Dark Pools play a similar function of matching up buyers and sellers, but do not provide full visibility into the available liquidity and pricing information. Dark Pools may be operated by financial exchanges, investment banks, or other financial institutions. Dark Pools are rapidly becoming a key market center for electronic trading activity, with a substantial proportion of transactions occurring in dark pools, relative to public markets.
In order to facilitate the development of trading applications that leverage real-time data from multiple market centers (and their concomitant feeds), trading platforms typically normalize data and perform common data processing/enrichment functions in ticker plants, as described in the above-referenced and incorporated U.S. Pat. App. Pub. 2008/0243675 and WO Pub. WO 2010/077829.
Trading strategies consume normalized market data, make decisions to place buy/sell orders, and pass those orders on to an order management system. Note that those orders may provide guidance to the order management system on where to route the order (e.g. whether or not it should be routed to a dark pool), how long the order should be exposed in the market before canceling it (if it is not executed), and other conditions governing the management of the order in the marketplace.
An Order Management System (OMS) (which can also be referred to as an Execution Management System (EMS)) is responsible for managing orders from one or more trading applications. Note that the OMS/EMS may be responsible for managing orders from multiple trading entities. These entities may be competing trading groups within the same investment bank. These entities may also be independent financial institutions that are accessing the market through a common prime services broker or trading infrastructure provider.
The function of the OMS/EMS is to enter orders into a market. Prior to entering an order into a market, the OMS may first perform a series of checks in order to deem the order “valid” for placement. These checks can include:
It can also be noted that the OMS/EMS typically is used to manage order placement into multiple markets, including dark pools. Once an order is declared to be appropriate (i.e., “valid”), one of the primary functions of the OMS/EMS is to select the destination for each incoming order. Note that the OMS/EMS may also choose to sub-divide the order into smaller orders that may be routed the same or different markets. The OMS/EMS makes routing decisions based on the current state of the markets provided via normalized market data from a ticker plant, as well as routing parameters input to the OMS/EMS. Routing parameters may be scoped on a per-account or corporate basis. These parameters may include:
Once the OMS has made a decision of where and how to route an order, it may then attempt to optimize the order and communication channel in which it transmits orders to a given market (order entry optimization). For example, orders with a higher probability of getting filled (matched) may be placed prior to orders with a lower probability of getting filled, or orders meeting certain criteria, such as order types or specific financial instruments, may have a higher probability of being filled by utilizing one communication channel rather than another. The order entry optimization may also incorporate the current view of the market (from the normalized market data) as well the current estimate of intra-market latency for the given market.
One or more order validation software components are deployed on one or more servers 202. Each order validation software component requires a market data interface to the messaging bus. The interface allows the validation software component to request the necessary market data to perform validation on incoming orders. Similarly, the order validation software components listen for new incoming orders from trading strategies on the order entry bus. Note that the latency of market data delivery and the bandwidth available on the market data bus affect the quality and quantity, respectively, of data used by the order validation software component. Furthermore, the distribution of order validation software components across multiple servers 202 segments validation decisions. As result, the previously described validation decisions are performed on a limited view of data, which introduces risk, or validation decisions are delayed until data from disparate components can be compiled in order to build a comprehensive view of risk. Such delays may reduce or eliminate market opportunities that depend on a fast response to trading opportunities.
Orders that pass the validation checks are forwarded to one or more routing strategy software components that perform order placement into multiple markets, as previously described. Like the order validation software components, each routing strategy software component requires a market data interface to the market data messaging bus through which it receives current pricing information. The order routing software components typically require a price-aggregated view of the book for the instruments for which it is routing new orders. These book views may be cached locally in the routing strategy software components or requested via the market data interface. The latency associated with these book views directly affects the quality of the data used by the routing strategy software components to make order routing decisions. Delayed data may cause a routing strategy software component to make a decision that results in a missed trading opportunity or a trading loss. Once a routing strategy software component makes a routing decision, the order along with its handling instructions and destination market is forwarded on to the order entry bus.
Typically, output orders from the routing strategy software components are directly passed to one or more FIX engine software components that implement the order-entry interface to one or more markets. The FIX engine software components pass outgoing orders to the markets and pass incoming order responses from the markets to the order entry bus. The latency induced by another transition over a messaging bus and the FIX engine processing represents an additive contribution to the total latency of the OMS/EMS.
Optionally, an OMS/EMS may include one or more order entry optimization software components. As previously described, these software components impose a priority ordering on the orders passed on to the markets. When included in the OMS/EMS, the software components receive orders from the routing strategy software components via the order entry bus, perform their priority queuing operation, and pass orders destined for the market to the appropriate FIX engine software components via the order entry messaging bus. As with the FIX engine software components, the latency induced by another transition over a messaging bus and the order entry optimization processing represents an additive contribution to the total latency of the OMS/EMS.
Thus, distributing OMS/EMS components across multiple systems results in added complexity and latency, which introduces regulatory risk and limits the opportunity to capitalize on latency-sensitive trading opportunities. Furthermore, the overhead of inter-component communication may limit the quantity of data available to components to perform their tasks. This may introduce additional regulatory risk and may further limit trading opportunities.
As a solution to these technical problems of complexity and latency, the inventors disclose a variety of embodiments whereby tight integration is provided between system components to thereby dramatically improve latency and reduce communication complexity.
For example, the inventors disclose an apparatus comprising a processor configured as an order management engine, the order management engine configured to (1) process a plurality of orders relating to a plurality of financial instruments based on a plurality of inputs, and (2) integrate at least two members of the group consisting of an order validation operation, a routing strategy operation, a position blotter operation, and an order entry optimization to thereby process the orders.
As another example, the inventors disclose a method comprising (1) processing, by a processor configured as an order management engine, a plurality of orders relating to a plurality of financial instruments based on a plurality of inputs, wherein the processing comprises performing at least two members of the group consisting of an order validation operation, a routing strategy operation, a position blotter operation, and an order entry optimization via integrated components of the order management engine.
As still another example, the inventors disclose an apparatus comprising a trading platform, the trading platform configured to receive and process streaming financial market data, the trading platform comprising at least two members of the group consisting of (1) a ticker plant engine, (2) a trading strategy engine, and (3) an order management engine, each integrated within the trading platform.
As another example, the inventors disclose a method comprising receiving and processing, by a trading platform, streaming financial market data, the trading platform comprising at least two members of the group consisting of (1) a ticker plant engine, (2) a trading strategy engine, and (3) an order management engine, each integrated within the trading platform.
The inventors also disclose an apparatus comprising a trading platform, the trading platform configured to receive and process streaming financial market data, the trading platform comprising a host system, and a trading strategy engine, wherein the trading strategy engine is configured to offload from the host system at least a portion of a trading strategy with respect to one or more financial instruments and one or more financial markets.
Further still, the inventors disclose a method comprising (1) receiving and processing, by a trading platform, streaming financial market data, the trading platform comprising a host system and a trading strategy engine, and (2) the trading strategy engine offloading from the host system at least a portion of a trading strategy with respect to one or more financial instruments and one or more financial markets.
These and other features and advantages of the present invention will be understood by those having ordinary skill in the art upon review of the description and figures hereinafter.
Order Management Engine
As shown in
The OME can ingest a stream of orders 324 originating from one or more trading strategies from one or more trading entities. Preferably, those trading strategies are accelerated and hosted on the integrated trading platform as described herein in connection with
The mapping component 302 resolves a unique identifier for the financial instrument used by the OME to track per-instrument state. Preferably this key is an index number that allows instrument state to be directly indexed using the number. The mapping component also resolves the unique instrument identifier required for order entry into the markets. Preferably, the mapping component also resolves the instrument identifier required to retrieve the current pricing information from the market view component. As described the above-referenced and incorporated U.S. Pat. App. Pub. 2008/0243675, the mapping is preferably accomplished by using a hash table implementation to minimize the number of memory accesses to perform the mapping. Similarly, the mapping component resolves a unique identifier for the individual and corporate risk profile records.
In order to seed the order validation checks, the mapping component also initiates the retrieval of relevant validation information associated with the order from one or more of the following sources:
Similarly, the mapping component initiates the retrieval of current pricing information for the financial instrument by passing the mapped instrument identifier to the market view component 310.
The market view component can ingest normalized market data 326 from a logically upstream ticker plant. Examples of ticker plants that can be employed for this purpose are the ticker plant engines described in described in the above-referenced and incorporated U.S. Pat. App. Pub. 2008/0243675 and WO Pub. WO 2010/077829. The market view component provides a current view of the markets to other components within the OME. Typically, the view of the market is provided as regional and composite price-aggregated book views for each financial instrument such as those described in the above-referenced and incorporated WO Pub. WO 2010/077829. In the preferred embodiment, the market view component provides a current pricing record to downstream OME components that includes a snapshot of current liquidity in the form of a limited-depth price-aggregated composite book, liquidity statistics, and trade statistics, as shown in
In addition to ingesting normalized market data, the market view component has the ability to update those regional and composite book views based on order entry confirmation and order fill reports received from the markets. This information from the order entry interfaces of financial markets is processed by the position blotter component. The position blotter updates the view of current outstanding positions in the market and makes this view available to the market view component, as well as other OME components. Updates to the view of outstanding positions may allow the current view of the market to be updated prior to the concomitant updates being received via the upstream ticker plant that consumes the exchanges' market data feeds. In order to prevent redundant updates to the books, the market view component can maintain a cache 328 of updates triggered by the order entry responses. When a concomitant market data update is received, it must be omitted or adjusted by the amount of liquidity added/removed by the order entry response event.
Similar to the retrieval of necessary regulatory and account records, the retrieval of the financial instrument record from the market view component masks the latency of record retrieval for downstream components.
It should also be noted that optionally, the market view component 310 can itself be a ticker plant engine that ingests financial market data to produce normalized financial market data for consumption by the order validation component.
The order validation component 304 maintains independent input buffers for incoming orders, the regulatory and account records, and the market data records. The buffers provide a synchronization mechanism whereby the order validation component initiates its computations for a new order when all necessary record information is available. The order validation component contains a plurality of rule engines that perform a set of checks as described in the Introduction. Thus the rules engine can instantiate various rules and validate orders (or groups of orders) against those rules. Such rules may be derived from any or all of the following validation rules discussed above (although it should be understood that other validation rules may be desired by a practitioner):
An example of a rules engine that can be employed toward this end is disclosed in the above-referenced and incorporated U.S. Pat. App. Pub. 2009/0287628. Note that the set of rule engines may leverage data parallelism (multiple copies of identical rule engines) and functional parallelism (pipeline of function-specific rule engines) to achieve the desired throughput and latency for the order validation component.
The specific set of checks is dictated by the validation information associated with the order (that was retrieved during the order mapping step). If all checks pass, the order is declared as valid and passed on to the routing strategy component. Note that the order validation component may update validation records and write them back to the appropriate record cache, e.g. The current and cumulative statistics on positions for a given account may be updated. As shown in
The combinatorial rules are typically more straightforward, as a reject result from any of the individual rule checks results in a reject decision for the order. The number of independent rule engines provisioned in the order validation component can be determined by the throughput requirement for the component and an analysis of the complexity of rule checks that must be performed.
Modified and accepted orders are forwarded to the routing strategy component 306, along with its concomitant records via a dedicated interconnect. This allows the routing strategy component to immediately begin processing the order. The routing strategy component determines if a valid order is to be partitioned and where the order (or each order partition) is to be routed. Similar to the order validation component, the routing strategy component utilizes a plurality of rules engines such as those described in the above-referenced and incorporated U.S. Pat. App. Pub. 2009/0287628 to make these decisions (which may also employ a parallelization strategy). The decisions are driven by routing parameters contained in the individual account, corporate account, and regulatory records, as well as data from the market view component and the position blotter component. The rules implement the types of routing strategies outlined in the Introduction. Once a routing decision is completed by the rules engines, the order (or order partitions) are passed on to the order entry optimization component 308 with directives on where and how to enter the order (or order partitions) into the market. Note that an order may be entered into a market with a wide variety of parameters that direct the exchange (or dark pool) on how the order may be matched. The routing strategy component also updates the position blotter component to reflect a new position in the market.
The latency monitor component 312 utilizes data from outgoing order events 332 and incoming order response events 334 to maintain a set of statistics for each channel to each market. The latency statistics may include estimates of intra-exchange latency based on measurements of the round-trip-time (RU) from transmitting a new order on a channel to receiving a response event (either an order accept, reject, or fill notification). The statistics may include the last measurement as well as the average, minimum, and maximum for a defined time window (e.g. a moving average). The latency statistics may also be further refined to include statics on a per-instrument/per-order-type basis for each channel. Such measurements can be performed by recording a timestamp for the transmission of an order entry event, timestamping each order entry response event, identifying the order entry event that corresponds to the response event, and then computing the difference in timestamps.
The order entry optimization component 308 optimizes the sequence in which orders are transmitted to a given market. Furthermore, the component may select the appropriate communication channel to the market if multiple channels are available. The order entry optimization component utilizes the directives from the routing strategy component, as well current estimates of intra-exchange latency computed for each independent channel to that market. The latency estimates for each instrument and order type combination may also be incorporated. As shown in
A FIX encoder subcomponent 606 then services the queues 604 to generate the outgoing orders 332 in accordance with the selected channels and other optimizations.
An exemplary computation subcomponent 600 can score order channels as a simple weighted sum of antecedents: sum(W[i]*A[i]), where W[i] is a user specified weight, and A[i]=antecedent. Exemplary antecedents include:
As indicated above, the subcomponents of the order entry optimization component 308 shown in
The position blotter update component 314 processes order entry response messages 334 from the various markets. The response messages notify the OME of which orders were placed, executed, cancelled, rejected, etc. The position blotter provides updates to the market view component when orders are placed so that the views of the market can be updated with less latency than receiving the update via the market data feed from the market center. Through a dedicated interconnect between the position blotter update component and the market view component, such updates can be passed with minimal overhead. Thus, when the OME 300 receives confirmation that an order has been placed from a destination market, the OME is able to modify its internal view of the state of the market to include the placed order. This provides the OME with a current view of the market, before the change is reported on the public market data feed. This latency advantage in the market view may then be leveraged by the OME and any trading strategies with access to such data.
The position blotter also tracks the current set of outstanding positions that the OME is managing. The component allows the order validation component and routing strategy component to incorporate a view of the outstanding positions when making validation and routing decisions.
The OME may be implemented on high performance computational platform, such as an offload engine or the like. Examples of a suitable computational platform for the OME include a reconfigurable logic device (e.g., a field programmable gate array (FPGA) or other programmable logic device (PLD)), a graphics processor unit (GPU), and a chip multiprocessors (CMP). However, it should be understood that the OME could also be deployed on one or more general purpose processors (GPPs) or other appropriately programmed processors if desired. It should also be understood that the OME may be partitioned across multiple reconfigurable logic devices (or multiple GPUs, CMPs, etc. if desired).
As used herein, the term “general-purpose processor” (or GPP) refers to a hardware device having a fixed form and whose functionality is variable, wherein this variable functionality is defined by fetching instructions and executing those instructions, of which a conventional central processing unit (CPU) is a common example. Exemplary embodiments of GPPs include an Intel Xeon processor and an AMD Opteron processor. As used herein, the term “reconfigurable logic” refers to any logic technology whose form and function can be significantly altered (i.e., reconfigured) in the field post-manufacture. This is to be contrasted with a GPP, whose function can change post-manufacture, but whose form is fixed at manufacture. Furthermore, as used herein, the term “software” refers to data processing functionality that is deployed on a GPP or other processing devices, wherein software cannot be used to change or define the form of the device on which it is loaded, while the term “firmware”, as used herein, refers to data processing functionality that is deployed on reconfigurable logic or other processing devices, wherein firmware may be used to change or define the form of the device on which it is loaded.
Thus, in embodiments where one or more components of the OME is implemented in reconfigurable logic such as an FPGA, hardware logic will be present on the device that permits fine-grained parallelism with respect to the different operations that such components perform, thereby providing such a component with the ability to operate at hardware processing speeds that are orders of magnitude faster than would be possible through software execution on a GPP.
Further, the OME may be hosted in a dedicated system with computer communications links providing the interfaces to the normalized market data, order entry interfaces of markets, and order flow from trading strategies. In a preferred embodiment, the OME is hosted in an integrated system where the full trading platform is hosted.
Integrated Trading Platform
The amount of general-purpose computing resources available in a single host system is fundamentally limited. This implies that pure software implementations of the trading platform or trading platform components will provide less capacity and latency performance relative to systems that leverage hardware-accelerated designs. In order to achieve a higher level of performance in a single system, trading platform components are preferably offloaded to engines that do not consume general purpose computing resources and leverage fine-grained parallelism.
Thus, as shown in
The ticker plant engine(s) 702 can normalize and present market data 714 from disparate feeds for presentation to consuming applications (including consuming applications that are resident in the software sub-system 720). Examples of a suitable ticker plant engine 702 are the ticker plant engines described in the above-referenced and incorporated U.S. Pat. App. Pub. 2008/0243675 and WO Pub. WO 2010/077829, which can leverage the parallelism provided by reconfigurable logic devices to provide dramatic acceleration over conventional ticker plants. Furthermore, as shown in
Writing normalized market data to shared (system) memory allows multiple trading applications to view the current state of the market by simply issuing reads to the memory locations associated with the financial instruments of interest. This reduces the latency of data delivery to the trading applications by eliminating the need to receive and parse messages to extract data fields.
An exemplary embodiment of a peer-to-peer hardware interconnect is a PCI Express bus where endpoint devices are each assigned a portion of the addressable memory space. A Base Address Register (BAR) defines the address space assigned to a given device on the bus. If device A issues a write operation to an address within the BAR space associated with device B, data can be transferred directly from device A to device B without involving system software or utilizing host memory. A wide variety of protocols may be developed with this basic capability. Multiple BARs may be employed by a device to implement control structures. For example, specific BARs may be used to maintain read and write pointers for the implementation of a ring buffer or queue for data transfers between devices.
Strategy offload engines 704 may also be hosted in the integrated system. Moreover, such strategy offload engines 704 can be resident in the hardware sub-system 718 as shown in
Note that a hardware-to-software interconnect channel 710 provides for low-latency, high-bandwidth communication between software and hardware components. An example of a suitable interconnect channel in this regard is described in the above-referenced and incorporated U.S. Pat. App. Pub. 2007/0174841. This facilitates the partitioning of trading strategies across general purpose processing and reconfigurable logic resources. Thus, the strategy offload engines 704 can also interact with the trading strategy applications 712 within the software sub-system of the host through the hardware-software channel 710, where a trading strategy application 712 can offload certain tasks to the hardware-accelerated strategy offload engine 704 for reduced latency processing.
The functions of a traditional OMS/EMS that are not performance-critical (e.g. are not performed on every order) may be hosted on general-purpose processing resources in the system if desired (although a practitioner may want to deploy all functions on high performance resources such as reconfigurable logic devices). These functions may include modification of routing parameters, modification of risk profiles, statistics gathering and monitoring. The software components of the OMS/EMS utilize the same hardware-to-software interconnection channel to communicate with the OME(s), update cached records, etc.
As noted above, in connection with the OME, examples of a suitable computational platform for one or more of the engines 702, 704, and 300 include a reconfigurable logic device (e.g., a field programmable gate array (FPGA) or other programmable logic device (PLD)), a graphics processor unit (GPU), and a chip multiprocessors (CMP). However, it should be understood that one or more of the other engines 702, 704, and 300 could also be deployed on one or more general purpose processors (GPPs) or other appropriately programmed processors if desired for parallel execution within the host. It should also be understood that the engines 702, 704, and 300 may be partitioned across multiple reconfigurable logic devices (or multiple GPUs, CMPs, etc. if desired).
Thus, in embodiments where one or more engines within the hardware sub-system 718 is implemented in reconfigurable logic such as an FPGA, hardware logic will be present on the platform that permits fine-grained parallelism with respect to the different operations that such engines perform, thereby providing such an engine with the ability to operate at hardware processing speeds that are orders of magnitude faster than would be possible through software execution on a GPP.
While the present invention has been described above in relation to its preferred embodiments, various modifications may be made thereto that still fall within the invention's scope as will be recognizable upon review of the teachings herein. As such, the full scope of the present invention is to be defined solely by the appended claims and their legal equivalents.
This patent application is a divisional of U.S. patent application Ser. No. 13/316,332, entitled “Method and Apparatus for Managing Orders in Financial Markets”, filed Dec. 9, 2011, now U.S. Pat. No. 10,037,568, which claims priority to provisional patent application 61/421,545, entitled “Method and Apparatus for Managing Orders in Financial Markets”, filed Dec. 9, 2010, the entire disclosures of each of which are incorporated herein by reference. This patent application is related to PCT patent application PCT/US2011/064269, entitled “Method and Apparatus for Managing Orders in Financial Markets”, filed Dec. 9, 2011, and published as WO Publication WO2012/079041, the entire disclosure of which is incorporated herein by reference. This patent application is also related to U.S. Pat. Nos. 7,840,482, 7,921,046, and 7,954,114 as well as the following published patent applications: U.S. Pat. App. Pub. 2007/0174841, U.S. Pat. App. Pub. 2007/0294157, U.S. Pat. App. Pub. 2008/0243675, U.S. Pat. App. Pub. 2009/0182683, U.S. Pat. App. Pub. 2009/0287628, U.S. Pat. App. Pub. 2011/0040701, U.S. Pat. App. Pub. 2011/0178911, U.S. Pat. App. Pub. 2011/0178912, U.S. Pat. App. Pub. 2011/0178917, U.S. Pat. App. Pub. 2011/0178918, U.S. Pat. App. Pub. 2011/0178919, U.S. Pat. App. Pub. 2011/0178957, U.S. Pat. App. Pub. 2011/0179050, U.S. Pat. App. Pub. 2011/0184844, and WO Pub. WO 2010/077829, the entire disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2046381 | Hicks et al. | Jul 1936 | A |
3082402 | Scantlin | Mar 1963 | A |
3296597 | Scantlin et al. | Jan 1967 | A |
3573747 | Adams et al. | Apr 1971 | A |
3581072 | Nymeyer | May 1971 | A |
3601808 | Vlack | Aug 1971 | A |
3611314 | Pritchard, Jr. et al. | Oct 1971 | A |
3729712 | Glassman | Apr 1973 | A |
3824375 | Gross et al. | Jul 1974 | A |
3848235 | Lewis et al. | Nov 1974 | A |
3906455 | Houston et al. | Sep 1975 | A |
4044334 | Bachman et al. | Aug 1977 | A |
4081607 | Vitols et al. | Mar 1978 | A |
4298898 | Cardot | Nov 1981 | A |
4300193 | Bradley et al. | Nov 1981 | A |
4314356 | Scarbrough | Feb 1982 | A |
4385393 | Chaure et al. | May 1983 | A |
4412287 | Braddock, III | Oct 1983 | A |
4464718 | Dixon et al. | Aug 1984 | A |
4550436 | Freeman et al. | Oct 1985 | A |
4674044 | Kalmus et al. | Jun 1987 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4823306 | Barbic et al. | Apr 1989 | A |
4868866 | Williams, Jr. | Sep 1989 | A |
4903201 | Wagner | Feb 1990 | A |
4941178 | Chuang | Jul 1990 | A |
5023910 | Thomson | Jun 1991 | A |
5038284 | Kramer | Aug 1991 | A |
5050075 | Herman et al. | Sep 1991 | A |
5063507 | Lindsey et al. | Nov 1991 | A |
5077665 | Silverman et al. | Dec 1991 | A |
5101353 | Lupien et al. | Mar 1992 | A |
5101424 | Clayton et al. | Mar 1992 | A |
5126936 | Champion et al. | Jun 1992 | A |
5140692 | Morita | Aug 1992 | A |
5161103 | Kosaka et al. | Nov 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5179626 | Thomson | Jan 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5226165 | Martin | Jul 1993 | A |
5233539 | Agrawal et al. | Aug 1993 | A |
5243655 | Wang | Sep 1993 | A |
5249292 | Chiappa | Sep 1993 | A |
5255136 | Machado et al. | Oct 1993 | A |
5258908 | Hartheimer et al. | Nov 1993 | A |
5265065 | Turtle | Nov 1993 | A |
5267148 | Kosaka et al. | Nov 1993 | A |
5270922 | Higgins | Dec 1993 | A |
5297032 | Trojan et al. | Mar 1994 | A |
5313560 | Maruoka et al. | May 1994 | A |
5315634 | Tanaka et al. | May 1994 | A |
5319776 | Hile et al. | Jun 1994 | A |
5327521 | Savic et al. | Jul 1994 | A |
5339411 | Heaton, Jr. | Aug 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5371794 | Diffie et al. | Dec 1994 | A |
5375055 | Togher et al. | Dec 1994 | A |
5388259 | Fleischman et al. | Feb 1995 | A |
5396253 | Chia | Mar 1995 | A |
5404488 | Kerrigan et al. | Apr 1995 | A |
5418951 | Damashek | May 1995 | A |
5432822 | Kaewell, Jr. | Jul 1995 | A |
5461712 | Chelstowski et al. | Oct 1995 | A |
5465353 | Hull et al. | Nov 1995 | A |
5481735 | Mortensen et al. | Jan 1996 | A |
5488725 | Turtle et al. | Jan 1996 | A |
5497317 | Hawkins et al. | Mar 1996 | A |
5497488 | Akizawa et al. | Mar 1996 | A |
5500793 | Deming, Jr. et al. | Mar 1996 | A |
5517642 | Bezek et al. | May 1996 | A |
5544352 | Egger | Aug 1996 | A |
5546578 | Takada et al. | Aug 1996 | A |
5596569 | Madonna et al. | Jan 1997 | A |
5619574 | Johnson et al. | Apr 1997 | A |
5651125 | Witt et al. | Jul 1997 | A |
5680634 | Estes | Oct 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5701464 | Aucsmith | Dec 1997 | A |
5712942 | Jennings et al. | Jan 1998 | A |
5721898 | Beardsley et al. | Feb 1998 | A |
5740244 | Indeck et al. | Apr 1998 | A |
5740466 | Geldman et al. | Apr 1998 | A |
5774835 | Ozawa et al. | Jun 1998 | A |
5774839 | Shlomot | Jun 1998 | A |
5781772 | Wilkinson, III et al. | Jul 1998 | A |
5781921 | Nichols | Jul 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5809483 | Broka et al. | Sep 1998 | A |
5813000 | Furlani | Sep 1998 | A |
5819273 | Vora et al. | Oct 1998 | A |
5819290 | Fujita et al. | Oct 1998 | A |
5826075 | Bealkowski et al. | Oct 1998 | A |
5845266 | Lupien et al. | Dec 1998 | A |
5857176 | Ginsberg | Jan 1999 | A |
5864738 | Kessler et al. | Jan 1999 | A |
5870730 | Furuya et al. | Feb 1999 | A |
5873071 | Ferstenberg et al. | Feb 1999 | A |
5884286 | Daughtery, III | Mar 1999 | A |
5905974 | Fraser et al. | May 1999 | A |
5913211 | Nitta | Jun 1999 | A |
5930753 | Potamianos et al. | Jul 1999 | A |
5943421 | Grabon | Aug 1999 | A |
5943429 | Händel | Aug 1999 | A |
5963923 | Garber | Oct 1999 | A |
5978801 | Yuasa | Nov 1999 | A |
5987432 | Zusman | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
5995963 | Nanba et al. | Nov 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6016483 | Rickard et al. | Jan 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6023760 | Karttunen | Feb 2000 | A |
6028939 | Yin | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6044407 | Jones et al. | Mar 2000 | A |
6058391 | Gardner | May 2000 | A |
6061662 | Makivic | May 2000 | A |
6064739 | Davis | May 2000 | A |
6067569 | Khaki et al. | May 2000 | A |
6070172 | Lowe | May 2000 | A |
6073160 | Grantham et al. | Jun 2000 | A |
6084584 | Nahi et al. | Jul 2000 | A |
6096091 | Harlmnann | Aug 2000 | A |
6105067 | Batra | Aug 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6138176 | McDonald et al. | Oct 2000 | A |
6147976 | Shand et al. | Nov 2000 | A |
6169969 | Cohen | Jan 2001 | B1 |
6173270 | Cristofich et al. | Jan 2001 | B1 |
6173276 | Kant et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6195024 | Fallon | Feb 2001 | B1 |
6226676 | Crump et al. | May 2001 | B1 |
6236980 | Reese | May 2001 | B1 |
6243753 | Machin et al. | Jun 2001 | B1 |
6247060 | Boucher et al. | Jun 2001 | B1 |
6263321 | Daughtery, III | Jul 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6278982 | Korhammer et al. | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6279140 | Slane | Aug 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6304858 | Mosler et al. | Oct 2001 | B1 |
6309424 | Fallon | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6317795 | Malkin et al. | Nov 2001 | B1 |
6321258 | Stollfus et al. | Nov 2001 | B1 |
6336150 | Ellis et al. | Jan 2002 | B1 |
6339819 | Huppenthal et al. | Jan 2002 | B1 |
6370592 | Kumpf | Apr 2002 | B1 |
6370645 | Lee et al. | Apr 2002 | B1 |
6377942 | Hinsley et al. | Apr 2002 | B1 |
6397259 | Lincke et al. | May 2002 | B1 |
6397335 | Franczek et al. | May 2002 | B1 |
6412000 | Riddle et al. | Jun 2002 | B1 |
6415269 | Dinwoodie | Jul 2002 | B1 |
6418419 | Nieboer et al. | Jul 2002 | B1 |
6430272 | Maruyama et al. | Aug 2002 | B1 |
6456982 | Pilipovic | Sep 2002 | B1 |
6463474 | Fuh et al. | Oct 2002 | B1 |
6484209 | Momirov | Nov 2002 | B1 |
6499107 | Gleichauf et al. | Dec 2002 | B1 |
6535868 | Galeazzi et al. | Mar 2003 | B1 |
6546375 | Pang et al. | Apr 2003 | B1 |
6578147 | Shanklin et al. | Jun 2003 | B1 |
6581098 | Kumpf | Jun 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6594643 | Freeny, Jr. | Jul 2003 | B1 |
6597812 | Fallon et al. | Jul 2003 | B1 |
6601094 | Mentze et al. | Jul 2003 | B1 |
6601104 | Fallon | Jul 2003 | B1 |
6604158 | Fallon | Aug 2003 | B1 |
6624761 | Fallon | Sep 2003 | B2 |
6625150 | Yu | Sep 2003 | B1 |
6691301 | Bowen | Feb 2004 | B2 |
6704816 | Burke | Mar 2004 | B1 |
6711558 | Indeck et al. | Mar 2004 | B1 |
6765918 | Dixon et al. | Jul 2004 | B1 |
6766304 | Kemp, II et al. | Jul 2004 | B2 |
6772132 | Kemp, II et al. | Aug 2004 | B1 |
6772136 | Kant et al. | Aug 2004 | B2 |
6772345 | Shetty | Aug 2004 | B1 |
6778968 | Gulati | Aug 2004 | B1 |
6785677 | Fritchman | Aug 2004 | B1 |
6804667 | Martin | Oct 2004 | B1 |
6807156 | Veres et al. | Oct 2004 | B1 |
6820129 | Courey, Jr. | Nov 2004 | B1 |
6839686 | Galant | Jan 2005 | B1 |
6847645 | Potter et al. | Jan 2005 | B1 |
6850906 | Chadha et al. | Feb 2005 | B1 |
6877044 | Lo et al. | Apr 2005 | B2 |
6886103 | Brustoloni et al. | Apr 2005 | B1 |
6901461 | Bennett | May 2005 | B2 |
6931408 | Adams et al. | Aug 2005 | B2 |
6944168 | Paatela et al. | Sep 2005 | B2 |
6978223 | Milliken | Dec 2005 | B2 |
6981054 | Krishna | Dec 2005 | B1 |
7003488 | Dunne et al. | Feb 2006 | B2 |
7024384 | Daughtery, III | Apr 2006 | B2 |
7046848 | Olcott | May 2006 | B1 |
7058735 | Spencer | Jun 2006 | B2 |
7065475 | Brundobler | Jun 2006 | B1 |
7089206 | Martin | Aug 2006 | B2 |
7089326 | Boucher et al. | Aug 2006 | B2 |
7093023 | Lockwood et al. | Aug 2006 | B2 |
7099838 | Gastineau et al. | Aug 2006 | B1 |
7103569 | Groveman et al. | Sep 2006 | B1 |
7117280 | Vasudevan | Oct 2006 | B2 |
7124106 | Stallaert et al. | Oct 2006 | B1 |
7127424 | Kemp, II et al. | Oct 2006 | B2 |
7130913 | Fallon | Oct 2006 | B2 |
7139743 | Indeck et al. | Nov 2006 | B2 |
7149715 | Browne et al. | Dec 2006 | B2 |
7161506 | Fallon | Jan 2007 | B2 |
7167980 | Chiu | Jan 2007 | B2 |
7177833 | Marynowski et al. | Feb 2007 | B1 |
7181437 | Indeck et al. | Feb 2007 | B2 |
7181608 | Fallon et al. | Feb 2007 | B2 |
7212998 | Muller et al. | May 2007 | B1 |
7222114 | Chan et al. | May 2007 | B1 |
7224185 | Campbell et al. | May 2007 | B2 |
7225188 | Gai et al. | May 2007 | B1 |
7228289 | Brumfield et al. | Jun 2007 | B2 |
7249118 | Sandler et al. | Jul 2007 | B2 |
7251629 | Marynowski et al. | Jul 2007 | B1 |
7257842 | Barton et al. | Aug 2007 | B2 |
7277887 | Burrows et al. | Oct 2007 | B1 |
7287037 | An et al. | Oct 2007 | B2 |
7305383 | Kubesh et al. | Dec 2007 | B1 |
7305391 | Wyschogrod et al. | Dec 2007 | B2 |
7321937 | Fallon | Jan 2008 | B2 |
7356498 | Kaminsky et al. | Apr 2008 | B2 |
7363277 | Dutta et al. | Apr 2008 | B1 |
7378992 | Fallon | May 2008 | B2 |
7386046 | Fallon et al. | Jun 2008 | B2 |
7406444 | Eng et al. | Jul 2008 | B2 |
7417568 | Fallon et al. | Aug 2008 | B2 |
7454418 | Wang | Nov 2008 | B1 |
7457834 | Jung et al. | Nov 2008 | B2 |
7461064 | Fontoura et al. | Dec 2008 | B2 |
7478431 | Nachenberg | Jan 2009 | B1 |
7487327 | Chang et al. | Feb 2009 | B1 |
7496108 | Biran et al. | Feb 2009 | B2 |
7539845 | Wentzlaff et al. | May 2009 | B1 |
7558753 | Neubert et al. | Jul 2009 | B2 |
7558925 | Bouchard et al. | Jul 2009 | B2 |
7565525 | Vorbach et al. | Jul 2009 | B2 |
7580719 | Karmarkar | Aug 2009 | B2 |
7587476 | Sato | Sep 2009 | B2 |
7598958 | Kelleher | Oct 2009 | B1 |
7603303 | Kraus et al. | Oct 2009 | B1 |
7606267 | Ho et al. | Oct 2009 | B2 |
7606968 | Branscome et al. | Oct 2009 | B2 |
7617291 | Fan et al. | Nov 2009 | B2 |
7636703 | Taylor | Dec 2009 | B2 |
7660761 | Zhou et al. | Feb 2010 | B2 |
7668849 | Narancic et al. | Feb 2010 | B1 |
7685121 | Brown et al. | Mar 2010 | B2 |
7698338 | Hinshaw et al. | Apr 2010 | B2 |
7701945 | Roesch et al. | Apr 2010 | B2 |
7714747 | Fallon | May 2010 | B2 |
7715436 | Eiriksson et al. | May 2010 | B1 |
7760733 | Eiriksson et al. | Jul 2010 | B1 |
7761459 | Zhang et al. | Jul 2010 | B1 |
7788293 | Pasztor et al. | Aug 2010 | B2 |
7831720 | Noureddine et al. | Nov 2010 | B1 |
7840482 | Singla et al. | Nov 2010 | B2 |
7856545 | Casselman | Dec 2010 | B2 |
7856546 | Casselman et al. | Dec 2010 | B2 |
7908213 | Monroe et al. | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7917299 | Buhler et al. | Mar 2011 | B2 |
7921046 | Parsons et al. | Apr 2011 | B2 |
7945528 | Cytron et al. | May 2011 | B2 |
7949650 | Indeck et al. | May 2011 | B2 |
7953743 | Indeck et al. | May 2011 | B2 |
7954114 | Chamberlain et al. | May 2011 | B2 |
7991667 | Kraus et al. | Aug 2011 | B2 |
8015099 | Reid | Sep 2011 | B2 |
8024253 | Peterffy et al. | Sep 2011 | B2 |
8027893 | Burrows et al. | Sep 2011 | B1 |
8032440 | Hait | Oct 2011 | B1 |
8046283 | Burns et al. | Oct 2011 | B2 |
8069102 | Indeck et al. | Nov 2011 | B2 |
8073763 | Merrin et al. | Dec 2011 | B1 |
8095508 | Chamberlain et al. | Jan 2012 | B2 |
8131697 | Indeck et al. | Mar 2012 | B2 |
8140416 | Borkovec et al. | Mar 2012 | B2 |
8156101 | Indeck et al. | Apr 2012 | B2 |
8175946 | Hamati et al. | May 2012 | B2 |
8224800 | Branscome et al. | Jul 2012 | B2 |
8229918 | Branscome et al. | Jul 2012 | B2 |
8234267 | Branscome et al. | Jul 2012 | B2 |
8244718 | Chamdani et al. | Aug 2012 | B2 |
8326819 | Indeck et al. | Dec 2012 | B2 |
8407122 | Parsons et al. | Mar 2013 | B2 |
8458081 | Parsons et al. | Jun 2013 | B2 |
8478680 | Parsons et al. | Jul 2013 | B2 |
8515682 | Buhler et al. | Aug 2013 | B2 |
8549024 | Indeck et al. | Oct 2013 | B2 |
8595104 | Parsons et al. | Nov 2013 | B2 |
8600856 | Parsons et al. | Dec 2013 | B2 |
8620881 | Chamberlain et al. | Dec 2013 | B2 |
8626624 | Parsons et al. | Jan 2014 | B2 |
8655764 | Parsons et al. | Feb 2014 | B2 |
8660925 | Borkovec et al. | Feb 2014 | B2 |
8751452 | Chamberlain et al. | Jun 2014 | B2 |
8762249 | Taylor et al. | Jun 2014 | B2 |
8768805 | Taylor et al. | Jul 2014 | B2 |
8768888 | Chamberlain et al. | Jul 2014 | B2 |
8843408 | Singla et al. | Sep 2014 | B2 |
8880501 | Indeck et al. | Nov 2014 | B2 |
8880551 | Hinshaw et al. | Nov 2014 | B2 |
9020928 | Indeck et al. | Apr 2015 | B2 |
9047243 | Taylor et al. | Jun 2015 | B2 |
9166597 | Denisenko et al. | Oct 2015 | B1 |
9176775 | Chamberlain et al. | Nov 2015 | B2 |
9396222 | Indeck et al. | Jul 2016 | B2 |
9582831 | Parsons et al. | Feb 2017 | B2 |
9672565 | Parsons et al. | Jun 2017 | B2 |
9961006 | Sutardja et al. | May 2018 | B1 |
10037568 | Taylor et al. | Jul 2018 | B2 |
10062115 | Taylor et al. | Aug 2018 | B2 |
10121196 | Parsons et al. | Nov 2018 | B2 |
10191974 | Indeck et al. | Jan 2019 | B2 |
10229453 | Taylor et al. | Mar 2019 | B2 |
10572824 | Chamberlain et al. | Feb 2020 | B2 |
10650452 | Parsons et al. | May 2020 | B2 |
10909623 | Indeck et al. | Feb 2021 | B2 |
10929152 | Chamberlain et al. | Feb 2021 | B2 |
10957423 | Buhler et al. | Mar 2021 | B2 |
10963962 | Parsons et al. | Mar 2021 | B2 |
20010003193 | Woodring et al. | Jun 2001 | A1 |
20010004354 | Jolitz | Jun 2001 | A1 |
20010005314 | Farooq et al. | Jun 2001 | A1 |
20010013048 | Imbert de Tremiolles et al. | Aug 2001 | A1 |
20010015753 | Myers | Aug 2001 | A1 |
20010015919 | Kean | Aug 2001 | A1 |
20010025315 | Jolitz | Sep 2001 | A1 |
20010042040 | Keith | Nov 2001 | A1 |
20010044770 | Keith | Nov 2001 | A1 |
20010047473 | Fallon | Nov 2001 | A1 |
20010056547 | Dixon | Dec 2001 | A1 |
20020010825 | Wilson | Jan 2002 | A1 |
20020019812 | Board et al. | Feb 2002 | A1 |
20020023010 | Rittmaster et al. | Feb 2002 | A1 |
20020038276 | Buhannic et al. | Mar 2002 | A1 |
20020049841 | Johnson et al. | Apr 2002 | A1 |
20020054604 | Kadambi et al. | May 2002 | A1 |
20020069375 | Bowen | Jun 2002 | A1 |
20020072893 | Wilson | Jun 2002 | A1 |
20020080871 | Fallon et al. | Jun 2002 | A1 |
20020082967 | Kaminsky et al. | Jun 2002 | A1 |
20020091826 | Comeau et al. | Jul 2002 | A1 |
20020095519 | Philbrick et al. | Jul 2002 | A1 |
20020100029 | Bowen | Jul 2002 | A1 |
20020101425 | Hamid | Aug 2002 | A1 |
20020105911 | Pruthi et al. | Aug 2002 | A1 |
20020119803 | Bitterlich et al. | Aug 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020138376 | Hinkle | Sep 2002 | A1 |
20020143521 | Call | Oct 2002 | A1 |
20020150248 | Kovacevic | Oct 2002 | A1 |
20020156998 | Casselman | Oct 2002 | A1 |
20020162025 | Sutton et al. | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169873 | Zodnik | Nov 2002 | A1 |
20020180742 | Hamid | Dec 2002 | A1 |
20020198813 | Patterson et al. | Dec 2002 | A1 |
20020199173 | Bowen | Dec 2002 | A1 |
20030009411 | Ram et al. | Jan 2003 | A1 |
20030009693 | Brock et al. | Jan 2003 | A1 |
20030014521 | Elson et al. | Jan 2003 | A1 |
20030014662 | Gupta et al. | Jan 2003 | A1 |
20030018630 | Indeck et al. | Jan 2003 | A1 |
20030023653 | Dunlop et al. | Jan 2003 | A1 |
20030023876 | Bardsley et al. | Jan 2003 | A1 |
20030028408 | RuDusky | Feb 2003 | A1 |
20030028690 | Appleby-Alis et al. | Feb 2003 | A1 |
20030028864 | Bowen | Feb 2003 | A1 |
20030033234 | RuDusky | Feb 2003 | A1 |
20030033240 | Balson et al. | Feb 2003 | A1 |
20030033450 | Appleby-Alis | Feb 2003 | A1 |
20030033514 | Appleby-Allis et al. | Feb 2003 | A1 |
20030033588 | Alexander | Feb 2003 | A1 |
20030033594 | Bowen | Feb 2003 | A1 |
20030035547 | Newton | Feb 2003 | A1 |
20030037037 | Adams et al. | Feb 2003 | A1 |
20030037321 | Bowen | Feb 2003 | A1 |
20030041129 | Appleby-Allis | Feb 2003 | A1 |
20030043805 | Graham et al. | Mar 2003 | A1 |
20030046668 | Bowen | Mar 2003 | A1 |
20030051043 | Wyschogrod et al. | Mar 2003 | A1 |
20030055658 | RuDusky | Mar 2003 | A1 |
20030055769 | RuDusky | Mar 2003 | A1 |
20030055770 | RuDusky | Mar 2003 | A1 |
20030055771 | RuDusky | Mar 2003 | A1 |
20030055777 | Ginsberg | Mar 2003 | A1 |
20030061409 | RuDusky | Mar 2003 | A1 |
20030065607 | Satchwell | Apr 2003 | A1 |
20030065943 | Geis et al. | Apr 2003 | A1 |
20030069723 | Hegde | Apr 2003 | A1 |
20030074177 | Bowen | Apr 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030074582 | Patel et al. | Apr 2003 | A1 |
20030078865 | Lee | Apr 2003 | A1 |
20030079060 | Dunlop | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093343 | Huttenlocher et al. | May 2003 | A1 |
20030093347 | Gray | May 2003 | A1 |
20030097481 | Richter | May 2003 | A1 |
20030099254 | Richter | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030105721 | Ginter et al. | Jun 2003 | A1 |
20030110229 | Kulig et al. | Jun 2003 | A1 |
20030115485 | Milliken | Jun 2003 | A1 |
20030117971 | Aubury | Jun 2003 | A1 |
20030120460 | Aubury | Jun 2003 | A1 |
20030121010 | Aubury | Jun 2003 | A1 |
20030126065 | Eng et al. | Jul 2003 | A1 |
20030130899 | Ferguson et al. | Jul 2003 | A1 |
20030140337 | Aubury | Jul 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030154368 | Stevens et al. | Aug 2003 | A1 |
20030163715 | Wong | Aug 2003 | A1 |
20030167348 | Greenblat | Sep 2003 | A1 |
20030172017 | Feingold et al. | Sep 2003 | A1 |
20030177253 | Schuehler et al. | Sep 2003 | A1 |
20030184593 | Dunlop | Oct 2003 | A1 |
20030187662 | Wilson | Oct 2003 | A1 |
20030191876 | Fallon | Oct 2003 | A1 |
20030208430 | Gershon | Nov 2003 | A1 |
20030217306 | Harthcock et al. | Nov 2003 | A1 |
20030221013 | Lockwood et al. | Nov 2003 | A1 |
20030233302 | Weber et al. | Dec 2003 | A1 |
20040000928 | Cheng et al. | Jan 2004 | A1 |
20040015502 | Alexander et al. | Jan 2004 | A1 |
20040015633 | Smith | Jan 2004 | A1 |
20040019703 | Burton | Jan 2004 | A1 |
20040028047 | Hou et al. | Feb 2004 | A1 |
20040034587 | Amberson et al. | Feb 2004 | A1 |
20040049596 | Schuehler et al. | Mar 2004 | A1 |
20040059666 | Waelbroeck et al. | Mar 2004 | A1 |
20040062245 | Sharp et al. | Apr 2004 | A1 |
20040064737 | Milliken et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040111632 | Halperin | Jun 2004 | A1 |
20040123258 | Butts | Jun 2004 | A1 |
20040162826 | Wyschogrod et al. | Aug 2004 | A1 |
20040170070 | Rapp et al. | Sep 2004 | A1 |
20040177340 | Hsu et al. | Sep 2004 | A1 |
20040186804 | Chakraborty et al. | Sep 2004 | A1 |
20040186814 | Chalermkraivuth et al. | Sep 2004 | A1 |
20040199448 | Chalermkraivuth et al. | Oct 2004 | A1 |
20040199452 | Johnston et al. | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20050005145 | Teixeira | Jan 2005 | A1 |
20050027634 | Gershon | Feb 2005 | A1 |
20050033672 | Lasry et al. | Feb 2005 | A1 |
20050038946 | Borden | Feb 2005 | A1 |
20050044344 | Stevens | Feb 2005 | A1 |
20050074033 | Chauveau | Apr 2005 | A1 |
20050080649 | Alvarez et al. | Apr 2005 | A1 |
20050086520 | Dharmapurikar et al. | Apr 2005 | A1 |
20050091142 | Renton et al. | Apr 2005 | A1 |
20050097027 | Kavanaugh | May 2005 | A1 |
20050111363 | Snelgrove et al. | May 2005 | A1 |
20050131790 | Benzschawel et al. | Jun 2005 | A1 |
20050135608 | Zheng | Jun 2005 | A1 |
20050187844 | Chalermkraivuth et al. | Aug 2005 | A1 |
20050187845 | Eklund et al. | Aug 2005 | A1 |
20050187846 | Subbu et al. | Aug 2005 | A1 |
20050187847 | Bonissone et al. | Aug 2005 | A1 |
20050187848 | Bonissone et al. | Aug 2005 | A1 |
20050187849 | Bollapragada et al. | Aug 2005 | A1 |
20050190787 | Kuik et al. | Sep 2005 | A1 |
20050195832 | Dharmapurikar et al. | Sep 2005 | A1 |
20050197938 | Davie et al. | Sep 2005 | A1 |
20050197939 | Davie et al. | Sep 2005 | A1 |
20050197948 | Davie et al. | Sep 2005 | A1 |
20050216384 | Partlow et al. | Sep 2005 | A1 |
20050228735 | Duquette | Oct 2005 | A1 |
20050229254 | Singh et al. | Oct 2005 | A1 |
20050240510 | Schweickert et al. | Oct 2005 | A1 |
20050243824 | Abbazia et al. | Nov 2005 | A1 |
20050267836 | Crosthwaite et al. | Dec 2005 | A1 |
20050283423 | Moser et al. | Dec 2005 | A1 |
20050283743 | Mulholland et al. | Dec 2005 | A1 |
20060020536 | Renton et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060026090 | Balabon | Feb 2006 | A1 |
20060031154 | Noviello et al. | Feb 2006 | A1 |
20060031156 | Noviello et al. | Feb 2006 | A1 |
20060047636 | Mohania et al. | Mar 2006 | A1 |
20060053295 | Madhusudan et al. | Mar 2006 | A1 |
20060059064 | Glinberg et al. | Mar 2006 | A1 |
20060059065 | Glinberg et al. | Mar 2006 | A1 |
20060059066 | Glinberg et al. | Mar 2006 | A1 |
20060059067 | Glinberg et al. | Mar 2006 | A1 |
20060059068 | Glinberg et al. | Mar 2006 | A1 |
20060059069 | Glinberg et al. | Mar 2006 | A1 |
20060059083 | Friesen et al. | Mar 2006 | A1 |
20060123425 | Ramarao et al. | Jun 2006 | A1 |
20060129745 | Thiel et al. | Jun 2006 | A1 |
20060143099 | Partlow et al. | Jun 2006 | A1 |
20060146991 | Thompson et al. | Jul 2006 | A1 |
20060215691 | Kobayashi et al. | Sep 2006 | A1 |
20060242123 | Williams | Oct 2006 | A1 |
20060259407 | Rosenthal et al. | Nov 2006 | A1 |
20060259417 | Marynowski et al. | Nov 2006 | A1 |
20060269148 | Farber et al. | Nov 2006 | A1 |
20060282281 | Egetoft | Dec 2006 | A1 |
20060282369 | White | Dec 2006 | A1 |
20060294059 | Chamberlain et al. | Dec 2006 | A1 |
20070011183 | Langseth et al. | Jan 2007 | A1 |
20070011687 | Ilik et al. | Jan 2007 | A1 |
20070025351 | Cohen | Feb 2007 | A1 |
20070061231 | Kim-E | Mar 2007 | A1 |
20070061241 | Jovanovic et al. | Mar 2007 | A1 |
20070067108 | Buhler et al. | Mar 2007 | A1 |
20070067481 | Sharma et al. | Mar 2007 | A1 |
20070078837 | Indeck et al. | Apr 2007 | A1 |
20070094199 | Deshpande et al. | Apr 2007 | A1 |
20070112837 | Houh et al. | May 2007 | A1 |
20070118457 | Peterffy et al. | May 2007 | A1 |
20070118494 | Jannarone et al. | May 2007 | A1 |
20070118500 | Indeck et al. | May 2007 | A1 |
20070130140 | Cytron et al. | Jun 2007 | A1 |
20070156574 | Marynowski et al. | Jul 2007 | A1 |
20070174841 | Chamberlain et al. | Jul 2007 | A1 |
20070179935 | Lee et al. | Aug 2007 | A1 |
20070198523 | Hayim | Aug 2007 | A1 |
20070209068 | Ansari et al. | Sep 2007 | A1 |
20070237327 | Taylor et al. | Oct 2007 | A1 |
20070244859 | Trippe et al. | Oct 2007 | A1 |
20070260602 | Taylor | Nov 2007 | A1 |
20070260814 | Branscome et al. | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070294157 | Singla et al. | Dec 2007 | A1 |
20070294162 | Borkovec | Dec 2007 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080082502 | Gupta | Apr 2008 | A1 |
20080084573 | Horowitz et al. | Apr 2008 | A1 |
20080086274 | Chamberlain et al. | Apr 2008 | A1 |
20080097893 | Walsky | Apr 2008 | A1 |
20080104542 | Cohen et al. | May 2008 | A1 |
20080109413 | Indeck et al. | May 2008 | A1 |
20080114724 | Indeck et al. | May 2008 | A1 |
20080114725 | Indeck et al. | May 2008 | A1 |
20080114760 | Indeck et al. | May 2008 | A1 |
20080126274 | Jannarone et al. | May 2008 | A1 |
20080126320 | Indeck et al. | May 2008 | A1 |
20080133453 | Indeck et al. | Jun 2008 | A1 |
20080133519 | Indeck et al. | Jun 2008 | A1 |
20080162378 | Levine et al. | Jul 2008 | A1 |
20080175239 | Sistanizadeh et al. | Jul 2008 | A1 |
20080183688 | Chamdani et al. | Jul 2008 | A1 |
20080189251 | Branscome et al. | Aug 2008 | A1 |
20080189252 | Branscome et al. | Aug 2008 | A1 |
20080243675 | Parsons et al. | Oct 2008 | A1 |
20080275805 | Hecht | Nov 2008 | A1 |
20090019219 | Magklis et al. | Jan 2009 | A1 |
20090182683 | Taylor et al. | Jul 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090287628 | Indeck et al. | Nov 2009 | A1 |
20100005036 | Kraus et al. | Jan 2010 | A1 |
20100027545 | Gomes et al. | Feb 2010 | A1 |
20100082895 | Branscome et al. | Apr 2010 | A1 |
20100106976 | Aciicmez et al. | Apr 2010 | A1 |
20100198920 | Wong et al. | Aug 2010 | A1 |
20100257537 | Hinshaw et al. | Oct 2010 | A1 |
20100306479 | Ezzat | Dec 2010 | A1 |
20110029471 | Chakradhar et al. | Feb 2011 | A1 |
20110040701 | Singla et al. | Feb 2011 | A1 |
20110040776 | Najm et al. | Feb 2011 | A1 |
20110066832 | Casselman et al. | Mar 2011 | A1 |
20110125960 | Casselman | May 2011 | A1 |
20110145130 | Glodjo et al. | Jun 2011 | A1 |
20110167083 | Branscome et al. | Jul 2011 | A1 |
20110178911 | Parsons et al. | Jul 2011 | A1 |
20110178912 | Parsons et al. | Jul 2011 | A1 |
20110178917 | Parsons et al. | Jul 2011 | A1 |
20110178918 | Parsons et al. | Jul 2011 | A1 |
20110178919 | Parsons et al. | Jul 2011 | A1 |
20110178957 | Parsons et al. | Jul 2011 | A1 |
20110179050 | Parsons et al. | Jul 2011 | A1 |
20110184844 | Parsons et al. | Jul 2011 | A1 |
20110199243 | Fallon et al. | Aug 2011 | A1 |
20110218987 | Branscome et al. | Sep 2011 | A1 |
20110231446 | Buhler et al. | Sep 2011 | A1 |
20110246353 | Kraus et al. | Oct 2011 | A1 |
20110252008 | Chamberlain et al. | Oct 2011 | A1 |
20110289230 | Ueno | Nov 2011 | A1 |
20110295967 | Wang et al. | Dec 2011 | A1 |
20120065956 | Irturk | Mar 2012 | A1 |
20120089496 | Taylor et al. | Apr 2012 | A1 |
20120089497 | Taylor et al. | Apr 2012 | A1 |
20120095893 | Taylor et al. | Apr 2012 | A1 |
20120109849 | Chamberlain et al. | May 2012 | A1 |
20120110316 | Chamberlain et al. | May 2012 | A1 |
20120116998 | Indeck et al. | May 2012 | A1 |
20120130922 | Indeck et al. | May 2012 | A1 |
20120179590 | Borkovec et al. | Jul 2012 | A1 |
20120215801 | Indeck et al. | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20130007000 | Indeck et al. | Jan 2013 | A1 |
20130086096 | Indeck et al. | Apr 2013 | A1 |
20130159449 | Taylor et al. | Jun 2013 | A1 |
20130262287 | Parsons et al. | Oct 2013 | A1 |
20130290163 | Parsons et al. | Oct 2013 | A1 |
20140025656 | Indeck et al. | Jan 2014 | A1 |
20140040109 | Parsons et al. | Feb 2014 | A1 |
20140067830 | Buhler et al. | Mar 2014 | A1 |
20140089163 | Parsons et al. | Mar 2014 | A1 |
20140164215 | Parsons et al. | Jun 2014 | A1 |
20140180903 | Parsons et al. | Jun 2014 | A1 |
20140180904 | Parsons et al. | Jun 2014 | A1 |
20140180905 | Parsons et al. | Jun 2014 | A1 |
20140181133 | Parsons et al. | Jun 2014 | A1 |
20140310148 | Taylor et al. | Oct 2014 | A1 |
20140310717 | Chamberlain et al. | Oct 2014 | A1 |
20160070583 | Chamberlain et al. | Mar 2016 | A1 |
20160328470 | Indeck et al. | Nov 2016 | A1 |
20170102950 | Chamberlain et al. | Apr 2017 | A1 |
20170124255 | Buhler et al. | May 2017 | A1 |
20190155831 | Indeck et al. | May 2019 | A1 |
20190205975 | Taylor et al. | Jul 2019 | A1 |
20190324770 | Chamberlain et al. | Oct 2019 | A1 |
20210142218 | Chamberlain et al. | May 2021 | A1 |
20210200559 | Chamberlain et al. | Jul 2021 | A1 |
20210304848 | Buhler et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
0573991 | Dec 1993 | EP |
0880088 | Nov 1996 | EP |
0851358 | Jul 1998 | EP |
0887723 | Dec 1998 | EP |
0911738 | Apr 1999 | EP |
09145544 | Jun 1997 | JP |
09-269901 | Oct 1997 | JP |
11-259559 | Sep 1999 | JP |
11282912 | Oct 1999 | JP |
11316765 | Nov 1999 | JP |
2000286715 | Oct 2000 | JP |
2001268071 | Sep 2001 | JP |
2001283000 | Oct 2001 | JP |
2002101089 | Apr 2002 | JP |
2002269343 | Sep 2002 | JP |
2002352070 | Dec 2002 | JP |
2003-036360 | Feb 2003 | JP |
2003256660 | Sep 2003 | JP |
2006059203 | Mar 2006 | JP |
2006293852 | Oct 2006 | JP |
1180644 | Nov 2008 | JP |
2010-530591 | Sep 2010 | JP |
199010910 | Sep 1990 | WO |
199409443 | Apr 1994 | WO |
199737735 | Oct 1997 | WO |
2000041136 | Jul 2000 | WO |
2001022425 | Mar 2001 | WO |
0135216 | May 2001 | WO |
200172106 | Oct 2001 | WO |
2001080082 | Oct 2001 | WO |
2001080558 | Oct 2001 | WO |
0190890 | Nov 2001 | WO |
2002061525 | Aug 2002 | WO |
2003100650 | Apr 2003 | WO |
2003036845 | May 2003 | WO |
2003100662 | Dec 2003 | WO |
2004017604 | Feb 2004 | WO |
2004042560 | May 2004 | WO |
2004042561 | May 2004 | WO |
2004042562 | May 2004 | WO |
2004042574 | May 2004 | WO |
2005017708 | Feb 2005 | WO |
2005026925 | Mar 2005 | WO |
2005048134 | May 2005 | WO |
2006023948 | Mar 2006 | WO |
2006096324 | Sep 2006 | WO |
2007064685 | Jun 2007 | WO |
2007074903 | Jul 2007 | WO |
2007087507 | Aug 2007 | WO |
2007127336 | Nov 2007 | WO |
2008022036 | Feb 2008 | WO |
2009089467 | Jul 2009 | WO |
2009140363 | Nov 2009 | WO |
2010077829 | Jul 2010 | WO |
Entry |
---|
Gokhale, Maya B. & Graham, Paul S. Reconfigurable Computing. Springer. 2005. pp. 1-209 (Year: 2005). |
“A Reconfigurable Computing Model for Biological Research Application of Smith-Waterman Analysis to Bacterial Genomes” A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006], Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Smith%20 Waterman%20Whitepaper.pdf. |
“ACTIV Financial Announces Hardware Based Market Data Feed Processing Strategy”, For Release on Apr. 2, 2007, 2 pages. |
“ACTIV Financial Delivers Accelerated Market Data Feed”, Apr. 6, 2007, byline of Apr. 2, 2007, downloaded from http://hpcwire.com/hpc.1346816.html on Jun. 19, 2007, 3 pages. |
“DRC, Exegy Announce Joint Development Agreement”, Jun. 8, 2007, byline of Jun. 4, 2007; downloaded from http://www.hpcwire.com/hpc/1595644.html on Jun. 19, 2007, 3 pages. |
“Lucent Technologies Delivers “PayloadPlus” Network Processors for Programmable, MultiProtocol, OC-48c Processing”, Lucent Technologies Press Release, downloaded from http://www.lucent.com/press/1000/0010320.meb.html on Mar. 21, 2002. |
“Overview, Field Programmable Port Extender”, Jan. 2002 GigabitWorkshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002, pp. 1-4. |
“Payload Plus™ Agere System Interface”, Agere Systems Product Brief, Jun. 2001, downloaded from Internet, Jan. 2002, pp. 1-6. |
“RFC793: Transmission Control Protocol, Darpa Internet Program, Protocol Specification”, Sep. 1981. |
“Technology Overview”, Data Search Systems Incorporated, downloaded from the http://www.datasearchsystems.com/tech.htm on Apr. 19, 2004. |
“The Field-Programmable Port Extender (FPX)”, downloaded from http://www.arl.wustl.edu/arl/ in Mar. 2002. |
Aldwairi et al., “Configurable String Matching Hardware for Speeding up Intrusion Detection”, SIRARCH Comput. Archit. News, vol. 33, No. 1, pp. 99-107, Mar. 2005. |
Amanuma et al., “A FPGA Architecture For High Speed Computation”, Proceedings of 60th Convention Architecture, Software Science, Engineering, Mar. 14, 2000, pp. 1-163-1-164, Information Processing Society, Japan. |
Anerousis et al., “Using the AT&T Labs Packetscope for Internet Measurement, Design, and Performance Analysis”, Network and Distributed Systems Research Laboratory, AT&T Labs-Research, Florham, Park, NJ, Oct. 1997. |
Anonymous, “Method for Allocating Computer Disk Space to a File of Known Size”, IBM Technical Disclosure Bulletin, vol. 27, No. 10B, Mar. 1, 1985, New York. |
Arnold et al., “The Splash 2 Processor and Applications”, Proceedings 1993 IFFF International Conference on Computer Design: VLSI In Computers and Processors (ICCD '93), Oct. 3, 1993, pp. 482-485, IEEE Computer Society, Cambridge, MA USA. |
Artan et al., “Multi-packet Signature Detection using Prefix Bloom Filters”, 2005, IEEE, pp. 1811-1816. |
Asami et al., “Improvement of DES Key Search on FPGA-Based Parallel Machine “RASH””, Proceedings of Information Processing Society, Aug. 15, 2000, pp. 50-57, vol. 41, No. SIG5 (HPS1), Japan. |
Baboescu et al., “Scalable Packet Classification,” SIGCOMM'01, Aug. 27-31, 2001, pp. 199-210, San Diego, California, USA; http://www.ecse.rpi.edu/homepages/shivkuma/teaching/sp2001/readings/baboescu-pkt-classification.pdf. |
Baer, “Computer Systems Architecture”, 1980, pp. 262-265; Computer Science Press, Potomac, Maryland. |
Baeza-Yates et al., “New and Faster Filters for Multiple Approximate String Matching”, Random Structures and Algorithms (RSA), Jan. 2002, pp. 23-49, vol. 20, No. 1. |
Baker et al., “High-throughput Linked-Pattern Matching for Intrusion Detection Systems”, ANCS 2005: Proceedings of the 2005 Symposium on Architecture for Networking and Communications Systems, pp. 193-202, ACM Press, 2005. |
Barone-Adesi et al., “Efficient Analytic Approximation of American Option Values”, Journal of Finance, vol. 42, No. 2 (Jun. 1987), pp. 301-320. |
Batory, “Modeling the Storage Architectures of Commercial Database Systems”, ACM Transactions on Database Systems, Dec. 1985, pp. 463-528, vol. 10, issue 4. |
Behrens et al., “BLASTN Redundancy Filter in Reprogrammable Hardware,” Final Project Submission, Fall 2003, Department of Computer Science and Engineering, Washington University. |
Berk, “JLex: A lexical analyzer generator for Java™ ”, downloaded from http://www.cs.princeton.edu/˜appel/modern/ava/Jlex/ in Jan. 2002, pp. 1-18. |
Bianchi et al., “Improved Queueing Analysis of Shared Buffer Switching Networks”, ACM, Aug. 1993, pp. 482-490. |
Bloom, “Space/Time Trade-offs in Hash Coding With Allowable Errors”, Communications of the ACM, Jul. 1970, pp. 422-426, vol. 13, No. 7, Computer Usage Company, Newton Upper Falls, Massachusetts, USA. |
Braun et al., “Layered Protocol Wrappers for Internet Packet Processing in Reconfigurable Hardware”, Proceedings of Hot Interconnects 9 (Hotl-9) Stanford, CA, Aug. 22-24, 2001, pp. 93-98. |
Braun et al., “Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware”, IEEE Micro, Jan.-Feb. 2002, pp. 66-74. |
Brodie et al., “Dynamic Reconfigurable Computing”, in Proc. of 9th Military and Aerospace Programmable Logic Devices International Conference, Sep. 2006. |
Cavnar et al., “N-Gram-Based Text Categorization”, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, pp. 161-175, 1994. |
Celko, “Joe Celko's Data & Databases: Concepts in Practice”, 1999, pp. 72-74, Morgan Kaufmann Publishers. |
Chamberlain et al., “Achieving Real Data Throughput for an FPGA Co-Processor on Commodity Server Platforms”, Proc, of 1st Workshop on Building Block Engine Architectures for Computers and Networks, Oct. 2004, Boston, MA. |
Chamberlain et al., “The Mercury System: Embedding Computation Into Disk Drives”, 7th High Performance Embedded Computing Workshop, Sep. 2003, Boston, MA. |
Chamberlain et al., “The Mercury System: Exploiting Truly Fast Hardware for Data Search”, Proc. of Workshop on Storage Network Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA. |
Cho et al., “Deep Packet Filter with Dedicated Logic and Read Only Memories”, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 2004. |
Choi et al., “Design of a Flexible Open Platform for High Performance Active Networks”, Allerton Conference, 1999, Champaign, IL. |
Cholleti, “Storage Allocation in Bounded Time”, MS Thesis, Dept. of Computer Science and Engineering, Washington Univeristy, St. Louis, MO (Dec. 2002). Available as Washington University Technical Report WUCSE-2003-2. |
Clark et al., “Scalable Pattern Matching for High Speed Networks”, Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2004; FCCM 2004, Apr. 20-23, 2004; pp. 249-257; IEEE Computer Society; Cambridge, MA USA. |
Cloutier et al., “VIP: An FPGA-Based Processor for Image Processing and Neural Networks”, Proceedings of Fifth International Conference on Microelectronics for Neural Networks, Feb. 12, 1996, pp. 330-336, Los Alamitos, California. |
Compton et al., “Configurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999, presented by Yi-Gang Tai. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, University of Washington, ACM Computing Surveys, Jun. 2, 2002, pp. 171-210, vol. 34 No. 2, <http://www.idi.ntnu.no/emner/tdt22/2011/reconfig.pdf>. |
Cong et al., “An Optional Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs”, IEEE, 1992, pp. 48-53. |
Corbet et al., Linux Device Drivers: Where the Kernel Meets the Hardware, O'Reilly, Feb. 2005, pp. 19-20, 412-414, and 441, 3rd Edition. |
Crosman, “Who Will Cure Your Data Latency?”, Storage & Servers, Jun. 20, 2007, URL: http://www.networkcomputing.com/article/printFullArticleSrc.jhtml?article ID=199905630. |
Cuppu and Jacob, “Organizational Design Trade-Offs at the DRAM, Memory Bus and Memory Controller Level Initial Results,” Technical Report UMB-SCA-1999-2, Univ. of Maryland Systems & Computer Architecture Group, Nov. 1999, pp. 1-10. |
Currid, “TCP Offload to the Rescue”, Networks, Jun. 14, 2004, 16 pages, vol. 2, No. 3. |
Shirazi et al., “Quantitative Analysis of FPGA-based Database Searching”, Journal of VLSI Signal Processing Systems For Signal, Image, and Video Technology, May 2001, pp. 85-96, vol. 28, No. 1/2, Kluwer Academic Publishers, Dordrecht, NL. |
Sidhu et al., “Fast Regular Expression Matching Using FPGAs”, IEEE Symposium on Field Programmable Custom Computing Machines (FCCM 2001), Apr. 2001. |
Sidhu et al., “String Matching on Multicontext FPGAs Using Self-Reconfiguration”, FPGA '99: Proceedings of the 1999 ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays, Feb. 1999, pp. 217-226. |
Singh et al., “The EarlyBird System for Real-Time Detection on Unknown Worms”, Technical report CS2003-0761, Aug. 2003. |
Skiena et al., “Programming Challenges: The Programming Contest Training Manual”, 2003, pp. 30-31, Springer. |
Sourdis and Pnevmatikatos, “Fast, Large-Scale String Match for a 10Gbps FPGA-based Network Intrusion Detection System”, 13th International Conference on Field Programmable Logic and Applications, 2003. |
Steinbach et al., “A Comparison of Document Clustering Techniques”, KDD Workshop on Text Mining, 2000. |
Tan et al., “A High Throughput String Matching Architecture for Intrusion Detection and Prevention”, ISCA 2005: 32nd Annual International Symposium on Computer Architecture, pp. 112-122, 2005. |
Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable Routers”, Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002, and online at http://www.cc.gatech.edu/classes/AY2007/cs8803hpc_fall/papers/phplugins.pdf. |
Taylor et al., “Generalized RAD Module Interface Specification of the Field Programmable Port Extender (FPX) Version 2”, Washington University, Department of Computer Science, Technical Report, Jul. 5, 2001, pp. 1-10. |
Taylor et al., “Modular Design Techniques for the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St Louis, MO, Jan. 3-4, 2002. |
Taylor et al., “Scalable Packet Classification using Distributed Crossproducting of Field Labels”, Proceedings of IEEE Infocom, Mar. 2005, pp. 1-12, vol. 20, No. 1. |
Taylor, “Models, Algorithms, and Architectures for Scalable Packet Classification”, doctoral thesis, Department of Computer Science and Engineering, Washington University, St. Louis, MO, Aug. 2004, pp. 1-201. |
Thomson Reuters, “Mellanox InfiniBand Accelerates the Exegy Ticker Plant at Major Exchanges”, Jul. 22, 2008, URL: http://www.reuters.com/article/pressRelease/idUS125385+22-Jul-2008+BW20080722. |
Uluski et al., “Characterizing Antivirus Workload Execution”, SIGARCH Comput. Archit. News, vol. 33, No. 1, pp. 90-98, Mar. 2005. |
Villasenor et al., “Configurable Computing Solutions For Automatic Target Recognition”, FPGAS for Custom Computing Machines, 1996, Proceedings, IEEE Symposium on Napa Valley, CA, Apr. 17-19, 1996, pp. 70-79, 1996 IEEE, Napa Valley, CA, Los Alamitos, CA, USA. |
Waldvogel et al., “Scalable High-Speed Prefix Matching”, ACM Transactions on Computer Systems, Nov. 2001, pp. 440-482, vol. 19, No. 4. |
Ward et al., “Dynamically Reconfigurable Computing: A Novel Computation Technology with Potential to Improve National Security Capabilities”, May 15, 2003, A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Dynamically%20Reconfigurable%20Computing.pdf. |
Weaver et al., “Very Fast Containment of Scanning Worms”, Proc. USENIX Security Symposium 2004, San Diego, CA, Aug. 2004, located at http://www.icsi.berkely.edu/˜nweaver/containment/containment.pdf. |
West et al., “An FPGA-Based Search Engine for Unstructured Database”, Proc. of 2nd Workshop on Application Specific Processors, Dec. 2003, San Diego, CA. |
Wooster et al., “HTTPDUMP Network HTTP Packet Snooper”, Apr. 25, 1996. |
Worboys, “GIS: A Computing Perspective”, 1995, pp. 245-247, 287, Taylor & Francis Ltd. |
Yamaguchi et al., “High Speed Homology Search with FPGAs”, Proceedings Pacific Symposium on Biocomputing, Jan. 3-7, 2002, pp. 271-282, vol. 7, Online, Lihue, Hawaii, USA. |
Yan et al., “Enhancing Collaborative Spam Detection with Bloom Filters”, 2006, IEEE, pp. 414-425. |
Yoshitani et al., “Performance Evaluation of Parallel Volume Rendering Machine Re Volver/C40”, Study Report of Information Processing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21. |
Ziv et al., “A Universal Algorithm for Sequential Data Compression”, IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1997). |
Denoyer et al., “HMM-based Passage Models for Document Classification and Ranking”, Proceedings of ECIR-01, 23rd European Colloquim Information Retrieval Research, Darmstatd, DE, pp. 126-135, 2001. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, Jan.-Feb., 2004, vol. 24, Issue: 1, pp. 52-61. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” Symposium on High Performance nterconnects (Hotl), Stanford, California, 2003, pp. 44-51. |
Dharmapurikar et al., “Design and Implementation of a String Matching System for Network Intrusion Detection using FPGA-based Bloom Filters”, Proc. of 12th Annual IEEE Symposium on Field Programmable Custom Computing Machines, 2004, pp. 1-10. |
Dharmapurikar et al., “Longest Prefix Matching Using Bloom Filters,” SIGCOMM, 2003, pp. 201-212. |
Dharmapurikar et al., “Robust TCP Stream Reassembly in the Presence of Adversaries”, Proc. of the 14th Conference on USENIX Security Symposium—vol. 14, 16 pages, Baltimore, MD, 2005; http://www.icir.org/vern/papers/TcpReassembly/TCPReassembly.pdf. |
Dharmapurikar, “Fast and Scalable Pattern Matching for Content Filtering”, ACM, ANCS 05, 2005, pp. 183-192. |
Ebeling et al., “RaPiD—Reconfigurable Pipelined Datapath”, University of Washington, Dept. of Computer Science and Engineering, Sep. 23, 1996, Seattle, WA. |
Exegy Inc., “Exegy and HyperFeed to Unveil Exelerate TP at SIA Conference”, Release Date: Jun. 20, 2006, downloaded from http://news.thomasnet.com/companystory/488004 on Jun. 19, 2007, 4 pages. |
Exegy Inc., “First Exegy Ticker Plant Deployed”, Release Date: Oct. 17, 2006, downloaded from http://news.thomasnet.com/companystory/496530 on Jun. 19, 2007, 5 pages. |
Extended European Search Report for EP Application 11847815.5 dated Apr. 4, 2014. |
Feldman, “High Frequency Traders Get Boost From FPGA Acceleration”, Jun. 8, 2007, downloaded from http://www.hpcwire.com/hpc.1600113.html on Jun. 19, 2007, 4 pages. |
Franklin et al., “An Architecture for Fast Processing of Large Unstructured Data Sets.” Proc. of 22nd Int'l Conf. on Computer Design, Oct. 2004, pp. 280-287. |
Franklin et al., “Assisting Network Intrusion Detection with Reconfigurable Hardware”, Symposium on Field-Programmable Custom Computing Machines (FCCM 2002), Apr. 2002, Napa, California. |
Fu et al., “The FPX KCPSM Module: An Embedded, Reconfigurable Active Processing Module for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUCS-01-14, Jul. 2001. |
Gavrila et al., “Multi-feature Hierarchical Template Matching Using Distance Transforms”, IEEE, Aug. 16-20, 1998, vol. 1, pp. 439-444. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation With Field-Programmable Gate Arrays”, 2005, pp. 1-3, 7, 11-15, 39, 92-93, Springer. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-36. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-54, 92-96. |
Google Search Results Page for “field programmable gate array financial calculation stock market” over dates of Jan. 1, 1990-May 21, 2002, 1 page. |
Gunther et al., “Assessing Document Relevance with Run-Time Reconfigurable Machines”, IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 10-17, Proceedings, Napa Valley, CA. |
Gupta et al., “High-Speed Implementations of Rule-Based Systems,” ACM Transactions on Computer Systems, May 1989, pp. 119-146, vol. 7, Issue 2. |
Gupta et al., “Packet Classification on Multiple Fields”, Computer Systems Laboratory, Stanford University, Stanford, CA. |
Gupta et al., “PMM: A Parallel Architecture for Production Systems,” Proceedings of the IEEE, Apr. 1992, pp. 693-696, vol. 2. |
Gyang, “NCBI BLASTN Stage 1 in Reconfigurable Hardware,” Technical Report WUCSE-2005-30, Aug. 2004, Department of Computer Science and Engineering, Washington University, St. Louis, MO. |
Halaas et al., “A Recursive MISD Architecture for Pattern Matching”, IEEE Transactions on Very Large Scale Integration, vol. 12, No. 7, pp. 727-734, Jul. 2004. |
Harris, “Pete's Blog: Can FPGAs Overcome the FUD?”, Low-Latency.com, May 14, 2007, URL: http://www.a-teamgroup.com/article/pete-blog-can-fpgas-overcome-the-fud/. |
Hauck et al., “Software Technologies for Reconfigurable Systems”, Northwestern University, Dept. of ECE, Technical Report, 1996. |
Hayes, “Computer Architecture and Organization”, Second Edition, 1988, pp. 448-459, McGraw-Hill, Inc. |
Hezel et al., “FPGA-Based Template Matching Using Distance Transforms”, Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 22, 2002, pp. 89-97, IEEE Computer Society, USA. |
Hirsch, “Tech Predictions for 2008”, Reconfigurable Computing, Jan. 16, 2008, URL: http://fpgacomputing.blogspot.com/2008_01_01_archive.html. |
Hoinville, et al. “Spatial Noise Phenomena of Longitudinal Magnetic Recording Media”, IEEE Transactions on Magnetics, vol. 28, No. 6, Nov. 1992. |
Hollaar, “Hardware Systems for Text Information Retrieval”, Proceedings of the Sixth Annual International ACM Sigir Conference on Research and Development in Information Retrieval, Jun. 6-8, 1983, pp. 3-9, Baltimore, Maryland, USA. |
Howe, Data Analysis for Database Design Third Edition, 2001, 335 pages, Butterworth-Heinemann. |
Hutchings et al., “Assisting Network Intrusion Detection with Reconfigurable Hardware”, FCCM 2002: 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002. |
Ibrahim et al., “Lecture Notes in Computer Science: Database and Expert Systems Applications”, 2000, p. 769, vol. 1873, Springer. |
International Preliminary Report on Patentability (Chapter I) for PCT/US2011/064269 dated Jun. 12, 2013. |
International Search Report and Written Opinion for PCT/US2011/064269 dated Apr. 20, 2012. |
Jacobson et al., “RFC 1072: TCP Extensions for Long-Delay Paths”, Oct. 1988. |
Jacobson et al., “tcpdump—dump traffic on a network”, Jun. 30, 1997, online at www.cse.cuhk.edu.hk/˜cslui/CEG4430/tcpdump.ps.gz. |
Johnson et al., “Pattern Matching in Reconfigurable Logic for Packet Classification”, College of Computing, Georgia Institute of Technology, Atlanta, GA. |
Jones et al., “A Probabilistic Model of Information Retrieval: Development and Status”, Information Processing and Management, Aug. 1998, 76 pages. |
Keutzer et al., “A Survey of Programmable Platforms—Network Proc”, University of California-Berkeley, pp. 1-29. |
Koloniari et al., “Content-Based Routing of Path Queries in Peer-to-Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany. |
Krishnamurthy et al., “Biosequence Similarity Search On The Mercury System”, Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP04), Sep. 2004, pp. 365-375. |
Lancaster et al., “Acceleration of Ungapped Extension in Mercury BLAST”, Seventh (7th) Workshop on Media and Streaming Processors, Nov. 12, 2005, Thirty-Eighth (38th) International Symposium on Microarchitecture (MICRO-38), Barcelona, Spain. |
Li et al., “Large-Scale IP Traceback in High-Speed Internet: Practical Techniques and Theoretical Foundation”, Proceedings of the 2004 IEEE Symposium on Security and Privacy, 2004, pp. 1-15. |
Lin et al., “Real-Time Image Template Matching Based on Systolic Array Processor”, International Journal of Electronics; Dec. 1, 1992; pp. 1165-1176; vol. 73, No. 6; London, Great Britain. |
Lockwood et al., “Field Programmable Port Extender (FPX) for Distributed Routing and Queuing”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2000), Monterey, CA, Feb. 2000, pp. 137-144. |
Lockwood et al., “Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUCS-00-12, Jul. 11, 2000. |
Lockwood et al., “Parallel FPGA Programming over Backplane Chassis”, Washington University, Department of Computer Science, Technical Report WUCS-00-11, Jun. 12, 2000. |
Lockwood et al., “Reprogrammable Network Packet Processing on the Field Programmable Port Extender (FPX)”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2001), Monterey, CA, Feb. 2001, pp. 87-93. |
Lockwood, “An Open Platform for Development of Network Processing Modules in Reprogrammable Hardware”, IEC DesignCon 2001, Santa Clara, CA, Jan. 2001, Paper WB-19. |
Lockwood, “Building Networks with Reprogrammable Hardware”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Evolvable Internet Hardware Platforms”, NASA/DoD Workshop on Evolvable Hardware (EHW'01), Long Beach, CA, Jul. 12-14, 2001, pp. 271-279. |
Lockwood, “Hardware Laboratory Configuration”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Introduction”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Platform and Methodology for Teaching Design of Hardware Modules in Internet Routers and Firewalls”, IEEE Computer Society International Conference on Microelectronic Systems Education (MSE'2001), Las Vegas, NV, Jun. 17-18, 2001, pp. 56-57. |
Lockwood, “Protocol Processing on the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation and Synthesis”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation of the Hello World Application for the Field-Programmable Port Extender (FPX)”, Washington University, Applied Research Lab, Spring 2001 Gigabits Kits Workshop. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at http://www hoti.org/hoti12/program/papers/2004/paper4.2.pdf. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Power Point Presentation in Support of Master's Thesis, Washington Univ., Dept. of Computer Science and Engineering, St. Louis, MO, Aug. 2004. |
Mosanya et al., “A FPGA-Based Hardware Implementation of Generalized Profile Search Using Online Arithmetic”, ACM/Sigda International Symposium on Field Programmable Gate Arrays (FPGA '99), Feb. 21-23, 1999, pp. 101-111, Monterey, CA, USA. |
Moscola et al., “FPGrep and FPSed: Regular Expression Search and Substitution for Packet Streaming in Field Programmable Hardware”, Dept. of Computer Science, Applied Research Lab, Washington University, Jan. 8, 2002, unpublished, pp. 1-19, St. Louis, MO. |
Moscola et al., “FPSed: A Streaming Content Search-and-Replace Module for an Internet Firewall”, Proc. of Hot Interconnects, 11th Symposium on High Performance Interconnects, pp. 122-129, Aug. 20, 2003. |
Moscola, “FPGrep and FPSed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet”, Master's Thesis, Sever Institute of Technology, Washington University, St. Louis, MO, Aug. 2003. |
Motwani et al., “Randomized Algorithms”, 1995, pp. 215-216, Cambridge University Press. |
Mueller, “Upgrading and Repairing PCs, 15th Anniversary Edition”, 2004, pp. 63-66, 188, Que. |
Navarro, “A Guided Tour to Approximate String Matching”, ACM Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88. |
Nunez et al., “The X-MatchLITE FPGA-Based Data Compressor”, Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp. 126-132, Los Alamitos, CA. |
Nwodoh et al., “A Processing System for Real-Time Holographic Video Computation”, Reconfigurable Technology: FPGAs for Computing and Application, Proceedings for the SPIE, Sep. 1999, Boston, pp. 129-140, vol. 3844. |
Office Action for EP Application 11847815.5 dated Dec. 22, 2016. |
Office Action for JP Application 2013-543394 dated Nov. 16, 2015. |
Pramanik et al., “A Hardware Pattern Matching Algorithm on a Dataflow”; Computer Journal; Jul. 1, 1985; pp. 264-269; vol. 28, No. 3; Oxford University Press, Surrey, Great Britain. |
Prosecution History for U.S. Appl. No. 11/765,306, now U.S. Pat. No. 7921046, filed Jun. 19, 2007. |
Prosecution History for U.S. Appl. No. 13/076,968, filed Mar. 31, 2011 (Parsons et al.). |
Ramakrishna et al., “A Performance Study of Hashing Functions for Hardware Applications”, Int. Conf. on Computing and Information, May 1994, pp. 1621-1636, vol. 1, No. 1. |
Ramakrishna et al., “Efficient Hardware Hashing Functions for High Performance Computers”, IEEE Transactions on Computers, Dec. 1997, vol. 46, No. 12. |
Ratha et al., “Convolution on Splash 2”, Proceedings of IEEE Symposium on FPGAS for Custom Computing Machines, Apr. 19, 1995, pp. 204-213, Los Alamitos, California. |
Response to Extended European Search Report for EP Applicaion 11847815.5 dated Apr. 4, 2014. |
Roesch, “Snort—Lightweight Intrusion Detection for Networks”, Proceedings of LISA '99: 13th Systems Administration Conference; Nov. 7-12, 1999; pp. 229-238; USENIX Association, Seattle, WA USA. |
Russ et al., Non-Intrusive Built-In Self-Test for FPGA and MCM Applications, Aug. 8-10, 1995, IEEE, 480-485. |
Sachin Tandon, “A Programmable Architecture for Real-Time Derivative Trading”, Master's Thesis, University of Edinburgh, 2003. |
Schmerken, “With Hyperfeed Litigation Pending, Exegy Launches Low-Latency Ticker Plant”, in Wall Street & Technology Blog, Mar. 20, 2007, pp. 1-2. |
Schmit, “Incremental Reconfiguration for Pipelined Applications”, FPGAs for Custom Computing Machines, Proceedings, The 5th Annual IEEE Symposium, Dept. of ECE, Carnegie Mellon University, Apr. 16-18, 1997, pp. 47-55, Pittsburgh, PA. |
Schuehler et al., “Architecture for a Hardware Based, TCP/IP Content Scanning System”, IEEE Micro, 24(1):62-69, Jan.-Feb. 2004, USA. |
Schuehler et al., “TCP-Splitter: A TCP/IP Flow Monitor in Reconfigurable Hardware”, Hot Interconnects 10 (Hotl-10), Stanford, CA, Aug. 21-23, 2002, pp. 127-131. |
Seki et al., “High Speed Computation of Shogi With FPGA”, Proceedings of 58th Convention Architecture, Software Science, Engineering, Mar. 9, 1999, pp. 1-133-1-134. |
Shah, “Understanding Network Processors”, Version 1.0, University of California-Berkeley, Sep. 4, 2001. |
Shalunov et al., “Bulk TCP Use and Performance on Internet 2”, ACM SIGCOMM Internet Measurement Workshop, 2001. |
Shasha et al., “Database Tuning”, 2003, pp. 280-284, Morgan Kaufmann Publishers. |
Office Action for CA Application 2820898 dated Aug. 20, 2018. |
Office Action for EP Application 11847815.5 dated Dec. 21, 2018. |
Prosecution History for U.S. Appl. No. 13/316,332, now U.S. Pat. No. 10,037,568, filed Dec. 9, 2011. |
Office Action for EP Application 11847815.5 dated Feb. 6, 2020. |
OrCAD unveils strategy for leadership of mainstream programmable logic design market; strategy includes partnerships and a next generation product, OrCAD express for windows: A shrink-wrapped 32-bit windows application that includes VHDL simulation and synthesis. (Jun. 3, 1996). Retrieved Sep. 16, 2020 (Year: 1996). |
Smith, E. (Oct. 10, 1994). QuickLogic QuickWorks guarantees fastest FPGA design cycle. Business Wire Retrieved from https:// dialog.proquest.com/professional/docview/447031280?accountid=131444 <https://dialog.proquest.com/?professional/docview/447031280?accountid=131444> retrieved Sep. 16, 2020 (Year: 1994). |
Diniz et al., “Data Search and Reorganization Using FPGAs: Application to Spatial Pointer-Based Data Structures”, IEEE, 2003, 11 pgs. |
Summons to Attend Oral Proceedings for EP Application 11847815.5 dated Sep. 29, 2021. |
Villasenor et al., “The Flexibility of Configurable Computing”, IEEE, 1998, pp. 67-84. |
Vuillemin et al., “Programmable Active Memories: Reconfigurable Systems Come of Age”, IEEE, 1996, pp. 56-69, vol. 4, No. 1. |
Number | Date | Country | |
---|---|---|---|
20180330444 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61421545 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13316332 | Dec 2011 | US |
Child | 16044614 | US |