This invention relates to surgical methods and apparatus in general, and more particularly to surgical methods and apparatus for manipulating the side wall of a body lumen and/or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same.
The human body comprises many different body lumens and body cavities. By way of example but not limitation, the human body comprises body lumens such as the gastrointestinal (GI) tract, blood vessels, lymphatic vessels, the urinary tract, fallopian tubes, bronchi, bile ducts, etc. By way of further example but not limitation, the human body comprises body cavities such as the head, chest, abdomen, nasal sinuses, bladder, cavities within organs, etc.
In many cases it may be desirable to endoscopically examine and/or treat a disease process or abnormality which is located within, or on the side wall of, a body lumen and/or body cavity. By way of example but not limitation, it may be desirable to examine the side wall of the gastrointestinal tract for lesions and, if a lesion is found, to biopsy, remove and/or otherwise treat the lesion.
The endoscopic examination and/or treatment of the side wall of a body lumen and/or body cavity can be complicated by the anatomic configuration (both regional and local) of the side wall of the body lumen and/or body cavity, and/or by the consistency of the tissue making up the side wall of the body lumen and/or body cavity, and/or by the tethering of the side wall of the body lumen and/or body cavity to other anatomical structures.
By way of example but not limitation, the intestine is an elongated tubular organ having an inner lumen and is characterized by frequent turns (i.e., the regional anatomic configuration of the intestine) and a side wall characterized by numerous folds (i.e., the local anatomic configuration of the intestine), with the side wall tissue having a relatively soft, pliable consistency, and with the colon in particular being tethered to the abdomen and/or other abdominal structures via soft tissue. It can be difficult to fully visualize the side wall of the intestine, and/or to treat a lesion formed on the side wall of the intestine, due to this varying side wall anatomic configuration (both regional and local), its relatively soft, pliable consistency, and its tethering to other anatomical structures via soft tissue. By way of example but not limitation, in the case of colonoscopies, it has been found that approximately 5-40% of patients have an anatomic configuration (regional and/or local) of the side wall, and/or a tissue consistency, and/or colon tethering to other anatomical structures, which makes it difficult to fully visualize the anatomy (including pathologic conditions of that anatomy, such as polyps or tumors) using conventional endoscopes, and/or to fully access the anatomy using instruments introduced through conventional endoscopes.
In addition to the foregoing, it has also been found that some body lumens and/or body cavities can spasm and/or contract spontaneously but especially when an endoscope or other instrument is inserted into the body lumen and/or body cavity. This spasming and/or contraction can cause the body lumen and/or body cavity to constrict and/or otherwise move and/or change its configuration, which can further complicate and/or compromise endoscopic visualization of the anatomy, and/or further complicate and/or compromise access to the anatomy using instruments introduced through conventional, flexible endoscopes. In addition, during examination of the colon, which is typically conducted while both inserting and withdrawing the endoscope through the colon, the endoscope may grip and/or otherwise gather the colon during insertion and withdrawal and then suddenly slip and release the colon. This results in the endoscope moving quickly past significant lengths of the colon, thereby making accurate examination of the colon challenging.
It would, therefore, be highly advantageous to provide novel apparatus capable of manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
It would also be highly advantageous to provide novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
Among other things, it would be highly advantageous to provide novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.).
And it would be highly advantageous to provide novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
It would also be highly advantageous to be able to straighten bends, “iron out” inner luminal surface folds and create a substantially static or stable side wall of the body lumen and/or body cavity, whereby to enable more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention.
The present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
The present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
Among other things, the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.).
And the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
And the present invention comprises the provision and use of novel apparatus capable of straightening bends, “ironing out” folds and creating a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention.
In one preferred form of the present invention, there is provided apparatus comprising:
In another preferred form of the present invention, there is provided a method for performing a procedure in a body lumen and/or body cavity, said method comprising:
In another preferred form of the present invention, there is provided apparatus comprising:
In another preferred form of the present invention, there is provided a method for performing a procedure in a body lumen and/or body cavity, said method comprising:
In another preferred form of the present invention, there is provided apparatus comprising:
In another preferred form of the present invention, there is provided a method for performing a procedure in a body lumen and/or body cavity, said method comprising:
In another preferred form of the present invention, there is provided apparatus comprising:
In another preferred form of the present invention, there is provided a method for performing a procedure in a body lumen and/or body cavity, said method comprising:
In still another form of the invention, there is provided apparatus for accessing a body lumen or a body cavity, the apparatus comprising:
In another form of the invention, there is provided a method for accessing a body lumen and/or body cavity of a patient, the method comprising:
In another form of the invention, there is provided a method for visualizing and/or accessing a bile duct of a patient, the method comprising:
In another form of the invention, there is provided apparatus for accessing a body lumen or a body cavity, the apparatus comprising:
In another form of the invention, there is provided a method for accessing a body lumen and/or body cavity of a patient, the method comprising:
In another form of the invention, there is provided a method for visualizing and/or accessing a bile duct of a patient, the method comprising:
In another form of the invention, there is provided apparatus for accessing a body lumen or a body cavity, the apparatus comprising:
In another form of the invention, there is provided a method for accessing a body lumen and/or body cavity of a patient, the method comprising:
In another form of the invention, there is provided a method for visualizing and/or accessing a bile duct of a patient, the method comprising:
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
The present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
(As used herein, the term “endoscopic procedure” is intended to mean substantially any minimally-invasive or limited access procedure, diagnostic and/or therapeutic and/or surgical, for accessing, endoluminally or transluminally or otherwise, the interior of a body lumen and/or body cavity for the purposes of viewing, biopsying and/or treating tissue, including removing a lesion and/or resecting tissue, etc.)
The present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
Among other things, the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.).
And the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
And the present invention comprises the provision and use of novel apparatus capable of straightening bends, “ironing out” folds and creating a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention.
In accordance with the present invention, and looking now at
More particularly, apparatus 5 generally comprises a sleeve 15 adapted to be slid over the exterior of the shaft of endoscope 10, a proximal (or “aft”) balloon 20 (the terms “proximal” and “aft” will hereinafter be used interchangeably) secured to sleeve 15 near the distal end of the sleeve, and a base secured to sleeve 15 at the proximal end of the sleeve. Apparatus 5 also comprises a pair of push tubes 30 slidably mounted to sleeve 15 as will hereinafter be discussed, and a distal (or “fore”) balloon 35 (the terms “distal” and “fore” will hereinafter be used interchangeably) secured to the distal ends of push tubes 30, such that the spacing between aft balloon 20 and fore balloon 35 can be adjusted by the physician (or other operator or user) by moving push tubes 30 relative to sleeve 15 (e.g., by advancing the two push tubes simultaneously at push tube handle 37, see below). See
Looking now at
If desired, the distal end of sleeve 15 may be provided with a radially-inwardly-extending stop (not shown) to positively engage the distal end surface of endoscope 10, whereby to prevent the distal end of sleeve 15 from moving proximally beyond the distal end surface of endoscope 10. Such a radially-inwardly-extending stop can also assist in preventing “torque slip” of sleeve 15 relative to endoscope 10 during torqueing (i.e., rotational turning) of the endoscope while within the colon, and/or “thrust slip” of sleeve 15 relative to endoscope 10 during forward pushing of the endoscope while within the colon.
Sleeve 15 preferably has a smooth outer surface so as to be non-traumatic to tissue, and is preferably made of a highly flexible material such that the sleeve will not inhibit bending of the endoscope during use. In one preferred form of the invention, sleeve 15 comprises polyurethane, polyethylene, poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), etc., and is preferably transparent (or at least translucent) so as to allow distance markings on endoscope 10 to be visualized through sleeve 15. And in one preferred form of the invention, sleeve preferably has nominal hoop strength, so that the physician (or other operator or user) can grip endoscope 10 through sleeve 15, e.g., so as to torque the scope. If desired, sleeve 15 can include a lubricious coating (e.g., a liquid such as perfluoropolyether synthetic oil, a powder, etc.) on some or all of its interior and/or exterior surfaces, so as to facilitate disposition of the sleeve over the endoscope and/or movement of apparatus 5 through a body lumen and/or body cavity. Alternatively, sleeve 15 may be formed of a material which is itself lubricious, e.g., polytetrafluoroethylene (PTFE), etc. It should be appreciated that the inside surface of sleeve 15 may include features (e.g., ribs) to prevent the sleeve from rotating relative to the endoscope during use.
If desired, a vacuum may be “pulled” between sleeve 15 and endoscope 10, whereby to secure sleeve 15 to endoscope 10 and minimize the profile of sleeve 15. By way of example but not limitation, a vacuum may be introduced at the proximal end of sleeve 15 (i.e., at base 25) or a vacuum may be introduced at a point intermediate sleeve 15. By way of further example but not limitation, it should also be appreciated that removal of sleeve 15 from endoscope 10 (e.g., at the conclusion of a procedure) may be facilitated by introducing a fluid (e.g., air or a liquid lubricant) into the space between sleeve 15 and endoscope 10, e.g., at the proximal end of sleeve 15 (i.e., at base 25) or intermediate sleeve 15.
Still looking now at
Preferably aft balloon 20 is disposed a short distance back from the distal end of sleeve 15, i.e., by a distance which is approximately the same as the length of the articulating portion of a steerable endoscope 10, such that the articulating portion of the steerable endoscope will be disposed distal to aft balloon 20 when the steerable endoscope is disposed in sleeve 15. This construction allows the flexible portion of the steerable endoscope to be articulated even when aft balloon has been inflated in the anatomy so as to stabilize the adjacent non-articulating portion of the endoscope relative to the anatomy, as will hereinafter be discussed in further detail. Thus, when inflated, aft balloon 20 provides a secure platform for maintaining endoscope 10 in a stable position within a body lumen or body cavity, with endoscope 10 centered within the body lumen or body cavity. As a result, endoscope 10 can provide improved visualization of the anatomy. Furthermore, inasmuch as endoscope 10 is securely maintained within the body lumen or body cavity by the inflated aft balloon 20, instruments advanced through the internal lumens (sometimes referred to as the “working channel” or “working channels”) of endoscope 10 will also be provided with a secure platform for supporting those instruments within the body lumen or body cavity.
When aft balloon 20 is appropriately inflated, the aft balloon can atraumatically engage and form a sealing relationship with the side wall of a body lumen within which apparatus 5 is disposed.
In one preferred form of the invention, aft balloon 20 is formed out of polyurethane.
Base 25 is secured to the proximal end of sleeve 15. Base 25 engages endoscope 10 and helps secure the entire assembly (i.e., apparatus 5) to endoscope 10. Base 25 preferably comprises a substantially rigid or semi-rigid structure which may be gripped by the physician (or other operator or user) and pulled proximally, whereby to allow the physician (or other operator or user) to pull sleeve 15 over the distal end of endoscope 10 and then proximally back along the length of endoscope 10, whereby to mount sleeve 15 to the outer surface of the shaft of the endoscope. In one preferred form of the invention, base 25 is pulled proximally along the endoscope until base 25 seats against the handle of the endoscope, thereby prohibiting further proximal movement of base 25 (and hence thereby prohibiting further proximal movement of sleeve 15). In one preferred form of the invention, base 25 makes a sealing engagement with endoscope 10.
Push tubes 30 are slidably mounted to sleeve 15, whereby the distal ends of the push tubes can be extended and/or retracted relative to sleeve 15 (e.g., by advancing or withdrawing the push tubes via push tube handle 37, see below), and hence extended and/or retracted relative to the distal end of endoscope 10 which is disposed in sleeve 15. Preferably, push tubes 30 are slidably disposed in support tubes 50 which are secured to the outer surface of sleeve 15 or, more preferably, are contained within lumens 52 formed within sleeve 15. Support tubes 50 are preferably formed out of a low friction material (e.g., polytetrafluoroethylene, also known as “PTFE”) so as to minimize resistance to movement of push tubes 30 relative to support tubes 50 (and hence minimize resistance to movement of push tubes 30 relative to sleeve 15). In this respect it should be appreciated that minimizing resistance to the movement of push tube 30 relative to support tubes 50 improves tactile feedback to the user when push tubes are being used to manipulate fore balloon 35. In one form of the invention, support tubes 50 are flexible (so as to permit endoscope 10, and particularly the articulating portion of steerable endoscope 10, to flex as needed during the procedure); however, support tubes 50 also provide some column strength. Thus, when support tubes 50 are mounted within lumens 52 formed in sleeve 15, the assembly of sleeve 15 and support tubes 50 is flexible yet has a degree of column strength (whereas sleeve 15 alone is flexible but has substantially no column strength). In the event that push tubes 30 are contained within lumens 52 formed in sleeve 15, and in the event that support tubes 50 are not disposed between push tubes 30 and lumens 52, lumens 52 are preferably lubricated so as to minimize friction between push tubes 30 and lumens 52.
The proximal ends of push tubes 30 are connected to push tube handle 37. As a result of this construction, pushing distally on push tube handle 37 causes the distal ends of push tubes 30 to move distally (at the same rate) relative to sleeve (whereby to move fore balloon 35 distally relative to aft balloon 20) and pulling proximally on push tube handle 37 causes the distal ends of push tubes 30 to retract proximally (at the same rate) relative to sleeve 15 (whereby to move fore balloon 35 proximally relative to aft balloon 20). Note that by moving push tubes 30 distally or proximally at the same rate, the distal ends of the push tubes are maintained parallel to each other. A clamp 53 (
Push tubes 30 are preferably formed out of a relatively flexible material which provides good column strength, e.g., a thermoplastic polyethylene resin such as Isoplast™ (available from The Lubrizol Corporation of Wickliffe, Ohio), polyethylene, polypropylene, nylon, etc. It should be appreciated that push tubes can comprise a single material or a plurality of materials, and that the stiffness of push tubes 30 can vary along their length. By way of example but not limitation, the distal-most portion of push tubes 30 can be formed of the same material as the remainder of the push tubes but have a lower modulus so as to be more flexible than the remainder of the push tubes, or the distal-most portion of push tubes 30 can comprise a different, more resilient flexible material. By way of example but not limitation, the distal-most portion of push tubes 30 can comprise Nitinol. By way of further example but not limitation, the distal-most portion of push tubes 30 can comprise a stainless steel coil covered with an outer jacket of polytetrafluoroethylene (PTFE), with the distal-most jacket/more-proximal tubing together providing a sealed lumen for inflating/deflating fore balloon 35. By forming push tubes 30 with distal ends which are more flexible than the remainder of the push tubes, the push tubes 30 and fore balloon 35 can together function as a lead (with a soft atraumatic tip) for apparatus 5 and endoscope 10, as discussed further below.
In one preferred form of the invention, push tubes 30 are configured to maintain a parallel disposition when they are in an unbiased state, i.e., when no force is being applied to push tubes 30. This is true regardless of the state of inflation or deflation of fore balloon 35.
The distal-most portion of push tubes 30 can be configured to bend inwardly or outwardly if desired. With such a configuration, when the distal tips of push tubes 30 are maintained stationary (e.g., by an inflated fore balloon, as will hereinafter be discussed) and a sufficient distally-directed force is applied to push tubes 30, the middle portions of push tubes 30 (i.e., the portions between the inflated fore balloon 35 and sleeve 15) can bend or bow outwardly, whereby to push outwardly on the side wall of the body lumen which apparatus 5 is disposed in, thereby providing a “tenting” effect on the side wall of the body lumen and/or body cavity in the space between aft balloon 20 and fore balloon 35. This “tenting” effect can significantly enhance visibility and/or tissue stability in the area distal to endoscope 10, by pushing outwardly on the side wall of the body lumen and/or body cavity in which apparatus 5 is disposed.
It should also be appreciated that by forming push tubes 30 out of a flexible material, it is possible to manually adjust their position during use (e.g., by using a separate tool, by torqueing the apparatus, etc.) so as to prevent the push tubes from interfering with visualization of the patient's anatomy and/or interfering with diagnostic or therapeutic tools introduced into the space between the fore and aft balloons. By way of example but not limitation, if apparatus 5 is disposed in the anatomy in such a way that a push tube 30 blocks visual or physical access to a target region of the anatomy, the flexible push tube 30 may be moved out of the way by using a separate tool or instrument, or by rotating the apparatus with a torqueing motion so as to move the flexible push tube 30 out of the way, etc. By way of further example but not limitation, by constructing push tubes 30 so that they are circular and flexible and of a diameter significantly smaller than the round circumference of endoscope 10, the movement of the round endoscope, when articulated, can simply push the push tubes out of the way and provides a unobstructed visual path to the tissue of interest.
It should also be appreciated that, if desired, push tubes 30 can be marked with an indicator including distance markers (not shown in the figures), e.g., colored indicators or radiopaque indicators, so that a physician (or other operator or user) observing the surgical site via endoscope 10 or by radiological guidance (e.g., X-ray fluoroscopy) can ascertain the relative disposition of push tubes 30 at the surgical site both longitudinally and/or circumferentially with respect to the side wall of the body lumen and/or other body cavity.
As will hereinafter be discussed in further detail, push tubes 30 are hollow, and have their distal ends in fluid communication with the interior of fore balloon (
More particularly, in one preferred form of the present invention, and looking now at
It should be appreciated that the provision of dual push tubes provides numerous advantages. By way of example but not limitation, the provision of dual push tubes provides a symmetric force to fore balloon 35 when the fore balloon is advanced distally into a body lumen, as will hereinafter be discussed. Furthermore, the provision of dual push tubes 30 provides equal outward forces against the adjacent anatomy when the push tubes are employed to straighten out the anatomy in the area proximate the distal end of endoscope 10, thereby enhancing visualization of, and/or access to, the anatomy, as will hereinafter be discussed. In addition, the provision of dual push tubes ensures that fore balloon remains centered on endoscope 10, thereby facilitating un-docking of fore balloon 35 from endoscope 10 and re-docking of fore balloon 35 over endoscope 10, as will hereinafter be discussed. In addition, the provision of dual push tubes helps ensure that fore balloon 35 is stable relative to the tip of the endoscope, minimizing rotational movement of the fore balloon when inflated. Furthermore, the provision of dual hollow push tubes provides a redundant air transfer system for inflating or deflating fore balloon 35.
Fore balloon 35 is secured to the distal ends of push tubes 30, whereby the spacing between aft balloon 20 and fore balloon 35 can be adjusted by moving push tubes 30 relative to sleeve 15, i.e., by moving push tube handle 37 relative to sleeve 15. Furthermore, hollow push tubes 30 provide a conduit between the interior of fore balloon 35 and fitting 56, whereby to permit selective inflation/deflation of fore balloon 35 via fitting 56.
Significantly, fore balloon 35 is configured so that (i) when it is deflated (or partially deflated) and it is in its “retracted” position relative to sleeve 15 (
It will be appreciated that, when fore balloon 35 is reconfigured from its deflated condition to its inflated condition, fore balloon 35 expands radially inwardly (so as to close down axial opening 63) as well as radially outwardly (so as to engage the surrounding tissue).
Thus it will be seen that fore balloon 35 has a “torus” shape when deflated (to allow it to seat over the distal end of the endoscope) and a substantially “solid” shape when inflated (to allow it to close off a body lumen or body cavity).
To this end, and looking now at
In one preferred form of the invention, fore balloon 35 is formed out of polyurethane.
It should be appreciated that when fore balloon 35 is in its deflated condition, the material of fore balloon 35 substantially encompasses the distal ends of push tubes 30 (while still allowing push tubes 30 to be in fluid communication with the interior of fore balloon 35), thereby providing an atraumatic tip for advancing fore balloon 35 distally through a body lumen. Furthermore, push tubes 30 and the deflated fore balloon 35 can, together, essentially function as a soft-tipped lead for apparatus 5 and endoscope 10, as discussed further below (
If desired, one or both of aft balloon 20 and fore balloon 35 can be marked with an indicator (e.g., a color indicator or a radiopaque indicator) so that a physician (or other operator or user) observing the surgical site via endoscope 10 or radiological guidance (e.g., X-ray fluoroscopy) can ascertain the disposition of one or both of the balloons at the surgical site.
Inflation mechanism 40 provides a means to selectively inflate aft balloon and/or fore balloon 35.
In one preferred form of the present invention, and looking now at
In another preferred form of the present invention, inflation mechanism 40 comprises an elastic bulb 156 having a first port 157 and a second port 158. A one-way valve 159 (e.g., a check valve) is disposed in first port 157 so that air can only pass through first port 157 when traveling in an outward direction. Another one-way valve 159 (e.g., a check valve) is disposed in second port 158 so that air can only pass through second port 158 when traveling in an inward direction. When elastic bulb 156 is compressed (e.g., by hand), air within the interior of elastic bulb 156 is forced out first port 157; and when elastic bulb 156 is thereafter released, air is drawn back into the interior of elastic bulb 156 through second port 158.
As a result of this construction, when elastic bulb 156 is to be used to inflate aft balloon 20, first port 157 is connected to fitting 46 via line 155 so that the positive pressure output of elastic bulb 156 is directed to aft balloon 20. Elastic bulb 156 may thereafter be used to deflate aft balloon 20, i.e., by connecting second port 158 to fitting 46 via line 155 so that the suction of elastic bulb 156 is directed to aft balloon 20. Correspondingly, when elastic bulb 156 is to be used to inflate fore balloon 35, first port 157 is connected to fitting 56 via line 155 so that the positive pressure output of elastic bulb 156 is directed to fore balloon 35. Elastic bulb 156 may thereafter be used to deflate fore balloon 35, i.e., by connecting second port 158 to fitting 56 via line 155 so that the suction of elastic bulb 156 is directed to fore balloon 35.
Alternatively, and looking now at
Thus, with this construction, when syringe 160 is to be used to inflate aft balloon 20, valve 165 (a two-position valve that connects valve 170 to either the fore balloon or the aft balloon) is set so that the syringe 160 is connected through fitting 46 to aft balloon 20, and valve 170 (a 2-way crossover valve which allows the one-way valves to be arranged to inflate in one configuration and deflate in the other configuration) is set so that syringe 160 is providing inflation pressure. Thereafter, when aft balloon 20 is to be deflated, valve 170 is set to its deflate position.
Correspondingly, when syringe 160 is to be used to inflate fore balloon 35, valve 165 is set so that syringe 160 is connected through fitting 56 to fore balloon 35, and valve 170 is set so that syringe 160 is providing inflation pressure. Thereafter, when fore balloon 35 is to be deflated, valve 170 is set to its deflate position.
In yet another form of the invention, inflation mechanism 40 may comprise an automated source of fluid pressure (either positive or negative), e.g., an electric pump.
If desired, and looking now at
Alternatively, and/or additionally, one or more pressure gauges 182 (
Furthermore, it will be appreciated that as fore balloon 35 moves between its “retracted” position (
Apparatus 5 may be used to manipulate, (e.g., stabilize, straighten, expand and/or flatten, etc.) the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure using endoscope 10, and/or to stabilize the distal tips and/or working ends of instruments (e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.), e.g., advanced into the therapeutic zone.
More particularly, in use, sleeve 15 is first mounted to endoscope 10 (
Looking next at
When apparatus 5 is to be used (e.g., to manipulate the side wall of the gastrointestinal tract so as to provide increased visualization of the same and/or increase access to the same, and/or for stabilizing instruments relative to the same), aft balloon 20 is inflated so as to stabilize apparatus 5 (and hence endoscope 10) within the body lumen and/or body cavity. See
In this respect it will be appreciated that inasmuch as the articulating portion of the endoscope resides distal to aft balloon 20, the endoscope will be able to articulate distal to aft balloon 20 so as to facilitate visualization of the anatomy even after aft balloon 20 is inflated. Significantly, such visualization is enhanced, inasmuch as aft balloon 20 stabilizes endoscope 10 within the gastrointestinal tract and distends the colon and increases the colon to a fixed diameter directly adjacent to aft balloon 20.
Next, push tubes 30 are advanced distally in the body lumen and/or body cavity (i.e., so as to move fore balloon 35 further ahead of aft balloon 20) by pushing distally on push tube handle 37. Thus, push tubes 30, and hence fore balloon 35, move distally relative to endoscope 10 (which is stabilized in position within the gastrointestinal tract by the inflated aft balloon 20). Note that the deflated fore balloon 35 covers the distal ends of push tubes 30 during such distal advancement of fore balloon 35, thereby ensuring atraumatic advancement of fore balloon 35. Note that atraumatic advancement of fore balloon 35 may be further enhanced by forming the distal ends of push tubes 30 out of a more resilient material.
When push tubes 30 have advanced fore balloon 35 to the desired position distal to endoscope 10, fore balloon 35 is inflated (
It should be appreciated that the expansion and tensioning of the side wall of the body lumen and/or body cavity effected by the inflated fore balloon 35, the inflated aft balloon 20, and push tubes 30, can be further enhanced by advancing the fore balloon when it is inflated and gripping the side wall of the body lumen and/or body cavity, whereby to tension the side wall of the body lumen and/or body cavity.
Significantly, inasmuch as the inflated fore balloon 35 and the inflated aft balloon 20 together define a substantially closed region along the body lumen and/or body cavity (i.e., an isolated therapeutic zone), this region can then be inflated (
If desired, fore balloon 35 can be retracted toward aft balloon 20 (i.e., by pulling push tube handle 37 proximally), while remaining inflated (and hence maintaining a grip on the side wall of the body lumen and/or body cavity), so as to move the visible mucosa and further improve visualization and access (see
Alternatively, if desired, once aft balloon 35 has been inflated, push tubes may be advanced distally a portion—but only a portion—of their full distal stroke, then fore balloon 35 may be inflated so as to grip the side wall of the body lumen and/or body cavity, and then push tubes 30 may be further advanced distally. This action will cause flexible push tubes 30 to bow outwardly (see FIGS. 22A-22D), contacting the side wall of the body lumen and/or body cavity and pushing the side wall of the body lumen and/or body cavity outwardly, e.g., in a “tenting” fashion, whereby to further enhance visualization of the side wall of the body lumen and/or body cavity by endoscope 10.
If desired, instruments 190 (
Furthermore, if bleeding were to obscure a tissue site, or if bleeding were to occur and the surgeon is unable to identify the source of the bleeding, the isolated therapeutic zone permits rapid flushing of the anatomic segment in which the therapeutic zone lies (e.g., with a liquid such as saline) with rapid subsequent removal of the flushing liquid (see
Also, if desired, fore balloon 35 can be directed with high precision to a bleeding site, whereupon fore balloon 35 may be used (e.g., inflated) to apply local pressure to the bleeding site in order to enhance bleeding control (see
If it is desired to reposition endoscope 10 within the anatomy with minimal interference from apparatus 5, fore balloon 35 is returned to its torus configuration (i.e., partially deflated), the fore balloon is retracted proximally and “re-docked” on the distal end of endoscope 10, aft balloon 20 is deflated, and then endoscope 10 (with apparatus 5 carried thereon) is repositioned within the anatomy. Note that where fore balloon 35 is to be re-docked on the distal end of endoscope 10, fore balloon 35 is preferably only partially deflated until fore balloon 35 is re-docked on the distal end of the endoscope, since partial inflation of fore balloon 35 can leave fore balloon 35 with enough “body” to facilitate the re-docking process. Thereafter, fore balloon 35 may be fully deflated if desired, e.g., so as to positively grip the distal end of endoscope 10.
Alternatively, if desired, fore balloon 35 may be used as a drag brake to control retrograde motion of the endoscope. More particularly, in this form of the invention, endoscope 10 and apparatus 5 are first advanced as a unit into the body lumen and/or body cavity until the tip of the endoscope is at the proper location. Next, aft balloon 20 is inflated, push tubes 30 are advanced distally, and then fore balloon 35 is inflated (
It is also possible to use aft balloon 20 as a brake when withdrawing the endoscope (and hence apparatus 5) from the anatomy, either alone or in combination with the aforementioned braking action from fore balloon 35.
At the conclusion of the procedure, endoscope 10 and apparatus 5 are withdrawn from the anatomy. Preferably this is done by deflating (or partially deflating) fore balloon 35, retracting push tubes 30 so that fore balloon 35 is “re-docked”onto the distal end of endoscope 10, fully deflating fore balloon 35 so that it grips the distal end of the endoscope, deflating aft balloon 20 (if it is not yet deflated), and then withdrawing endoscope 10 and apparatus 5 as a unit from the anatomy.
It should be appreciated that apparatus 5 may also be used advantageously in various ways other than those disclosed above. By way of example but not limitation, when endoscope 10 (and apparatus 5) is to be advanced within the colon, it may be desirable to first project fore balloon 35 distally under visual guidance of the endoscope so that fore balloon 35 leads the distal end of the endoscope. As a result, when the endoscope is advanced distally, with fore balloon 35 being deflated (or partially deflated), the fore balloon and flexible push tubes 30 may act as an atraumatic lead (guiding structure) for the endoscope as the endoscope advances through the colon. Significantly, inasmuch as the distal ends of push tubes 30 are preferably highly flexible, as the advancing fore balloon encounters the colon wall (e.g., at a turn of the colon), the flexible push tubes can deflect so that the fore balloon tracks the path of the colon, thereby aiding atraumatic advancement of the endoscope along the colon. It should also be appreciated that apparatus 5 may also be used advantageously in other ways to facilitate further examinations of the luminal surface otherwise difficult to be performed currently. Such an example is endoscopic ultrasound examination of the lumen which would be facilitated by the fluid-filled inflated fore balloon and ultrasound probe examination.
If desired, apparatus 5 may be constructed so that push tubes 30 may be advanced or retracted independently of one another, as well as in conjunction with one another—such independent advancement or retraction of push tubes 30 can aid in steering the partially- or fully-deflated fore balloon 35 through the body lumen and/or body cavity, whereby to facilitate advancement or retraction of endoscope 10 through the body lumen and/or body cavity, and/or such independent advancement or retraction of push tubes 30 can facilitate applying a “turning force” to the anatomy with an inflated fore balloon 35, whereby to better present the anatomy for visualization and/or treatment.
By way of example but not limitation, in this form of the invention, and looking now at
It should also be appreciated that it is possible to modify the construction of sleeve 15 so as to support instruments (or hollow instrument guide tubes) external to endoscope 10. More particularly, looking again at
More particularly, and looking now at
The proximal ends of lumens 195 may extend to, and through, base 25, in which case instruments may be inserted into lumens 195 at base 25, or the proximal ends of lumens 195 may terminate proximal to base 25 (but still outside the body of the patient), in which case instruments may be inserted into lumens 195 intermediate sleeve 15. By way of example but not limitation, where endoscope 10 is 180 cm in length and instruments 190 are 60 cm in length, it can be advantageous to insert instruments 190 into lumens 195 at a point closer to balloons 20, 35 (rather than at base 25). Note that in
It should be appreciated that where sleeve 15 comprises its central passageway for receiving endoscope 10, lumen 47 for receiving inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 therein, sleeve 15 is preferably formed by an extrusion process.
In one preferred form of the invention, lumen 47 for receiving inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 may have a fixed configuration (i.e., a fixed diameter), so that sleeve 15 has a fixed outer profile.
In another preferred form of the invention, lumen 47 for receiving inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 may have an expandable configuration (i.e., they may have a minimal profile when empty and expand diametrically as needed when filled), so that the overall profile of sleeve 15 is minimized.
It should also be appreciated that where sleeve 15 comprises a plurality of lumens 195 for slidably receiving instruments 190 therein, it can be desirable to provide greater structural integrity to the distal ends of lumens 195 so as to provide improved support for the instruments 190 received within lumens 195. To this end, a support ring may be provided at the distal end of sleeve 15, wherein the support ring provides openings for the passage of push tubes 30 and openings for the passage of instruments 190. Note that the openings in such a support ring for the passage of instruments 190 preferably make a close fit with the instruments so as to provide excellent instrument support at the distal end of sleeve 15.
Alternatively and/or additionally, lumens 195 may accommodate hollow instrument guide tubes which themselves accommodate instruments therein. Such hollow instrument guide tubes can provide greater structural integrity to the distal ends of lumens 195 so as to provide improved support for the instruments 190 received within lumens 195. And such hollow instrument guide tubes may be of fixed geometry or of bendable or articulating geometry. See, for example,
It should also be appreciated that, if desired, the two push tubes 30 may be replaced by a single push tube 30 or by more than two push tubes 30, e.g., by three push tubes 30. It will be appreciated that, where a plurality of push tubes 30 are provided, it will generally be desirable to equally-circumferentially-space the push tubes from one another, e.g., where two push tubes 30 are provided, it is generally desirable that the two push tubes 30 be spaced 180 degrees apart, where three push tubes 30 are provided, it is generally desirable that the push tubes be spaced 120 degrees apart, etc.
Thus it will be seen that the present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure, e.g., to straighten bends, “iron out” inner luminal surface folds and create a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention. By way of example but not limitation, the novel apparatus can be used to stabilize, straighten, expand and/or flatten bends and/or curves and/or folds in the side wall of the intestine so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
The present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity during an endoscopic procedure with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
By way of example but not limitation, the present apparatus can provide a stable platform (i.e., a stable endoscope, stable therapeutic tools and a stable colon wall, all stable with respect to one another) for the performance of numerous minimally-invasive procedures within a body lumen and/or body cavity, including the stabilization of an endoscope and/or other surgical instruments (e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) within the body lumen and/or body cavity, e.g., during a lesion biopsy and/or lesion removal procedure, an organ resection procedure, endoscopic submucosal dissection (ESD), endoscopic mucosal resection (EMR), etc., while at the same time stabilizing the colon (including decreasing deformation of the colon wall) so as to enable more precise visualization, intervention and/or surgery.
Significantly, the present invention provides novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) with respect to the side wall of the body lumen and/or body cavity, and stabilizing the side wall of the body lumen and/or body cavity relative to these instruments.
And the present invention provides novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
The novel apparatus of the present invention can be used in substantially any endoscopic procedure to facilitate the alignment and presentation of tissue during an endoscopic procedure and/or to stabilize the working end of an endoscope (and/or other instruments advanced through the endoscope) relative to tissue or to assist in the advancement of the endoscope during such a procedure.
The present invention is believed to have widest applications with respect to the gastrointestinal (GI) tract (e.g., large and small intestines, esophagus, stomach, etc.), which is generally characterized by frequent turns and which has a side wall characterized by numerous folds and disease processes located on and between these folds. However, the methods and apparatus of the present invention may also be used inside other body lumens (e.g., blood vessels, lymphatic vessels, the urinary tract, fallopian tubes, bronchi, bile ducts, etc.) and/or inside other body cavities (e.g., the head, chest, abdomen, nasal sinuses, bladder, cavities within organs, etc.).
In accordance with the present invention, and looking now at
More particularly, under certain circumstances (e.g., cancer, gallstones, inflammation, etc.), the bile duct can become blocked and cause illness or death. It is often desirable to visualize the bile duct to determine whether there is a blockage in the bile duct. Visualization is typically done using fluoroscopy, however, the 2-D images from a fluoroscope provide limited views of the bile duct. In 1978, physicians began using a procedure called Direct Per Oral Cholangioscopy (D-POCS) to directly visualize the bile duct with an endoscope. With D-POCS, a physician inserts an endoscope into the mouth of a patient, passes the endoscope down the esophagus, through the stomach, and into the duodenum. Once the endoscope is in the duodenum, the distal endoscope is “turned” (i.e., angled away from the longitudinal axis of the endoscope) towards the bile duct to directly visualize the bile duct. However, when accessing the bile duct from the stomach side of the duodenum, the turn from the duodenum to the bile duct is a sharp turn (i.e., approximately 140 degrees) which is difficult to accomplish with conventional endoscopes. Thus, the present invention provides a novel system 500 for deflecting an endoscope positioned in the duodenum into the bile duct in order to visualize the bile duct.
System 500 generally comprises apparatus 5 (as previously discussed above) endoscope 10 (as previously discussed above) and an endoscope deflecting device 505 which will be discussed in further detail below.
More particularly, as shown in
In a preferred embodiment of the present invention, apparatus 5 also comprises a pair of hollow push tubes 30 slidably mounted to sleeve 15, and a fore balloon 35 secured to the distal ends of hollow push tubes 30, such that the spacing between aft balloon 20 and fore balloon 35 can be adjusted by the user by moving hollow push tubes 30 relative to sleeve 15 (e.g., by advancing or retracting the two hollow push tubes simultaneously at push tube handle 37). As discussed above, aft balloon 20 and fore balloon 35 can be inflated to create a sealed therapeutic zone between the inflated aft balloon and the inflated fore balloon. However, if desired, hollow push tubes 30 and/or fore balloon 35 may be omitted from apparatus 5 if a procedure does not require the creation of a sealed therapeutic zone between an inflated aft balloon and an inflated fore balloon (e.g., if it is only necessary to seal one end of a body lumen or body cavity). In constructions in which hollow push tubes 20 and/or fore balloon 35 are omitted from sleeve 15, the distal end of sleeve 15 will need to be formed with an atraumatic tip in order to ensure that the distal end of sleeve 15 does not damage tissue as it is being maneuvered through the anatomy of the patient.
In one preferred form of the present invention, at least one of aft balloon and fore balloon 35 comprises at least one radiopaque marker (not shown) on at least one of the proximal end and the distal end of aft balloon 20 and fore balloon 35. Preferably, both the proximal ends and the distal ends of both aft balloon 20 and fore balloon 35 comprise radiopaque markers. As a result of this construction, a user is able to visualize (e.g., via fluoroscopy or other imaging means) the position of the proximal ends and the distal ends of aft balloon 20 and fore balloon 35 within the patient's anatomy during a surgical procedure.
Apparatus 5 also comprises an associated inflation mechanism 40 for enabling selective inflation/deflation of aft balloon 20. Furthermore, apparatus 5 comprises associated inflation apparatus (not shown in
If desired, apparatus 5 may also comprise one or more instrument lumens 195 (
As shown in
Looking now at
Hollow shaft 520 of endoscope deflecting device 505 is configured to be slidably received within lumen 18 of sleeve 15 of apparatus 5, with distal end 515 of hollow shaft 520 configured to be selectively disposed within, and projected from, the distal end of sleeve 15. The lumen 524 of hollow shaft 520 is sized to receive endoscope 10, with endoscope 10 configured to be slidably received within handle 555 and lumen 524 of hollow shaft 520, so that the distal end of endoscope 10 can be selectively disposed within, and projected from, the distal end of hollow shaft 520.
If desired, the internal diameter of lumen 18 of sleeve 15 can be sized to be larger than the outer diameter of hollow shaft 520 so that when hollow shaft 520 is disposed within lumen 18 of sleeve 15, a gap exists between the inner wall of lumen 18 of sleeve 15 and the exterior of hollow shaft 520. Furthermore, if desired, the internal diameter of lumen 524 of hollow shaft 520 can be sized to be larger than the outer diameter of endoscope 10 so that when endoscope 10 is disposed within lumen 524 of hollow shaft 520, a gap exists between the inner wall of lumen 524 of hollow shaft 520 and the exterior of endoscope 10. As will hereinafter be discussed in further detail, the gap between the inner wall of lumen 18 of sleeve 15 and the exterior of hollow shaft 520 and/or the gap between the inner wall of lumen 524 of hollow shaft 520 and the exterior of endoscope 10 may be used to pass one or more instruments (e.g., a grasper) into the surgical site.
In a preferred form of the invention, hollow shaft 520 of endoscope deflecting device 505 comprises a flexible coil 525 which is embedded in the side wall of hollow shaft 520. Flexible coil 525 enables hollow shaft 520 to be flexible enough to maneuver within the anatomy during use, while also providing sufficient structural integrity to hollow shaft 520 to support endoscope 10 when endoscope 10 is disposed within lumen 524 of hollow shaft 520.
It should be appreciated that, if desired, hollow shaft 520 may comprise regularly-spaced visual markers (not shown), e.g., in the manner of a ruler, so that a user can visualize how far distal end 515 of hollow shaft 520 extends out of lumen 18 of sleeve 15 of apparatus 5. To this end, the visual markings are preferably disposed on the proximal end of hollow shaft 520 (i.e., so as to be visible to the user outside of the patient's anatomy). Alternatively, and/or additionally, the regularly-spaced visual markers may be disposed on the distal end of hollow shaft 520 (i.e., so as to be visible to an endoscope disposed within lumen 524 of hollow shaft 520).
Preferably, an inner sleeve 530 (
In order to maneuver hollow shaft 520 through the anatomy, the distal end of hollow shaft 520 can be bendable and/or steerable relative to the distal end of sleeve 15 when the distal end of hollow shaft 520 is disposed distal to the distal end of sleeve 15. In one form of the invention, the distal end of hollow shaft 520 can be bent or steered by endoscope 10 when endoscope is positioned within hollow shaft 520. In another form of the invention, the distal end of hollow shaft 520 can be bent or steered by a cable (not shown) secured to the distal end of hollow shaft 520.
In addition, it should also be appreciated that hollow shaft 520 may be selectively rotated relative to lumen 18 of sleeve 15 of apparatus 5 by selectively rotating hollow shaft 520 (e.g., by rotating handle 555 so as to effect rotation of hollow shaft 520). If desired, visual markers (not shown) may be provided on the outer surface of hollow shaft 520, whereby to provide a visual indication of the rotational disposition of hollow shaft 520 (and hence, endoscope 10) relative to sleeve 15 of apparatus 5.
As will be discussed in further detail below, adjustable ramp 522 of hollow shaft 520 is configured to be moved between a first position, which extends along the longitudinal axis of hollow shaft 520 (
More particularly, adjustable ramp 522 comprises a pivotable portion 535 and a fixed portion 540. Pivotable portion 535 is connected to fixed portion 540 by a hinged joint 545. A cable 550 connects pivotable portion 535 to handle 555 so that when lever 560 of handle is pulled proximally, cable 550 will be moved proximally, thereby lifting pivotable portion 535 upward.
It should be appreciated that the second position (i.e., the raised position) of adjustable ramp 522 may be varied, as desired, in order to adjust the angle of adjustable ramp 522 relative to the longitudinal axis of hollow shaft 520 (and hence to vary the angle of deflection of the distal end of endoscope 10 when endoscope 10 is disposed within lumen 524 of hollow shaft 520).
To this end, handle 555 preferably also includes a locking ratchet mechanism 556 (
In a preferred embodiment, hollow shaft 520 comprises a guide tube 565 for receiving cable 550. Guide tube 565 extends from handle 555, along the length of hollow shaft 520 to fixed portion 540 at the distal end of hollow shaft 520, and opens at a hole 570 formed in fixed portion 540 (
In one preferred method of use, system 500 may be used to visualize a body lumen or a body organ within the body, with hollow shaft 520 being used to steer the endoscope within the body.
More particularly, in a preferred method of use, endoscope 10 is inserted into lumen 524 of hollow shaft 520, and then hollow shaft 520 (carrying endoscope 10) is inserted into the lumen of sleeve 15 of apparatus 5 (
By way of example but not limitation, and looking now at
More particularly, apparatus 5 (with aft balloon 20 and fore balloon 35 deflated), endoscope 10 and hollow shaft 520 of endoscope deflecting device 505 are advanced as a unit through the upper gastrointestinal tract of the patient (i.e., down the esophagus, through the stomach and into the duodenum) until fore balloon 35 is disposed distal to the bile duct and aft balloon 20 is disposed proximal to the bile duct. Next, aft balloon 20 and fore balloon 35 are inflated so as to seal aft balloon 20 and fore balloon 35 to the gastrointestinal tract, whereby to provide stability for endoscope 10 and hollow shaft 520 within the gastrointestinal tract (
At this point, inflated fore balloon 35 has been sealed to the gastrointestinal tract distal to the bile duct, with the inflated fore balloon 35 creating a substantially full-diameter seal across the gastrointestinal tract, and aft balloon 20 has been sealed to the gastrointestinal tract proximal to the bile duct, with the inflated aft balloon 20 acting with sleeve 15 and endoscope 10 to create another substantially full-diameter barrier across the gastrointestinal tract, whereby to provide an isolated therapeutic zone distal and proximal to the bile duct.
Looking now at
If desired, instruments can be advanced through the endoscope, through the gap between the inner wall of lumen 18 of sleeve 15 and the exterior of hollow shaft 520, through the gap between the inner wall of lumen 524 of hollow shaft 520 and the exterior of endoscope 10 and/or through instruments lumens 195 provided on apparatus 5, to perform a procedure within the bile duct.
At the conclusion of the procedure, apparatus 5, endoscope 10 and hollow shaft 520 of endoscope deflecting device 505 are withdrawn from the anatomy. Preferably this is done by returning endoscope 10 and adjustable ramp 522 of hollow shaft 520 to a straight configuration, deflating fore balloon 35 and aft balloon 20, and then withdrawing apparatus 5, endoscope 10 and hollow shaft 520 as a unit from the anatomy.
In some circumstances it may be desirable to reduce the outer diameter of apparatus 5, particularly when apparatus 5 is to be maneuvered through the upper gastrointestinal tract of a patient. In this circumstance, and when it is not necessary to create a sealed therapeutic zone between an inflated aft balloon and an inflated fore balloon, hollow push tubes 30 and/or fore balloon 35 can be removed from apparatus 5.
By way of example but not limitation, and looking now at
More particularly, apparatus 5 (without push tubes 30 and/or fore balloon 35), endoscope 10 and hollow shaft 520 of endoscope deflecting device 505 are advanced as a unit (with aft balloon 20 deflated) through the upper gastrointestinal tract of the patient (i.e., down the esophagus, through the stomach and into the duodenum) until aft balloon 20 is disposed proximal to the bile duct (
Aft balloon 20 is then inflated so as to seal aft balloon 20 to the gastrointestinal tract proximal to the bile duct (
At this point, inflated aft balloon 20 acts with sleeve 15 and endoscope 10 to stabilize sleeve 15 (and hence endoscope 10) within the gastrointestinal tract and to create a substantially full-diameter barrier across the gastrointestinal tract, whereby to prevent fluid or debris (e.g., saline, blood, blood clots, etc.) from flowing “upstream” into the stomach and/or esophagus (i.e., refluxing).
Looking now at
If desired, instruments can be advanced through the endoscope, through the gap between the inner wall of lumen 18 of sleeve 15 and the exterior of hollow shaft 520, through the gap between the inner wall of lumen 524 of hollow shaft 520 and the exterior of endoscope 10 and/or through instruments lumens 195 provided on apparatus 5, to perform a procedure within the bile duct.
At the conclusion of the procedure, apparatus 5, endoscope 10 and hollow shaft 520 of endoscope deflecting device 505 are withdrawn from the anatomy. Preferably this is done by returning endoscope 10 and adjustable ramp 522 of hollow shaft 520 to a straight configuration, deflating aft balloon 20, and then withdrawing apparatus 5, endoscope 10 and hollow shaft 520 of endoscope deflecting device 505 as a unit from the anatomy.
In accordance with the present invention, and looking now at
System 500A generally comprises a novel apparatus 5A for securing system 500A in the anatomy, endoscope 10 (as previously discussed above), and a novel endoscope deflecting device 505A for selectively pivoting the distal end of an endoscope, as will hereinafter be discussed in further detail.
Apparatus 5A is generally similar to apparatus 5 discussed above, except that push tubes 30 and fore balloon 35 have been omitted from apparatus 5A.
More particularly, and looking now at
In a preferred form of the invention, an aft balloon 20A is secured to sleeve 15A proximate to distal end 17A of sleeve 15A. Aft balloon 20A can be formed in the same shape as aft balloon 20 described above (i.e., a generally toroidal shape), or in the same shape as fore balloon 35 described above (i.e., a “torus” shape when deflated to allow it to seat over the distal end of the sleeve/endoscope and a substantially “solid” shape when inflated to allow it to close off a body lumen or body cavity), or any other shape which will permit aft balloon 20A to atraumatically engage and form a sealing relationship with the side wall of a body lumen or body cavity within which apparatus 5A is disposed.
A base 25A is secured to sleeve 15A at proximal end 16A of sleeve 15A. Base 25A comprises a central passageway 26A having a proximal opening 27A in fluid communication with lumen 18A of sleeve 15A when sleeve 15A is mounted to base 25A. In one preferred form of the invention, an endoscope seal 615 fluidically seals passageway 26A when endoscope 10 is not disposed within passageway 26A and lumen 18A of sleeve 15A and/or seals around the outer surface of endoscope 10 when endoscope 10 is disposed within passageway 26A and lumen 18A.
An inflation/deflation line 45A extends between an inflation mechanism 40A and aft balloon 20A for selectively inflating/deflating aft balloon 20A, as will hereinafter be discussed in further detail. In one preferred form of the invention, inflation/deflation line 45A is mounted to the exterior surface of sleeve 15A (
If desired, sleeve 15A may also comprise one or more instrument lumens 195 for slidably receiving instruments therein. Instrument lumens 195 may be disposed external to lumen 18A of sleeve 15A or within lumen 18A of sleeve 15A.
Preferably, sleeve 15A is formed out of a flexible material having appropriate column strength to prevent sleeve 15A from collapsing upon endoscope 10 and/or endoscope deflecting device 505A (e.g., kinking) as apparatus 5A, endoscope 10 and/or endoscope deflecting device 505A are positioned within, or withdrawn from, the anatomy of a patient.
If desired, proximal end 16A of sleeve 15A may be secured to base 25A via a sleeve attachment 610 (
In a preferred form of the present invention, distal end 17A of sleeve 15A is formed with an atraumatic tip (e.g., nose cone 605, see
As can be seen in further detail in
Base 25A is configured to receive endoscope 10 within passageway 26A and help secure apparatus 5A to endoscope 10. To that end, base 25A preferably comprises a substantially rigid or semi-rigid structure which may be gripped by the physician (or other operator or user) and pulled proximally, whereby to allow the physician (or other operator or user) to insert the distal end of endoscope 10 into proximal opening 27A of base 25A (penetrating/separating seal 615), and to pull sleeve 15A over the distal end of endoscope 10 and then proximally back along the length of endoscope 10, whereby to mount sleeve 15A to the outer surface of the shaft of the endoscope. In one preferred form of the invention, base 25A is pulled proximally along endoscope 10 until base 25A seats against the handle of the endoscope, thereby prohibiting further proximal movement of base 25A (and hence thereby prohibiting further proximal movement of sleeve 15A).
If desired, aft balloon 20A may comprise at least one radiopaque marker (not shown) on at least one of a proximal end and a distal end of aft balloon 20A. Preferably, both the proximal end and the distal end of aft balloon 20A comprise radiopaque markers. As a result of this construction, a user is able to visualize (e.g., via fluoroscopy or other imaging means) the position of the proximal end of aft balloon 20A and the distal end of aft balloon 20A within the patient's anatomy during a surgical procedure.
Looking now at
Endoscope deflecting device 505A is generally similar to endoscope deflecting device 505 discussed above except that, with endoscope deflecting device 505A, (i) hollow shaft 520A is formed from a single piece of flexible material having a plurality of slits formed along its length, (ii) the distal end of hollow shaft 520A comprises an adjustable ramp 522A which can be selectively pivoted at a plurality of pivot points, and (iii) two cables are connected to the adjustable ramp 522A for pivoting the adjustable ramp, as will be discussed in further detail below.
Hollow shaft 520A of endoscope deflecting device 505A comprises a single piece of flexible material having a plurality of slits 620 formed along the length of the hollow shaft. See
Endoscope deflecting device 505A is sized to be received within passageway 26A of base 25A and lumen 18A of sleeve 15A. Lumen 524A of hollow shaft 520A of endoscope deflecting device 505A is sized to receive endoscope 10 (or a smaller sized endoscope 10A) therein. As a result of this construction, endoscope 10 (or smaller endoscope 10A) may be disposed within lumen 524A of hollow shaft 520A of endoscope deflecting device 505A, and then sleeve 15A may be mounted over endoscope deflecting device 505A (carrying endoscope 10 or endoscope 10A) such that distal end 515A of hollow shaft 520A of endoscope deflecting device 505A and the distal end of endoscope 10 (or smaller endoscope 10A) extend distally beyond distal end 17A of sleeve 15A. See
It should be appreciated that, if desired, hollow shaft 520A of endoscope deflecting device 505A may comprise regularly-spaced visual markers (not shown), e.g., in the manner of a ruler, so that a user can visualize how far distal end 515A of hollow shaft 520A extends distally out of lumen 18A of sleeve 15A of apparatus 5A. To this end, the visual markings are preferably disposed on proximal end 510A of hollow shaft 520A (i.e., so as to be visible to the user outside of the patient's anatomy). Alternatively, and/or additionally, the regularly-spaced visual markers may be disposed on distal end 515A of hollow shaft 520A (i.e., so as to be visible to an endoscope disposed within lumen 524A of hollow shaft 520A).
Furthermore, if desired, hollow shaft 520A may comprise visual markers (not shown) on the outer surface of hollow shaft 520A for providing a visual indication of the rotational disposition of hollow shaft 520A (and hence, an endoscope) relative to sleeve 15A of apparatus 5A.
Looking now at
More particularly, in one preferred form of the present invention, adjustable ramp 522A comprises two grooves 625 which form pivot points 630. See
First and second cables 550A (
In a preferred form of the present invention, cables 550A are formed out of stainless steel. If desired, one or both of cables 550A may be provided with one or more radiopaque markers so that a physician (or other operator or user) observing the surgical site via endoscope 10 or by radiological guidance (e.g., via X-ray, fluoroscopy or other imaging means) can ascertain the relative disposition of cables 550A at the surgical site both longitudinally and/or circumferentially with respect to the side wall of the body lumen and/or other body cavity.
It should be appreciated that the angle of adjustable ramp 522A may be varied, as desired, in order to adjust the angle of adjustable ramp 522A relative to the longitudinal axis of hollow shaft 520A (and hence to vary the angle of deflection of the distal end of an endoscope when an endoscope is disposed within lumen 524A of hollow shaft 520A).
To this end, handle 555A preferably also includes a locking ratchet mechanism 556A (
In one preferred method of use, system 500A may be used to visualize a body lumen or a body organ within the body, with hollow shaft 520A of endoscope deflecting device 505A being used to steer the endoscope within the body.
By way of example but not limitation, and looking now at
More particularly, endoscope 10 (e.g., a standard sized endoscope) is inserted into apparatus 5A (
Aft balloon 20A is then inflated so as to seal aft balloon 20A to the gastrointestinal tract proximal to the bile duct (
At this point, inflated aft balloon 20A acts with sleeve 15A and endoscope to stabilize sleeve 15A (and hence endoscope 10) within the gastrointestinal tract and to create a substantially full-diameter barrier across the gastrointestinal tract, whereby to prevent fluid or debris (e.g., saline, blood, blood clots, etc.) from flowing “upstream” into the stomach and/or esophagus (i.e., refluxing).
Endoscope 10 is then removed from sleeve 15A leaving sleeve 15A in position within the gastrointestinal tract. A second, smaller-sized endoscope 10A is then inserted into hollow shaft 520A of endoscope deflecting device 505A such that the distal end of endoscope 10A extends distally from distal end 515A of hollow shaft 520A of endoscope deflecting device 505A. Endoscope 10A and hollow shaft 520A of endoscope deflecting device 505A are then inserted into passageway 26A of base 25A and lumen 18A of sleeve 15 and advanced distally as a unit through sleeve 15A (i.e., down the esophagus, through the stomach and into the duodenum) until endoscope 10A and adjustable ramp 522 are disposed at the bile duct (
Looking now at
If desired, instruments can be advanced through instrument channels provided in the endoscope, through the gap between the inner wall of lumen 18A of sleeve 15A and the exterior of hollow shaft 520A and/or through the gap between the inner wall of lumen 524A of hollow shaft 520A and the exterior of endoscope 10A.
At the conclusion of the procedure, apparatus 5A, endoscope 10A and hollow shaft 520A of endoscope deflecting device 505A are withdrawn from the anatomy. Preferably this is done by returning endoscope 10A and adjustable ramp 522A of hollow shaft 520A to a straight configuration, deflating aft balloon 20A, and then withdrawing apparatus 5A, endoscope 10A and hollow shaft 520A of endoscope deflecting device 505A as a unit from the anatomy.
While the present invention has been described in terms of certain exemplary preferred embodiments, it will be readily understood and appreciated by those skilled in the art that it is not so limited, and that many additions, deletions and modifications may be made to the preferred embodiments discussed above while remaining within the scope of the present invention.
This patent application: (i) is a continuation-in-part of pending prior U.S. patent application Ser. No. 17/328,494, filed May 24, 2021 by Lumendi Ltd. for METHOD AND APPARATUS FOR MANIPULATING THE SIDE WALL OF A BODY LUMEN OR BODY CAVITY SO AS TO PROVIDE INCREASED VISUALIZATION OF THE SAME AND/OR INCREASED ACCESS TO THE SAME, AND/OR FOR STABILIZING INSTRUMENTS RELATIVE TO THE SAME (Attorney's Docket No. LUMENDI-32), which patent application, in turn (a) claims benefit of prior U.S. Provisional Patent Application Ser. No. 63/029,076, filed May 22, 2020 by Lumendi Ltd. for METHOD AND APPARATUS FOR MANIPULATING THE SIDE WALL OF A BODY LUMEN OR BODY CAVITY SO AS TO PROVIDE INCREASED VISUALIZATION OF THE SAME AND/OR INCREASED ACCESS TO THE SAME, AND/OR FOR STABILIZING INSTRUMENTS RELATIVE TO THE SAME (Attorney's Docket No. LUMENDI-32 PROV); and(ii) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 63/339,115, filed May 6, 2022 by Lumendi Ltd. for METHOD AND APPARATUS FOR MANIPULATING THE SIDE WALL OF A BODY LUMEN OR BODY CAVITY SO AS TO PROVIDE INCREASED VISUALIZATION OF THE SAME AND/OR INCREASED ACCESS TO THE SAME, AND/OR FOR STABILIZING INSTRUMENTS RELATIVE TO THE SAME (Attorney's Docket No. LUMENDI-48 PROV). The three (3) above-identified patent applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63029076 | May 2020 | US | |
63339115 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17328494 | May 2021 | US |
Child | 18144709 | US |