The invention relates to a method of manufacturing a display device, in particular a security document, comprising the steps of:
Such a method is known from U.S. Pat. No. 7,480,100 in which it is disclosed to apply a number of interlaced pictures onto the image layer of a lenticular structure for displaying three-dimensional, animated and other images. The lenticular structure may comprises a number of line-shaped lenses. A number of 10-30 interlaced images is formed and the pixel tracks of these images are interlaced and printed below the lenses with the pitch of the lens system such that one set of interlaced pixel tracks may be located each time below a single line-shaped lens. Depending on the angle of viewing, one of the interlaced images is observed by the viewer, and by tilting the lenticular structure, different images are viewed.
In a favourable embodiment, the images on the lenticular structure may comprise multiples of two portraits of a person taken at different angles, which are interlaced such that sets of two images are produced that are separately viewed by each respective eye of a viewer at a range of viewing distances of for instance 20-100 cm. In this manner a stereoscopic effect is achieved through the range of viewing distances.
The interlaced images may be printed on a substrate, for instance polycarbonate, where after the line-shaped lens structure may be applied over each set of interlaced pixel tracks using a die or mould. Alternatively, the lens structure is first formed and the interlaced images are subsequently written onto the substrate by means of a scanning optical beam, such as a laser.
A disadvantage of using a number of interlaced images is that upon viewing these images via the lenticular device, patterns of dark shading appear to run across the image when changing the angle of view. This produces an unstable visual effect which especially for the use of the lenticular device as a security device hinders accurate and reliable identification.
It is hence an object of the invention to provide a lenticular device in which the above effect is reduced. It is another object of the invention to provide a lenticular device which is especially suitable for producing accurate and reliable identity or security document.
Thereto the method according to the invention is characterised in that upon applying the arrays into the image layer, and/or upon providing the lens elements, each array of picture elements is provided onto the image layer in an out of focus manner to form a blurred array or each array is imaged by the lens elements to form a blurred array, wherein a mutual distance of the edges of adjacent blurred arrays is smaller than the mutual distance δ.
The pixel tracks can be processed in a digital processor to be blurred so that their width increases and the spacing between adjacent pixel tracks is reduced. Preferably, the pixel tracks will increase in width such that edges of neighbouring pixel tracks touch. Alternatively, the pixel tracks may be projected onto the image layer via a lens in an out of focus manner to cause the broadening of the blurred pixel tracks.
Preferably the pixel tracks are be applied to the image layer via the lens structure of the overlying lenticular lens array in an out-of focus manner. This may be achieved by placing the lens array over the image layer at a distance which differs from the focal length of the lenticular lens system for the laser at the wavelength of the laser for the refractive index of the material of the lenticular array (e.g. polycarbonate). It was surprisingly found that the out-of focus effect of the pixel tracks has no negative impact on the observed sharpness of the picture while the variation in light intensity of the image upon viewing at different angles is strongly reduced. Hence, the blurring technique results in improved lenticular images and allows production of accurate and reliable lenticular security/identity images.
In a preferred embodiment, the arrays of picture elements are provided on the image layer by projection or scanning an optical beam onto the lens elements and focussing the beam by said lens elements onto the image layer, wherein a distance H between the image layer and the lens elements is different from the focal length of the lens elements by at least 5%, preferably at least 10%, more preferably at least 20%.
The increase in width caused by applying the arrays in an out of focus manner may comprise between 5% and 100%, preferably between 5% and 50%, more preferably between 5% and 30% and most preferably between 5% and 15%. For producing a sharp and stable interlaced image, the edges of adjacent blurred arrays may be substantially touching.
Another option for obtaining blurred pixel tracks is using lens elements on the display device which are roughened to cause dispersion of light while applying the pixel tracks.
Another option for obtaining blurred pixel tracks is to first produce in-focus pixel tracks onto the image layer and subsequently treating the lens elements (by roughening) to cause dispersion of light upon viewing and hence producing broadened pixel tracks.
A suitable device for producing a security document comprises an optical beam generator, a substrate carrier, a scanning device for scanning an optical beam across an image layer on the substrate carrier in a line pattern and a control unit for controlling the optical beam generator for scanning the beam across an image layer on the substrate carrier, and a tilting drive for tilting the substrate carrier around an axis extending substantially transversely to the optical beam. The control unit is adapted to form blurred interlaced pixel arrays that can be written into a substrate placed on the substrate carrier such that a mutual distance of the edges of adjacent blurred pixel arrays is smaller than the mutual distance δ.
The image layer may comprise a polycarbonate layer over which the lenticular structure has been formed. The laser is scanned across the lens structure in a line pattern and is imaged by the lenticular array onto the image layer in an out of focus manner to form (blurred) pixel tracks where it produces light and dark pixels by locally carbonising the image layer. The substrate table tilts the substrate each time through a small angle such that an image is formed for each tilting angle.
Some embodiments of a method and device according to the present invention will by way of non-limiting example be explained in detail with reference to the accompanying drawings. In the drawings:
a and 5b show a cross-sectional view of a lenticular lens array projecting a laser beam onto an image layer in a focussed and out-of focus manner, respectively,
a-6d show pixel tracks produced by laser engraving at different heights of the lens array, and
Each set 8-10 of pixel tracks (l11, l12 . . . l1n), . . . , (lm1, lm2, . . . lmn) comprises m tracks, wherein m may comprise between 2 and about 60 (for reasons of simplicity only three image lines per set are shown). Each pixel track in a set is imaged by a single overlying lens element 3-5 in a predetermined direction. A viewer looking at the image carrier 1 at a specific angle will ideally see per lens element 3-5 one pixel track, say pixel track v, l1v, l2v . . . lmv in each set (l11 . . . lm1), (l21 . . . lm2), . . . , (l1n . . . lmn) of pixel tracks. By tilting the image carrier 1 relative to the viewer, different images can be viewed in this way.
It is also possible that for each set of pixel tracks (l11 . . . lm1), . . . , (l1n . . . lmn), 2 lines are imaged by each lens 3-5 at a position corresponding to the position of the eyes of an observer, such that each eye observes a different image and a stereoscopic overall picture is observed. Multiple pairs of such stereoscopically matching pixel tracks in each set may be provided, corresponding to a stereoscopic image at different viewing distances. This has been described in detail in European patent application EP 1 874 557, the contents of which are incorporated herein by reference.
The height H of the substrate 2 may for instance be about 250 μm, the thickness T of the image layer 7 may for instance be 50 μm. The width L of a lens element may be for instance 75 μm and a height D may be about 10 μm. As shown in
In
According to one embodiment of the invention, the focus of the lens 17 may for instance be adjusted such that the pixel tracks are written onto the substrate of the image carrier 15 in an out-of focus manner, such that the spacing δ between two adjacent pixel tracks in a set, is decreased. Alternatively, the lens 17 may cause an in-focus projection or may be a scanning device causing a scanning movement of the pixel tracks onto the substrate of the image carrier 15, while in the control unit 19 the pixel tracks have been digitally processed to produce blurred pixel tracks.
f=nr/(n−1)
Herein is n the refractive index, which for polycarbonate at a laser wavelength of 1064 nm is about 1.56 and r is the radius of the lens elements, for instance 92 μm. This results in a focal length fin polycarbonate of about 256 μm, so that for in focus writing, the height H of the substrate 15 should be about equal to this length, the situation which is shown in
a shows an image of sets 31, 32 of four blurred pixel tracks each for a height H of 150 μm, causing an out-of focus broadening such that no open space is present between adjacent pixel tracks. In
As is shown in
As shown in
It should be noted that, although the invention has been described with reference to laser engraving to provide the pixel tracks in the display device according to the invention, the invention can also be applied when sets of pixel tracks are printed or projected on a polycarbonate substrate of a lenticular array, where after the lens elements are formed by means of a heated mould.
Number | Name | Date | Kind |
---|---|---|---|
6329987 | Gottfried et al. | Dec 2001 | B1 |
7480100 | Raymond et al. | Jan 2009 | B1 |
Number | Date | Country |
---|---|---|
WO 2006137738 | Dec 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110149405 A1 | Jun 2011 | US |