The present invention relates generally to electronic devices and more particularly to the manipulation of images displayed by electronic devices.
Electronic devices that have touch sensitive input modalities are known. One example is the MOTOMing™ cellular telephone device distributed by Motorola, Inc. Another is the iPhone distributed by Apple, Inc. Electronic devices that provide pan and zoom controlled viewing for the manipulation of maps, other documents, and other images are known. Google™ Earth as used in a PC is one example. The Q phone distributed by Motorola, Inc. is another example. A convenient method of switching between a pan mode and a zoom mode for presenting the maps is a desirable feature. Methods used in current electronic devices are not typically very convenient.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to touchscreen input modalities. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Generally, the embodiments described in more detail below provide a method and apparatus for manipulating an image displayed on a display of an electronic device using a touch sensitive input modality that has a capability of sensing touch position and touch pressure. The embodiments provide a benefit of being able to switch between a pan and a zoom mode without being constrained to use a button (either a hard switch) or a soft (virtual) button. The embodiments include embodiments in which the input modality is a morphing surface that changes configurations according to differing modes, such as morphing between a cell phone key pad, camera controls, text messaging, and, media (sound or video) control configurations.
Referring to
The touch screen 105 may be of the type that senses touch position in manner that depends on no moving parts, or substantially no moving parts. The technique used for sensing touch position may be, for example, one that uses conventional optical, capacitive, or resistive techniques. Newly developed techniques may alternatively be used. The technique for sensing touch position typically allows determination of an x-y position of a tool, which may also be called a stroke tool, that is touching a physical surface of the touch screen 105 or is very close to making contact with the surface of the touch screen 105. When the stroke tool is moved, then it may be said that a stroke is detected. The use of the term “stroke” tool does not preclude its use to perform a “tap” or exert constant pressure input at one x-y position on the touch screen 105. The touch position sensing technique, in addition to providing an x-y position of the stroke tool, may also provide a definitive “touching” state indication that has a first binary state (F) that indicates when the stroke tool is not considered to be touching (or very close to touching) the surface of the touch screen 105 (the no-touch state), and a second binary state (T) when it is providing position information (the touch state). The stroke tool may be one of many implements, such as a pen, pencil, pointer, stick, or a person's digit.
The touch screen 105 may be of the type that senses touch pressure in manner that depends on no moving parts, or substantially no moving parts. The technique used for sensing touch pressure may be, for example, one that uses conventional force sensing resistive or strain gauge techniques. Newly developed techniques may alternatively be used. The technique for sensing touch pressure typically allows determination of an “analog” value that is related to a pressure exerted by the stroke tool on a physical surface of the touch screen 105. “Analog” is in quotes since in typical embodiments, analog values are converted to digital values that represent the analog input value. The touch pressure sensing technique may provide a lowest pressure state indication in a situation when the input pressure is less than a threshold value. This could be termed a “no pressure” or “zero pressure” state.
Above the “no pressure state”, the input modality may provide a digitized analog pressure value for the amount of touch pressure exerted by the stroke tool, or may provide quantized pressure values—as few as two, including the “no pressure” value.
The characterization of essentially no moving parts for the touch position and touch pressure sensing aspects of the touch screen 105 is meant to include small inevitable movements of surfaces of the touch screen 105 that may occur in multilayer displays when touch pressure is applied using a stroke tool, especially if high pressure is applied. It should be noted that the pressure sensing and touch sensing may, in some embodiments, use the same technology, but in others may be completely independent. Further, there may be situations (when the touch pressure is below a threshold) in which a no pressure output is indicated while a touch position is reliably indicated.
Referring again to
Referring to
The pan control 215 may accept touch position input during the pan mode and move the image on the display in directions responsive to those inputs. Similarly, the zoom control 220 may accept position input during the zoom mode and scales the image on the display in response to those inputs. (The zoom control 220 may resolve the touch position motion into one of two directions—up and down—and perform either a zoom in or zoom out in response to the resolved direction. In some embodiments, the zoom control 220 may resolve the touch position into one of four directions—up, down, right, left—and perform zooming for two of them and rotation for the other two) The pan and zoom control do not typically show the pan or zoom strokes 125, 130, 135 on the display of the touch screen 105. The mode control 225 may accept at least the touch pressure value inputs to determine a mode change event using either a tap module 230 or a pressure module 235. Both may not be present in all embodiments. The mode control 225 may further accept and rely upon position input to determine the mode change event. In response to a mode change event, the processing system 205 may change the mode of the touch screen 105 from pan mode to zoom mode, or vice versa.
Referring to
In accordance with two sets of embodiments, three exerted pressure levels, PA, PB, and PC, are shown for plot 305. At time 0, the PAN1 stroke 125 is at or near the beginning of the stroke, and the touch pressure exerted (plot 305) is between PB and PC. Quantized touch pressure PB-PC (plot 310) may represent the exerted pressure during this time. The touch pressure then goes above a tap pressure threshold, PC, and back down. At the end of PAN1 stroke 125, a drop in touch pressure is sensed. When the exerted touch pressure 305 goes to zero (i.e., the quantized touch pressure 310 is either received by the mode control 225 as an “analog” value near zero and is set to zero pressure, or is received from the touch screen 105 as a zero value) for a duration of TA. Then the exerted touch pressure 305 goes above the tap pressure threshold, PC, for a duration TB, and the quantized touch pressure 310 is received as an analog value>PC from the touch screen 105 and converted to a quantized value indicating>PC, or is received from the touch screen 105 as a quantized value indicating>PC during that duration. Then the exerted touch pressure drops again to zero, for a duration TC and the quantized touch pressure is received or set at zero for that duration.
In accordance with a first example of embodiments, the mode control 225 senses the pressures, either as analog values or as quantized values, and senses the durations TA, TB, TC, and compares them to a stored tap criterion, or profile. In this first example of tap embodiments, the pressure criterion is such that if TA is below a maximum duration threshold (e.g., 125 milliseconds), and the pressure at all times during TB exceeds PB, and a trailing zero pressure level occurs having a duration TC that is greater than a minimum duration threshold (e.g., 125 milliseconds), then a determination is made that a tap criterion has been met (i.e., a tap is sensed), and the mode control 225 changes from the pan mode to the zoom mode. In this first example of tap embodiments, the use of time durations allows a pressure level to be used that may be lower than pressures sensed while operating in one of the zoom or pan modes. In the second set of embodiments, the pressure criterion is such that if TD is below a maximum duration threshold (e.g., 125 milliseconds), and the touch pressure at all times during TE exceeds PC, then a determination is made that a tap has occurred (i.e., a tap is detected), and the mode control 225 changes from the pan mode to the zoom mode. In accordance with the second set of embodiments, the tap criterion may be determined to have been met at the time when the touch pressure has dropped for duration TD, then has risen for duration TE. In a second example of embodiments, the tap pressure criterion uses a higher pressure level, PC, than in the first example of embodiments. But it should be appreciated that an optimum pressure level needed to detect a tap will be related to the values of the durations and types of durations (i.e., whether one or both of a preceding and following duration are used in addition to the duration of the peak) for a particular embodiment, as determined by experimentation. Note that it would not be normal to have two embodiments, of which each are in one of the two just described sets of embodiments, both operating at the same time in an electronic device, since it would likely be confusing for many users. However, both of these embodiments are illustrated by
It will be appreciated that by using the sensed touch pressure of the stroke tool, the user does not have to move the tool to a button position shown on the touch screen 105, nor use a button or switch located elsewhere, thereby speeding up the time needed to make the move change; simplifying the complexity of making the mode change; and removing the need for a button or switch to make the mode change. The last cited benefit provides additional benefits of reducing area used on the touch screen 105 or other parts of the electronic device and in some cases, eliminating some moving parts.
There are many variations of the touch pressure and durations used for a tap criterion that could provide the same type of benefits described herein for other embodiments. These variations would occur to persons of ordinary skill in the art after reading this document. As just some examples, one of the leading durations (TA and TD) or the trailing duration (TC), but not both, could be eliminated as a part of the criteria. Any of the durations may have one or both of a minimum and maximum value. The touch state could be substituted or added to a zero pressure detection requirement. In other variations, the touch pressure level required to meet the pressure criterion could be a threshold value of PB instead of PC for a minimum duration TM. In these variations that use a tap criterion to determine a switch from a pan mode to a zoom mode, response to the touch position of the stroke tool during panning or zooming could be maintained at any value (including none) of touch pressure and touch position, until the tap criterion is met. Alternatively, there could be a requirement that touch pressure be maintained above zero (or a low pressure threshold such as PA) for there to be a response to touch position. This may serve to improve the reliability of the detection of the stroke. In certain embodiments, the amount of touch pressure may be used as a criterion for a rate of image panning or a rate of zooming (depending on which mode the touch screen 105 is in). For example, there may two quantized pressure thresholds above zero that are used to produce one of two speeds of panning or zooming, or both, depending on the mode of the touch screen 105. Or, an analog pressure threshold may be used for such control. These embodiments may use pressure thresholds for rate control as well as a pressure threshold for tap detection. The criteria described above for tap detection are referred to herein as pressure criteria for tap detection, but as can be seen they may include a touch state requirement and or one or more durations. In many cases at least a minimum touch pressure threshold and two duration thresholds are included in the criterion—one duration for pressures above a minimum pressure threshold and another duration for a low or zero pressure threshold or a no-touch state. To state it a different way, pressure criterion for tap detection in these embodiments may include a tap pressure threshold associated with a first duration, and a second duration associated with one or both of a low pressure threshold and a no-touch state. The first and second durations may each have one or both of a minimum value and a maximum value, and the low pressure threshold may be zero.
Referring now to
Referring to
Two touch pressure levels, PA and zero, are shown for plot 505. It will be appreciated that there may exist a second touch pressure level, or value, that is near but greater than zero, below which the quantized or measured touch pressure is approximated as zero. This would be similar to PA for the exerted touch pressure plot 305 in
It will be appreciated that the embodiments described with reference to
Referring now to
Referring to
Four touch pressure thresholds, PA, PB, PC and zero, are shown for plot 505. At time 0, the PAN1 stroke 610 is at or near the beginning of the stroke, and the exerted touch pressure (plot 705) is above PA and below touch pressure level PB. A quantized pressure value of PA-PB (plot 710) may represent the exerted touch pressure during this time. At the end of PAN1 stroke 610, a decrease of touch pressure to zero may be sensed when the stroke tool is lifted, then an increase in touch pressure above pressure level PC is sensed at time TA. The mode control 225 senses the pressure values, either as analog values or as quantized values, and compares them to a stored pressure criterion, or profile. In these embodiments, when the mode is a pan mode and the touch pressure increases to become greater than a zoom pressure threshold PC, then a determination is made that a first pressure criterion has been met, and the mode control 225 changes from the pan mode to the zoom mode. In accordance with this example, a second pressure criterion is that when the mode is the zoom mode and the touch pressure is sensed to fall below pan pressure threshold PB, then the mode is changed from zoom to pan. In these embodiments, it will be appreciated that the state of the touch input and drops of pressure below PA are irrelevant in causing a mode change between the pan and zoom mode, or vice versa, as can be observed from plots 705, 710, and 715.
It will be appreciated that these embodiments provide similar benefits as those described above with reference to
Referring to
Referring to
Referring to
It will be appreciated, that when objects within the image region of the input/output modality 105 are active, which for the purposes of this document will all be referred to as active objects, then the touch position at which a criterion for change from pan to zoom (or vice versa) would otherwise be met is not met if the position is within the active object. In other words, the touch position at which the pressure criterion for a pan to zoom change (or for a zoom to pan change) is met is exclusive of any active objects within the image region.
It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions described herein. The non-processor circuits may include, but are not limited to, a radio receiver, a radio transmitter, signal drivers, clock circuits, power source circuits, and user input devices. As such, these functions may be interpreted as steps of a method for manipulating an image displayed on a display of an electronic device using a touch sensitive input modality that has a capability of sensing touch position and touch pressure. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.