge of the power level at which it is transmitting. If the forward power detected is in not within a set limit of the desired level, the measurements of both forward and reflected power can be deemed invalid.


In one embodiment, with phase-based tuning algorithms (using impedance targets), predicted RL improvements based on known techniques can be compared to actual measured RL improvements. With RL phase information and a look-up table (LUT) (predetermined open-loop typical tuning state values) or calculations (using known/expected tuner LUT), antenna impedance can be predicted, and correspondingly the tuning state in which to set the tuner can be determined in order to achieve the desired match. After changing the tuning state, if the change in RL/impedance is not within a predetermined threshold of the expected result, then it can be determined that the measurement is being degraded by an interferer, and deemed invalid. The tuner can be restored to its last known good or valid tuning state (such as a default state).


In another embodiment, the tuning range can be limited to increase tuner attenuation at known interferer frequencies.


In typical embodiments there may be additional limitations in the circuitry such as noise thresholds caused by non-coherent signals from within or without a cellular handset or other radio which could affect the validity of detected signals used by an adaptive tuning network. While most of this specification describes the sources of these limitations as interfering signals, this invention is not limited to just the consideration of such signals. The exemplary embodiments can be utilized for tuning of a variable matching network in a communication device based on all types of interference or undesired conditions affecting the communication device. The exemplary embodiments can apply anomaly detection to the tuning algorithm for determining a tuning state.


In one embodiment, a low pass filter can be implemented that eliminates interferers outside of the filter bandwidth. Quadrature mixers can be utilized to avoid cancellation due to in-phase forward and reflection signals. The particular configuration of the components can vary. For instance, a low pass filter and a 90 degree phase shifter can be utilized, and can be incorporated into or otherwise implemented from, the transceiver components. In one embodiment, a VCO can be utilized that is running at twice the frequency and flip-flops can be used for dividing.


In exemplary embodiment 1000 and its corresponding frequency graph 1100, which are shown generally in FIGS. 10 and 11, low pass filters (LPFs) can be utilized to reduce or eliminate all interferers outside the filter bandwidth. The return loss magnitude and/or phase can be obtained by combining fp_I_flt, fp_Q_flt, rp_I_flt, rp_Q_flt in the analog or digital domain. Quadrature mixers can be utilized to avoid cancellation due to RF and LO being in-phase. One or more of the LPFs can be set at values low enough so that AM modulation may be removed.


In one embodiment, the forward signal can be utilized as the LO for the I and Q mixers on the detection IC of embodiment 1000. This eliminates the need for the transceiver IC to provide the LO signal. Another advantage of this method is that the transmit modulation will be present on the LO signal. The modulation envelope can then be eliminated by the mixers. With the modulation eliminated, the baseband lowpass filter can be wider, allowing for a faster measurement than if the LPF had to be set low enough to filter out the modulation. When using the forward signal for the LO, a BPF may be employed to improve performance by attenuating any interferers that may have coupled on to the forward signal.


This exemplary embodiment contemplates use of the same LO as the transmitter or use of a different LO, such as a stand-alone LO (e.g., generated by an IC detector) which can be phase-locked with the transmitter.


In exemplary embodiment 1200 shown generally in FIG. 12, low pass filter(s) (LPFs) can be utilized in combination with power and phase detectors and other control logic for tuning and filtering out interference. In one embodiment, ph1 can be sweeped to maximize node G while ph2 is sweeped to maximize node G2. Other components can be utilized with embodiment 1200, such as an amplitude detector and/or a phase modulator. The RL and phase can be computed.


In another exemplary embodiment 1300 shown generally in FIG. 13, the sweeping and computation described with respect to FIG. 12 can be performed. The LO can be taken from the transmitter, prior to power amplification (PA). For instance, the LO can be obtained from the input to the PA, which may be more accessible to the tuning components. The PA can provide isolation from any interferer and provide a clean LO. The limiter can be utilized to strip away the envelope of the amplitude modulation.


In another exemplary embodiment 1400 shown generally in FIG. 14, the sweeping and computation described with respect to FIG. 12 can be performed. The LO can be taken from the forward power (FP). The FP can be filtered to reduce the effect of the interferer on the LO. In this embodiment, the RF coupler and the bandpass filter can be integrated, such as made from the same ceramic structure.


In the embodiments of 1200-1400, the sensed DC voltage thru the ADC can be used to control the ph1 and the ph2. When the ph1, ph2 is such that the DC voltages are maximized, then the two signals into the mixer are deemed to be in-phase. Ph1 can be adjusted to increase or otherwise make optimum the forward power measurement. Ph2 can also be adjusted to increase or otherwise make optimum the reflected power measurement. The power can be detected when phase difference between the two inputs of the mixer is zero degrees. These exemplary embodiments can ensure that the phase difference does not contribute to the power measurements. The RL can be calculated from the power measurements, and the phase difference is equal to ph2-ph1. The phase difference can be computed after power measurements have been determined for stable phase error measurement. A limiter can remove amplitude modulation on a transmitted signal (desired or undesired modulation). The limiter can act as a filter on forward power signal. Interfering signals may act to increase jitter on FP clock into mixer and can generate odd harmonics. A phase delay can be utilized in measured RF signal path to ensure that the ph1 and ph2 do not go negative. An amplifier can be utilized, but in one embodiment the amplifier can be utilized for only the dynamic range requirements of the mixer. A baseband low pass filter can reject interferers outside of the filter bandwidth. The LPF can also be used to filter out the AM on the modulated signal. If the AM remains, forward and reflected signal can be sampled at the same time. Multiple samples can also be utilized to avoid nulls.


In exemplary embodiment 1500 shown generally in FIG. 15, bandpass and low pass filter(s) (BPF and LPF) can be utilized with a shared limiter. The shared limiter can be utilized to reduce phase error between transmit and reflected measurements. Various other components and configurations can also be utilized to reduce current drain and/or reduce die area. This embodiment allows obtaining data based on filtered forward power.


In exemplary embodiment 1600 shown generally in FIG. 16, bandpass and low pass filter(s) (BPF and LPF) can be utilized with a shared delay clock. The shared delayed clock can be utilized to allow for phase difference to be determined by ph2 only. While not shown, a bandpass filter can be utilized, along with one or more other components described in FIGS. 12-15. In one example, embodiment 1600 can utilize a phase-shifted LO from the forward power for the reverse power.



FIG. 17 illustrates an example of timing that can be utilized for one or more of the tuning embodiments described herein, such as for a GSM/EDGE device. Forward and reverse power measurements can be made at the time periods indicated in time slots three and four. If the power detected outside of the transmission burst is above a threshold, then the measurement made during a burst can be deemed invalid. In this embodiment, frames are 4.615 ms and slots are 577 us, however other time periods may also be utilized.



FIG. 18 illustrates an example of timing that can be utilized for one or more of the tuning embodiments described herein, such as for a WCDMA device. Forward and reverse power measurements can be made at the time periods indicated in FIG. 18. If the power detected outside of the transmission burst is above a threshold, then the measurement made during the transmission can be deemed invalid.


A number of techniques can be utilized for validating return loss measurements. Measurements can be deemed invalid if: multiple fast measurements of the reflected port are taken and amplitude variations are detected which exceed the known envelope modulation; multiple fast measurements of transmit minus reflected values show amplitude variations (this method can cancel the transmit modulation and detects an interfering beat note); and multiple fast measurements are taken during transmission, excessive phase variation between measurements can be indicative of an interferer, and if the range of measurements exceeds a set threshold. In one embodiment, when using a “one step” tuning method, which uses impedance measurement to tune to a known match, not seeing a RL after the adjustment within an expected threshold would invalidate the tuning step, and the algorithm would then return to the last known good tuning state.


Additional validity methods, such as through use of peak and average detectors. For example, forward and reverse measurements are done with both Peak and Average detectors and compared. If the error exceeds the expected (modulation) peak-to-average ratio by a set threshold, measurements are deemed invalid. Using Peak and Average detection on the forward minus reverse summed signal can cancel the transmitted modulation and any difference should be due to interference, and thus compared to a set threshold for invalidity.


In exemplary embodiment 1900 shown generally in FIG. 19, a Costas Loop can be utilized where the forward power is relied upon to lock the local oscillator. The LPF in front of the LO can be set at a low enough frequency to strip off the angle modulation of the TX waveform. In another embodiment, a filter in the forward power path and/or in the reverse power path can be utilized. In another embodiment, where the level of the interferer is low enough, no filter may be needed. Embodiment 1600 can utilize an internal LO that is phase-locked to the forward power without the need for an external LO.


From the foregoing descriptions, it would be evident to an artisan with ordinary skill in the art that the aforementioned embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. For example, the detection of an interferer can be used to determine whether even to perform the algorithm that determines the tunable state. For example, the detection of an interferer can result in the device determining a tuning state based on open-loop feedback rather than closed-loop feedback. Additionally, one or more of the steps described herein can be performed by a component of the transceiver. This can include incorporating particular components into the transceiver or utilizing already existing components of the transceiver. Other suitable modifications can be applied to the present disclosure. Accordingly, the reader is directed to the claims for a fuller understanding of the breadth and scope of the present disclosure.



FIG. 20 depicts an exemplary diagrammatic representation of a machine in the form of a computer system 2000 within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies discussed above. In some embodiments, the machine operates as a standalone device. In some embodiments, the machine may be connected (e.g., using a network) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client user machine in server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The computer system 2000 may include a processor 2002 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 2004 and a static memory 2006, which communicate with each other via a bus 2008. The computer system 2000 may further include a video display unit 2010 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 2000 may include an input device 2012 (e.g., a keyboard), a cursor control device 2014 (e.g., a mouse), a disk drive unit 2016, a signal generation device 2018 (e.g., a speaker or remote control) and a network interface device 2020.


The disk drive unit 2016 may include a machine-readable medium 2022 on which is stored one or more sets of instructions (e.g., software 2024) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 2024 may also reside, completely or at least partially, within the main memory 2004, the static memory 2006, and/or within the processor 2002 during execution thereof by the computer system 2000. The main memory 2004 and the processor 2002 also may constitute machine-readable media.


Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.


In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.


The present disclosure contemplates a machine readable medium containing instructions 2024, or that which receives and executes instructions 2024 from a propagated signal so that a device connected to a network environment 2026 can send or receive voice, video or data, and to communicate over the network 2026 using the instructions 2024. The instructions 2024 may further be transmitted or received over a network 2026 via the network interface device 2020.


While the machine-readable medium 2022 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.


The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.


Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.


The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter. It is also contemplated that features in one embodiment may be utilized with features of another embodiment.

Claims
  • 1. A method comprising: measuring, by a system including a processor, parameters associated with forward and reverse power during a transmission burst and between transmission bursts, wherein the system is integrated in a communication device;comparing, by the system, at least a portion of the parameters to a threshold, wherein the threshold is a dynamic threshold that is adjusted during operation of the communication device according to a known transmitted power level and a target return loss assigned to a communication channel being utilized by the communication device;determining, by the system, whether the parameters are valid or invalid based on the comparing;adjusting, by the system, a tunable reactance circuit of the communication device to a first tuning state according to the parameters responsive to a determination that the parameters are valid; andadjusting, by the system, the tunable reactance circuit to a second tuning state responsive to a determination that the parameters are invalid, wherein the second tuning state is a last known tuning state for a use case of the communication device that was previously determined valid.
  • 2. The method of claim 1, wherein the comparing of the at least a portion of the parameters to the threshold comprises comparing first parameters associated with the forward and reverse power that are measured between the transmission bursts to the threshold.
  • 3. The method of claim 2, wherein the adjusting of the tunable reactance circuit to the first tuning state comprises determining the first tuning state according to second parameters that are measured during the transmission burst.
  • 4. The method of claim 1, wherein the adjusting of the tunable reactance circuit to the first tuning state according to the parameters comprises determining the first tuning state from a look-up table accessible to the system.
  • 5. A communication device, comprising: a transceiver;a tunable reactance circuit coupled to the transceiver; anda processor coupled to the tunable reactance circuit, wherein the processor, responsive to executing instructions, performs operations comprising: measuring parameters associated with forward and reverse power during a transmission burst and between transmission bursts;comparing at least a portion of the parameters to a threshold, wherein the threshold is a dynamic threshold that is adjusted during operation of the communication device according to a known transmitted power level and a target return loss assigned to a communication channel being utilized by the communication device;determining whether the parameters are valid or invalid based on the comparing;adjusting the tunable reactance circuit to a first tuning state according to the parameters responsive to a determination that the parameters are valid; andadjusting the tunable reactance circuit to a second tuning state responsive to a determination that the parameters are invalid.
  • 6. The communication device of claim 5, wherein the second tuning state is a last known tuning state previously determined valid.
  • 7. The communication device of claim 5, wherein the comparing of the at least a portion of the parameters to the threshold comprises comparing first parameters associated with the forward and reverse power that are measured between the transmission bursts to the threshold, and wherein the adjusting of the tunable reactance circuit to the first tuning state comprises determining the first tuning state according to second parameters that are measured during the transmission burst.
  • 8. The communication device of claim 5, wherein the second tuning state is a default tuning state, and wherein the adjusting of the tunable reactance circuit to the first tuning state according to the parameters comprises determining the first tuning state from a look-up table accessible to the processor.
  • 9. The communication device of claim 5, wherein the tunable reactance circuit comprises a semiconductor varactor, a micro-electro-mechanical systems (MEMS) varactor, a semiconductor switched capacitor, a MEMS switched capacitor, or any combination thereof.
  • 10. The communication device of claim 5, wherein the tunable reactance circuit comprises a voltage tunable capacitor.
  • 11. The communication device of claim 5, further comprising a directional coupler coupled between the transceiver and the tunable reactance circuit, wherein the directional coupler enables the measuring of the parameters associated with the forward and reverse power.
  • 12. The communication device of claim 5, wherein the adjusting of the tunable reactance circuit to the first tuning state is based in part on a use case of the communication device.
  • 13. A method comprising: detecting, by a system including a processor, an existence of an interferer, wherein the system is integrated with a communication device;determining, by the system, a tuning state for a variable matching network of the communication device based on whether the interferer exists and based on parameters measured from a feedback configuration;adjusting, by the system, the variable matching network based on the tuning state when the interferer does not exist; andadjusting, by the system, the variable matching network based on a previously determined tuning state when the interferer does exist.
  • 14. The method of claim 13, wherein the detecting of the existence of the interferer is based on Voltage Standing Wave Ratio data measured over a period of time.
  • 15. The method of claim 13, wherein the detecting of the existence of the interferer is based on amplitude modulation.
  • 16. The method of claim 13, wherein the detecting of the existence of the interferer is based on a reflected input measured during transmission and non-transmission.
  • 17. The method of claim 13, wherein the detecting of the existence of the interferer is based on phase measurements outside of a predetermined deviation.
  • 18. The method of claim 13, wherein the detecting of the existence of the interferer is based on a comparison of measured and predicted transmission power level changes.
  • 19. The method of claim 13, wherein the detecting of the existence of the interferer is based on a comparison of measured and predicted improvement in reflected loss.
  • 20. The method of claim 13, further comprising measuring the parameters from the feedback configuration utilizing a directional coupler, wherein the adjusting of the variable matching network based on the tuning state or based on a previously determined tuning state comprises adjusting a control signal provided to a voltage tunable capacitor of the variable matching network.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/090,583, filed Apr. 20, 2011, which claims priority to U.S. Provisional Application Ser. No. 61/326,206 filed on Apr. 20, 2010, the disclosures of which are hereby incorporated by reference in their entirety. This application is also related to U.S. application Ser. No. 13/090,575 entitled “Method and Apparatus for Managing Interference in a Communication Device” filed Apr. 20, 2011, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (476)
Number Name Date Kind
2745067 True May 1956 A
3117279 Ludvigson Jan 1964 A
3160832 Beitman Dec 1964 A
3390337 Beitman Jun 1968 A
3443231 Roza May 1969 A
3509500 McNair Apr 1970 A
3571716 Hill Mar 1971 A
3590385 Sabo Jun 1971 A
3601717 Kuecken Aug 1971 A
3742279 Kupsky Jun 1973 A
3749491 Maxfield et al. Jul 1973 A
3794941 Templin Feb 1974 A
3919644 Smolka Nov 1975 A
3990024 Hou Nov 1976 A
3995237 Brunner Nov 1976 A
4186359 Kaegebein Jan 1980 A
4201960 Skutta May 1980 A
4227256 O'Keefe Oct 1980 A
4383441 Willis May 1983 A
4476578 Gaudin Oct 1984 A
4493112 Bruene Jan 1985 A
4509019 Banu et al. Apr 1985 A
4777490 Sharma Oct 1988 A
4799066 Deacon Jan 1989 A
4965607 Wilkins Oct 1990 A
4980656 Duffalo Dec 1990 A
5032805 Elmer Jul 1991 A
5136478 Bruder Aug 1992 A
5142255 Chang Aug 1992 A
5177670 Shinohara Jan 1993 A
5195045 Keane Mar 1993 A
5200826 Seong Apr 1993 A
5212463 Babbitt May 1993 A
5230091 Vaisanen et al. Jul 1993 A
5243358 Sanford Sep 1993 A
5258728 Taniyoshi Nov 1993 A
5276912 Siwiak Jan 1994 A
5301358 Gaskill Apr 1994 A
5307033 Koscica Apr 1994 A
5310358 Johnson May 1994 A
5312790 Sengupta May 1994 A
5334958 Babbitt Aug 1994 A
5361403 Dent Nov 1994 A
5371473 Trinh Dec 1994 A
5409889 Das Apr 1995 A
5427988 Sengupta Jun 1995 A
5430417 Martin Jul 1995 A
5446447 Carney Aug 1995 A
5448252 Ali Sep 1995 A
5451567 Das Sep 1995 A
5451914 Stengel Sep 1995 A
5457394 McEwan Oct 1995 A
5472935 Yandrofski Dec 1995 A
5479139 Koscica Dec 1995 A
5486491 Sengupta Jan 1996 A
5496795 Das Mar 1996 A
5502372 Quan Mar 1996 A
5524281 Bradley Jun 1996 A
5548837 Hess et al. Aug 1996 A
5561407 Koscica Oct 1996 A
5564086 Cygan Oct 1996 A
5583359 Ng et al. Dec 1996 A
5589844 Belcher et al. Dec 1996 A
5593495 Masuda Jan 1997 A
5635433 Sengupta Jun 1997 A
5635434 Sengupta Jun 1997 A
5640042 Koscica Jun 1997 A
5679624 Das Oct 1997 A
5689219 Piirainen Nov 1997 A
5693429 Sengupta Dec 1997 A
5694134 Barnes Dec 1997 A
5699071 Urakami Dec 1997 A
5721194 Yandrofski Feb 1998 A
5766697 Sengupta Jun 1998 A
5777581 Lilly Jul 1998 A
5778308 Sroka Jul 1998 A
5786727 Sigmon Jul 1998 A
5812572 King Sep 1998 A
5812943 Suzuki Sep 1998 A
5830591 Sengupta Nov 1998 A
5846893 Sengupta Dec 1998 A
5874926 Tsuru Feb 1999 A
5880635 Satoh Mar 1999 A
5886867 Chivukula Mar 1999 A
5892482 Coleman et al. Apr 1999 A
5929717 Richardson Jul 1999 A
5940030 Hampel et al. Aug 1999 A
5963871 Zhinong Oct 1999 A
5969582 Boesch Oct 1999 A
5982099 Barnes et al. Nov 1999 A
5990766 Zhang Nov 1999 A
6009124 Smith Dec 1999 A
6020787 Kim Feb 2000 A
6020795 Kim Feb 2000 A
6029075 Das Feb 2000 A
6045932 Jia Apr 2000 A
6061025 Jackson May 2000 A
6064865 Kuo May 2000 A
6074971 Chiu Jun 2000 A
6096127 Dimos Aug 2000 A
6100733 Dortu Aug 2000 A
6101102 Brand Aug 2000 A
6115585 Matero Sep 2000 A
6125266 Matero et al. Sep 2000 A
6133883 Munson Oct 2000 A
6172385 Duncombe Jan 2001 B1
6215644 Dhuler Apr 2001 B1
6242989 Barber Jun 2001 B1
6266528 Farzaneh Jul 2001 B1
6281748 Klomsdorf et al. Aug 2001 B1
6281847 Lee Aug 2001 B1
6309895 Jaing Oct 2001 B1
6343208 Ying Jan 2002 B1
6377142 Chiu Apr 2002 B1
6377217 Zhu Apr 2002 B1
6377440 Zhu Apr 2002 B1
6384785 Kamogawa May 2002 B1
6404614 Zhu Jun 2002 B1
6408190 Ying Jun 2002 B1
6414562 Bouisse Jul 2002 B1
6415562 Donaghue Jul 2002 B1
6452776 Chakravorty Sep 2002 B1
6461930 Akram Oct 2002 B2
6466774 Okabe Oct 2002 B1
6492883 Liang Dec 2002 B2
6514895 Chiu Feb 2003 B1
6525630 Zhu Feb 2003 B1
6531936 Chiu Mar 2003 B1
6535076 Partridge Mar 2003 B2
6535722 Rosen Mar 2003 B1
6538603 Chen Mar 2003 B1
6556102 Sengupta Apr 2003 B1
6556814 Klomsdorf Apr 2003 B1
6570462 Edmonson May 2003 B2
6590468 du Toit Jul 2003 B2
6590541 Schultze Jul 2003 B1
6597265 Liang Jul 2003 B2
6608603 Alexopoulos Aug 2003 B2
6624786 Boyle Sep 2003 B2
6640085 Chatzipetros Oct 2003 B1
6657595 Phillips Dec 2003 B1
6661638 Jackson Dec 2003 B2
6670256 Yang Dec 2003 B2
6710651 Forrester Mar 2004 B2
6724611 Mosley Apr 2004 B1
6724890 Bareis Apr 2004 B1
6737179 Sengupta May 2004 B2
6747522 Pietruszynski et al. Jun 2004 B2
6759918 Du Toit Jul 2004 B2
6765540 Toncich Jul 2004 B2
6768472 Alexopoulos Jul 2004 B2
6774077 Sengupta Aug 2004 B2
6795712 Vakilian Sep 2004 B1
6825818 Toncich Nov 2004 B2
6839028 Lee Jan 2005 B2
6845126 Dent Jan 2005 B2
6859104 Toncich Feb 2005 B2
6862432 Kim Mar 2005 B1
6864757 Du Toit Mar 2005 B2
6868260 Jagielski Mar 2005 B2
6875655 Lin Apr 2005 B2
6882245 Utsunomiya Apr 2005 B2
6888714 Shaw May 2005 B2
6905989 Ellis Jun 2005 B2
6906653 Uno Jun 2005 B2
6907234 Karr Jun 2005 B2
6920315 Wilcox et al. Jul 2005 B1
6922330 Nielsen Jul 2005 B2
6943078 Zheng Sep 2005 B1
6946847 Nishimori Sep 2005 B2
6949442 Barth Sep 2005 B2
6961368 Dent Nov 2005 B2
6964296 Memory Nov 2005 B2
6965837 Vintola Nov 2005 B2
6987493 Chen Jan 2006 B2
6993297 Smith Jan 2006 B2
6999297 Klee Feb 2006 B1
7009455 Toncich Mar 2006 B2
7071776 Forrester Jul 2006 B2
7106715 Kelton Sep 2006 B1
7107033 D du Toit Sep 2006 B2
7113614 Rhoads Sep 2006 B2
7151411 Martin Dec 2006 B2
7176634 Kitamura Feb 2007 B2
7176845 Fabrega-Sanchez Feb 2007 B2
7180467 Fabrega-Sanchez Feb 2007 B2
7218186 Chen May 2007 B2
7221327 Toncich May 2007 B2
7298329 Diament Nov 2007 B2
7299018 Van Rumpt Nov 2007 B2
7312118 Kiyotoshi Dec 2007 B2
7332980 Zhu Feb 2008 B2
7332981 Matsuno Feb 2008 B2
7339527 Sager Mar 2008 B2
7369828 Shamsaifar May 2008 B2
7426373 Clingman Sep 2008 B2
7427949 Channabasappa et al. Sep 2008 B2
7453405 Nishikido et al. Nov 2008 B2
7468638 Tsai Dec 2008 B1
7469129 Blaker et al. Dec 2008 B2
7528674 Kato et al. May 2009 B2
7531011 Yamasaki May 2009 B2
7535080 Zeng et al. May 2009 B2
7535312 McKinzie May 2009 B2
7539527 Jang May 2009 B2
7557507 Wu Jul 2009 B2
7596357 Nakamata Sep 2009 B2
7633355 Matsuo Dec 2009 B2
7642879 Matsuno Jan 2010 B2
7655530 Hosking Feb 2010 B2
7667663 Hsiao Feb 2010 B2
7671693 Brobston Mar 2010 B2
7705692 Fukamachi et al. Apr 2010 B2
7711337 McKinzie May 2010 B2
7714676 McKinzie May 2010 B2
7714678 du Toit et al. May 2010 B2
7728693 du Toit et al. Jun 2010 B2
7760699 Malik Jul 2010 B1
7768400 Lawrence et al. Aug 2010 B2
7786819 Ella Aug 2010 B2
7795990 du Toit Sep 2010 B2
7830320 Shamblin et al. Nov 2010 B2
7852170 McKinzie Dec 2010 B2
7856228 Lekutai et al. Dec 2010 B2
7865154 Mendolia Jan 2011 B2
7907094 Kakitsu et al. Mar 2011 B2
7917104 Manssen et al. Mar 2011 B2
7949309 Rofougaran May 2011 B2
7969257 du Toit Jun 2011 B2
7983615 Bryce et al. Jul 2011 B2
7991363 Greene Aug 2011 B2
8008982 McKinzie Aug 2011 B2
8072285 Spears Dec 2011 B2
8112043 Knudsen et al. Feb 2012 B2
8170510 Knudsen et al. May 2012 B2
8190109 Ali et al. May 2012 B2
8204446 Scheer Jun 2012 B2
8213886 Blin Jul 2012 B2
8217731 McKinzie, III Jul 2012 B2
8217732 McKinzie Jul 2012 B2
8299867 McKinzie Oct 2012 B2
8320850 Khlat Nov 2012 B1
8325097 McKinzie, III et al. Dec 2012 B2
8405563 McKinzie et al. Mar 2013 B2
8421548 Spears et al. Apr 2013 B2
8432234 Manssen Apr 2013 B2
8442457 Harel et al. May 2013 B2
8457569 Blin Jun 2013 B2
8472888 Manssen et al. Jun 2013 B2
8558633 McKinzie, III Oct 2013 B2
8564381 McKinzie Oct 2013 B2
8594584 Greene et al. Nov 2013 B2
8620236 Manssen et al. Dec 2013 B2
8620246 McKinzie et al. Dec 2013 B2
8620247 McKinzie et al. Dec 2013 B2
8655286 Mendolia Feb 2014 B2
8674783 Spears et al. Mar 2014 B2
8680934 McKinzie, III Mar 2014 B2
8693963 du Toit et al. Apr 2014 B2
8712340 Hoirup Apr 2014 B2
8787845 Manssen et al. Jul 2014 B2
8957742 Spears et al. Feb 2015 B2
9026062 Greene et al. May 2015 B2
9119152 Blin Aug 2015 B2
20020008672 Gothard et al. Jan 2002 A1
20020030566 Bozler Mar 2002 A1
20020079982 Lafleur et al. Jun 2002 A1
20020109642 Gee et al. Aug 2002 A1
20020118075 Ohwada Aug 2002 A1
20020145483 Bouisse Oct 2002 A1
20020167963 Joa-Ng Nov 2002 A1
20020183013 Auckland et al. Dec 2002 A1
20020187780 Souissi Dec 2002 A1
20020191703 Ling Dec 2002 A1
20020193088 Jung Dec 2002 A1
20030060227 Sekine Mar 2003 A1
20030071300 Yashima Apr 2003 A1
20030114124 Higuchi Jun 2003 A1
20030142022 Ollikainen Jul 2003 A1
20030184319 Nishimori et al. Oct 2003 A1
20030193997 Dent Oct 2003 A1
20030199286 D du Toit Oct 2003 A1
20030210206 Phillips Nov 2003 A1
20030216150 Ueda Nov 2003 A1
20030232607 Le Bars Dec 2003 A1
20040009754 Smith, Jr. Jan 2004 A1
20040090372 Nallo May 2004 A1
20040100341 Luetzelschwab May 2004 A1
20040127178 Kuffner Jul 2004 A1
20040137950 Bolin Jul 2004 A1
20040202399 Kochergin Oct 2004 A1
20040227176 York Nov 2004 A1
20040232982 Ichitsubo Nov 2004 A1
20040257293 Friedrich Dec 2004 A1
20040263411 Fabrega-Sanchez et al. Dec 2004 A1
20050007291 Fabrega-Sanchez Jan 2005 A1
20050032488 Pehlke Feb 2005 A1
20050032541 Wang Feb 2005 A1
20050042994 Otaka Feb 2005 A1
20050059362 Kalajo et al. Mar 2005 A1
20050082636 Yashima Apr 2005 A1
20050085204 Poilasne et al. Apr 2005 A1
20050093624 Forrester et al. May 2005 A1
20050130608 Forse Jun 2005 A1
20050130699 Kim Jun 2005 A1
20050208960 Hassan Sep 2005 A1
20050215204 Wallace Sep 2005 A1
20050227627 Cyr et al. Oct 2005 A1
20050227633 Dunko Oct 2005 A1
20050259011 Vance Nov 2005 A1
20050260962 Nazrul et al. Nov 2005 A1
20050264455 Talvitie Dec 2005 A1
20050280588 Fujikawa Dec 2005 A1
20050282503 Onno Dec 2005 A1
20060003537 Sinha Jan 2006 A1
20060009165 Alles Jan 2006 A1
20060030277 Cyr et al. Feb 2006 A1
20060077082 Shanks et al. Apr 2006 A1
20060099915 Laroia et al. May 2006 A1
20060119511 Collinson Jun 2006 A1
20060148415 Hamalainen Jul 2006 A1
20060160501 Mendolia Jul 2006 A1
20060183431 Chang et al. Aug 2006 A1
20060183433 Mori et al. Aug 2006 A1
20060183442 Chang et al. Aug 2006 A1
20060195161 Li Aug 2006 A1
20060205368 Bustamante Sep 2006 A1
20060281423 Caimi Dec 2006 A1
20070001924 Hirabayashi Jan 2007 A1
20070013483 Stewart Jan 2007 A1
20070035458 Ohba Feb 2007 A1
20070042725 Poilasne Feb 2007 A1
20070042734 Ryu Feb 2007 A1
20070063788 Zhu Mar 2007 A1
20070080888 Mohamadi Apr 2007 A1
20070082611 Terranova et al. Apr 2007 A1
20070085609 Itkin et al. Apr 2007 A1
20070091006 Thober et al. Apr 2007 A1
20070111681 Alberth et al. May 2007 A1
20070121267 Kotani et al. May 2007 A1
20070142011 Shatara Jun 2007 A1
20070142014 Wilcox Jun 2007 A1
20070149146 Hwang Jun 2007 A1
20070171879 Bourque Jul 2007 A1
20070182636 Carlson Aug 2007 A1
20070184825 Lim et al. Aug 2007 A1
20070194859 Brobston Aug 2007 A1
20070197180 McKinzie et al. Aug 2007 A1
20070200766 McKinzie Aug 2007 A1
20070200773 Dou et al. Aug 2007 A1
20070248238 Abreu Oct 2007 A1
20070285326 McKinzie Dec 2007 A1
20070293176 Yu Dec 2007 A1
20080007478 Jung Jan 2008 A1
20080018541 Pang Jan 2008 A1
20080030165 Lisac Feb 2008 A1
20080055016 Morris Mar 2008 A1
20080055168 Massey Mar 2008 A1
20080081670 Rofougaran Apr 2008 A1
20080094149 Brobston Apr 2008 A1
20080106350 McKinzie May 2008 A1
20080122553 McKinzie May 2008 A1
20080122723 Rofougaran May 2008 A1
20080129612 Wang Jun 2008 A1
20080158076 Walley Jul 2008 A1
20080174508 Iwai et al. Jul 2008 A1
20080261544 Blin Oct 2008 A1
20080274706 Blin et al. Nov 2008 A1
20080280570 Blin Nov 2008 A1
20080285729 Glasgow et al. Nov 2008 A1
20080288028 Larson et al. Nov 2008 A1
20080294718 Okano Nov 2008 A1
20080300027 Dou et al. Dec 2008 A1
20080305749 Ben-Bassat Dec 2008 A1
20080305750 Alon et al. Dec 2008 A1
20080309617 Kong et al. Dec 2008 A1
20090002077 Rohani et al. Jan 2009 A1
20090027286 Ohishi Jan 2009 A1
20090039976 McKinzie, III Feb 2009 A1
20090082017 Chang et al. Mar 2009 A1
20090109880 Kim et al. Apr 2009 A1
20090121963 Greene May 2009 A1
20090149136 Rofougaran Jun 2009 A1
20090180403 Tudosoiu Jul 2009 A1
20090184879 Derneryd Jul 2009 A1
20090215446 Hapsari et al. Aug 2009 A1
20090231220 Zhang et al. Sep 2009 A1
20090253385 Dent et al. Oct 2009 A1
20090264065 Song Oct 2009 A1
20090278685 Potyrailo Nov 2009 A1
20090295651 Dou et al. Dec 2009 A1
20090323572 Shi et al. Dec 2009 A1
20090323582 Proctor et al. Dec 2009 A1
20100041348 Wilcox et al. Feb 2010 A1
20100053009 Rofougaran Mar 2010 A1
20100060531 Rappaport Mar 2010 A1
20100073103 Spears Mar 2010 A1
20100085260 McKinzie Apr 2010 A1
20100085884 Srinivasan et al. Apr 2010 A1
20100105425 Asokan Apr 2010 A1
20100107067 Vaisanen Apr 2010 A1
20100134215 Lee Jun 2010 A1
20100156552 McKinzie Jun 2010 A1
20100164640 McKinzie Jul 2010 A1
20100164641 McKinzie Jul 2010 A1
20100214189 Kanazawa Aug 2010 A1
20100232474 Rofougaran et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100285836 Horihata et al. Nov 2010 A1
20100302106 Knudsen et al. Dec 2010 A1
20100304688 Knudsen Dec 2010 A1
20110002080 Ranta Jan 2011 A1
20110012790 Badaruzzaman Jan 2011 A1
20110014879 Alberth et al. Jan 2011 A1
20110014886 Manssen Jan 2011 A1
20110043298 McKinzie Feb 2011 A1
20110043328 Bassali Feb 2011 A1
20110053524 Manssen Mar 2011 A1
20110063042 Mendolia Mar 2011 A1
20110086600 Muhammad Apr 2011 A1
20110086630 Manssen Apr 2011 A1
20110102290 Milosavljevic May 2011 A1
20110105023 Scheer et al. May 2011 A1
20110116423 Rousu et al. May 2011 A1
20110117863 Camp, Jr. et al. May 2011 A1
20110117973 Asrani et al. May 2011 A1
20110121079 Lawrence et al. May 2011 A1
20110122040 Wakabayashi May 2011 A1
20110133994 Korva Jun 2011 A1
20110140982 Ozden et al. Jun 2011 A1
20110183628 Baker Jul 2011 A1
20110183633 Ohba Jul 2011 A1
20110195679 Lee et al. Aug 2011 A1
20110227666 Manssen Sep 2011 A1
20110237207 Bauder Sep 2011 A1
20110249760 Chrisikos et al. Oct 2011 A1
20110250852 Greene Oct 2011 A1
20110254637 Manssen Oct 2011 A1
20110254638 Manssen Oct 2011 A1
20110256857 Chen et al. Oct 2011 A1
20110281532 Shin et al. Nov 2011 A1
20110299438 Mikhemar Dec 2011 A1
20110306310 Bai Dec 2011 A1
20110309980 Ali Dec 2011 A1
20120051409 Brobston et al. Mar 2012 A1
20120062431 Tikka et al. Mar 2012 A1
20120075159 Chang Mar 2012 A1
20120084537 Indukuru et al. Apr 2012 A1
20120094708 Park Apr 2012 A1
20120100802 Mohebbi Apr 2012 A1
20120112851 Manssen May 2012 A1
20120112852 Manssen et al. May 2012 A1
20120119843 du Toit et al. May 2012 A1
20120119844 du Toit et al. May 2012 A1
20120154975 Oakes Jun 2012 A1
20120214421 Hoirup Aug 2012 A1
20120220243 Mendolia Aug 2012 A1
20120243579 Premakanthan et al. Sep 2012 A1
20120286586 Balm Nov 2012 A1
20120293384 Knudsen et al. Nov 2012 A1
20120295554 Greene et al. Nov 2012 A1
20120295555 Greene et al. Nov 2012 A1
20120309332 Liao et al. Dec 2012 A1
20130005277 Klomsdorf et al. Jan 2013 A1
20130052967 Black et al. Feb 2013 A1
20130056841 Hsieh et al. Mar 2013 A1
20130076579 Zhang Mar 2013 A1
20130076580 Zhang Mar 2013 A1
20130106332 Williams et al. May 2013 A1
20130122829 Hyvonen et al. May 2013 A1
20130137384 Desclos et al. May 2013 A1
20130154897 Sorensen et al. Jun 2013 A1
20130215846 Yerrabommanahalli et al. Aug 2013 A1
20130293425 Zhu Nov 2013 A1
20130315285 Black et al. Nov 2013 A1
20140002323 Ali et al. Jan 2014 A1
Foreign Referenced Citations (38)
Number Date Country
101640949 Feb 2010 CN
19614655 Oct 1997 DE
102008050743 Apr 2010 DE
102009018648 Oct 2010 DE
0909024 Apr 1999 EM
0685936 Jun 1995 EP
0909024 Apr 1999 EP
1079296 Feb 2001 EP
1137192 Sep 2001 EP
1298810 Apr 2006 EP
2214085 Aug 2010 EP
2328233 Jun 2011 EP
2388925 Nov 2011 EP
2424119 Feb 2012 EP
03276901 Mar 1990 JP
02-077580 Sep 1991 JP
9321526 Dec 1997 JP
10209722 Aug 1998 JP
2000124066 Apr 2000 JP
2005-130441 May 2005 JP
100645526 Nov 2006 KR
10-0740177 Jul 2007 KR
0171846 Sep 2001 WO
2006031170 Mar 2006 WO
2008030165 Mar 2008 WO
2009064968 May 2009 WO
2009108391 Sep 2009 WO
2009155966 Dec 2009 WO
2010025851 Mar 2010 WO
2010121914 Oct 2010 WO
2011044592 Apr 2011 WO
2011084716 Jul 2011 WO
2011084716 Jul 2011 WO
2011102143 Aug 2011 WO
2011133657 Oct 2011 WO
2011028453 Oct 2011 WO
2012067622 May 2012 WO
2012085932 Jun 2012 WO
Non-Patent Literature Citations (34)
Entry
Payandehjoo, Kasra et al., “Investigation of Parasitic Elements for Coupling Reduction in MultiAntenna Hand-Set Devices”, Published online Jan. 22, 2013 in Wiley Online Library (wileyonlinelibrary.com).
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268.
Du Toit, , “Tunable Microwave Devices With Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011.
Du Toit, , “Tunable Microwave Devices With Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011.
Eiji, N. , “High-Frequency Circuit and Its Manufacture”, Patent Abstracts of Japan, vol. 1998, No. 13, Nov. 30, 1998 & JP 10 209722 A (Seiko Epson Corp), Aug. 7, 1998.
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011.
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011.
Hoirup, , “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011.
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, Sep. 7, 2005, 13-17.
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, vol. 79, No. 2, Jul. 9, 2001.
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547.
Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication No. 03-276901, Date of publication of application: Sep. 12, 1991.
Manssen, , “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010.
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010.
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011.
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011.
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011.
McKinzie, , “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011.
Mendolia, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011.
Paratek Microwave, Inc., , “Method and Apparatus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620, filed Nov. 7, 2011.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008.
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, vol. 85, No. 19, Nov. 8, 2004.
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631.
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, Jan. 2005.
Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004.
Spears, , “Methods for Tuning an Adaptive Impedance Matching Network With a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011.
Stemmer, Susanne , “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, Applied Physics Letters 88, 112905, Mar. 15, 2006.
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, vol. 80, No. 11, Mar. 18, 2002.
Tombak, Ali , “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002.
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005, Apr. 2005.
Zuo, S. , “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, Aug. 2011, 11-20.
Related Publications (1)
Number Date Country
20150031314 A1 Jan 2015 US
Provisional Applications (1)
Number Date Country
61326206 Apr 2010 US
Continuations (1)
Number Date Country
Parent 13090583 Apr 2011 US
Child 14483911 US