The present disclosure relates to apparatuses and methods for manufacturing absorbent articles, and more particularly, methods and apparatuses for manufacturing absorbent articles using an ultra short pulse laser source to cut a substrate.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheet, absorbent cores, front and/or back ears, fastener components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles. The discrete diapers or absorbent articles may also then be folded and packaged.
Various methods and apparatuses may be used for attaching different components to the advancing web and/or otherwise modify the advancing web. For example, some production operations are configured to construct elastic laminates including elastics bonded with the one or more substrates advancing in a machine direction. The operations may be further configured to cut and/or otherwise deactivate discrete lengths of the elastics. In some operations, a substrate, such as an elastic laminate, may advance through a cutting station that cuts the elastic in the advancing laminate. However, some current configurations have certain drawbacks. For example, some present cutting apparatuses may cause unintended damage to the elastic laminate, such as by severing the substrate while cutting the elastic. In addition, the blades on some current cutting apparatuses may be susceptible to wear after relatively short operating periods. Such blade wear may manifest itself in inconsistent elastic cutting. Further, a blade may be re-sharpened only a certain number of times before the cutting device, as a whole, needs to be replaced, and there are relatively high costs associated with maintaining worn cutting devices and ultimately replacing the cutting device. Further, a blade is manufactured with a certain shape and that shape remains unchangeable. For products which different shaped cut edges or different sized cut edges, multiple blades would need to be produced. Thus, it may be relatively expensive to maintain and replace cutting devices.
Similar to the above, other production operations are configured to advance substrates in a machine direction and cut and/or remove trim from the advancing substrates. In some operations, a substrate may advance through a mechanical cutting station, including an anvil and a knife, that cuts a portion from the advancing substrate. The unwanted portion of the cut substrate is referred to as the trim. The trim may subsequently be diverted from the advancing substrate and into a vacuum chute or other similar apparatus for disposal. In some instances after passing through the cutting nip, or, stated another way, the area where the anvil and knife meet, the trim may remain attached to the advancing substrate by uncut fibers after passing through the cutting station. As such, the trim may undesirably continue to advance with the substrate along the assembly line negatively affecting further processing.
Due to the types of lasers commercially available that can operate at the relatively high speeds necessary to manufacture products commercially, the cut edge of the substrate has been relatively unacceptable to consumers. For example, the laser cut produces a relatively rough cut edge, and the substrate itself may develop a smell due to the residue and heat generated by the laser beam as it cuts the substrate. Thus, due to the relatively poor quality edge of the substrate produced, lasers have been largely unusable in relatively high speed manufacturing processes for consumer products.
Consequently, it would be beneficial to provide methods and apparatuses that are configured to produce a consumer acceptable substrate edge and that are configured to consistently and accurately remove trim from the advancing substrates. It would also be beneficial to provide methods and apparatuses that are not susceptible to blade wear and can be readily adapted for different configurations of cut edges.
The present disclosure relates to methods and apparatuses for assembling absorbent articles, and more particularly, methods and apparatuses for using an ultra short pulse laser source to impart one or more cut lines into a substrate. In some embodiments, a method for separating a component of an absorbent article includes: advancing a substrate in a machine direction; providing an ultra-short pulse laser source; emitting a laser beam with the ultra-short pulse laser source; directing the laser beam at a portion of the substrate; cutting a portion of the substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and forming a heat modified zone along the cut edge, wherein the heat modified zone comprises a maximum width that is less than about 200 microns, wherein the maximum width is measured from the cut edge in a direction perpendicular to the cut edge toward a central region of the substrate.
In some embodiments, a method for separating a component of an absorbent article includes: advancing a nonwoven substrate in a machine direction; providing an ultra-short pulse laser source; emitting a laser beam with the ultra-short pulse laser source; directing the laser beam at a portion of the nonwoven substrate; cutting a portion of the nonwoven substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and forming a heat modified zone along the cut edge.
In some embodiments, a method for separating a component of an absorbent article includes: advancing a film substrate in a machine direction; providing an ultra-short pulse laser source; emitting a laser beam with the ultra-short pulse laser source; directing the laser beam at a portion of the film substrate; cutting a portion of the film substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and forming a heat modified zone along the cut edge.
In some embodiments, a method for separating a component of an absorbent article includes: advancing a nonwoven substrate in a machine direction; providing an ultra-short pulse laser; emitting a laser beam with the ultra-short pulse laser; directing the laser beam at a portion of the nonwoven substrate; cutting a portion of the nonwoven substrate using the ultra-short pulse laser to form a cut edge, wherein the ultra-short pulse laser is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the ultra-short pulse laser comprises a pulse duration from about 5 femtoseconds to 10 picoseconds, and wherein the ultra-short pulse laser comprises a level of peak energy of from about 20 μJ to about 875 μJ; and forming a heat modified zone along the cut edge, wherein the heat modified zone comprises a cluster of laser affected fibers, wherein the cluster of laser affected fibers comprise a maximum linear length, and wherein the maximum linear length is less than 200 μm.
In some embodiments, a method for separating a component of an absorbent article includes: transferring a substrate onto an outer circumferential surface of a process member, wherein the substrate comprises one or more fibers, wherein each fibers includes a fiber diameter; rotating the process member about its longitudinal axis of rotation; advancing the substrate to an ultra-short pulse laser; cutting a portion of the substrate using the ultra-short pulse laser to form a cut edge, wherein the ultra-short pulse laser is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the ultra-short pulse laser comprises a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the ultra-short pulse laser comprises a level of peak energy of from about 20 μJ to about 875 μJ; and forming a heat modified zone along the cut edge, wherein the heat modified zone comprises one or more accumulation bulb including an accumulation bulb diameter, and wherein the heat modified zone comprises less than three clusters.
In some embodiments, a method for separating a component of an absorbent article includes: advancing a substrate around a portion of a first guide roller, wherein the substrate comprises a first substrate layer and a second substrate layer, wherein the substrate has a first surface and a second surface; advancing the substrate around a portion of a second guide roller, wherein an unsupported portion of the substrate is suspended between the first guide roller and the second guide roller; directing a laser beam emitted by an ultra short pulse laser source at the first surface of the substrate, wherein the laser beam acts on the unsupported portion of the substrate; imparting a cut line into the substrate, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and forming a heat modified zone along the cut edge.
In some embodiments, a method for separating a component of an absorbent article includes: advancing a substrate around a portion of a first guide roller, wherein the substrate comprises a first substrate layer and a second substrate layer, wherein the substrate has a first surface and a second surface; advancing the substrate around a portion of a second guide roller, wherein an unsupported portion of the substrate is suspended between the first guide roller and the second guide roller; directing a first laser beam emitted by a first ultra short pulse laser source at the first surface of the substrate, wherein the first laser beam acts on the unsupported portion of the substrate; directing a second laser beam emitted by a second ultra short pulse laser source at the second surface of the substrate, wherein the second laser beam acts on the unsupported portion of the substrate; imparting a cut line into the substrate, wherein the first laser beam and the second laser beam are pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the first and second laser beams have a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the first and second laser beam have a level of peak energy from about 20 μJ to 875 μJ; and forming a heat modified zone along the cut edge.
In some embodiments, a consumer product includes a nonwoven substrate. The nonwoven substrate may include a first nonwoven layer and a second nonwoven layer in a facing relationship. The nonwoven substrate may also include a separation edge and a heat modified zone. The heat modified zone has a maximum width that is less than about 200 microns. The width is measured from the separation edge in a direction perpendicular to the separation edge toward a central region of the nonwoven substrate.
In some embodiments, a consumer product includes a nonwoven substrate. The nonwoven substrate may include a first nonwoven layer and a second nonwoven layer in a facing relationship. The nonwoven substrate also includes a separation edge. The separation edge has a Free Fiber End value greater than 1.
In some embodiments, a consumer product includes a nonwoven substrate. The nonwoven substrate may include a first nonwoven layer and a second nonwoven layer in a facing relationship. The nonwoven substrate may also include a separation edge and a heat modified zone. The heat modified zone includes less than three clusters per centimeter and one or more accumulation bulbs.
In some embodiments, a consumer product includes a nonwoven substrate. The nonwoven substrate may include a first nonwoven layer and a second nonwoven layer in a facing relationship. The nonwoven substrate may also include a separation edge and a heat modified zone. The heat modified zone includes a cluster and an accumulation bulb, and the cluster has a maximum linear length less than about 200 μm.
In some embodiments, a consumer product includes a film substrate. The film substrate may include a separation edge and a heat modified zone. The film substrate comprises an edge length and a linear length, wherein the ratio of the edge length to linear length is less than 1.
In some embodiments, a consumer product includes a substrate. The substrate includes a first nonwoven layer and a film layer in facing relationship. The substrate includes a separation edge and a heat modified zone. The heat modified zone comprises a width that is less than about 200 microns. The width is measured from the separation edge in a direction perpendicular to the separation edge toward a central region of the nonwoven substrate.
The following term explanations may be useful in understanding the present disclosure.
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. “Diaper” is used herein to refer to an absorbent article generally worn by infants and incontinent persons about the lower torso. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after an initial use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
The term “extensible” as used herein refers to any material that upon application of a biasing force, can stretch to an elongated length of at least about 110% of its relaxed, original length (i.e. can stretch to 10%), without rupture or breakage, and upon release of the applied force, shows little recovery, less than about 40% of its elongation.
The terms “activating”, “activation” or “mechanical activation” refer to the process of making a substrate, or an elastomeric laminate more extensible than it was prior to the process.
“Live stretch” includes stretching elastic and bonding the stretched elastic to a substrate. After bonding, the stretched elastic is released causing it to contract, resulting in a “corrugated” substrate. The corrugated substrate can stretch as the corrugated portion is pulled to about the point that the substrate reaches at least one original flat dimension. However, if the substrate is also elastic, then the substrate can stretch beyond the relaxed length of the substrate prior to bonding with the elastic. The elastic is stretched at least 25% of its relaxed length when it is bonded to the substrate.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
“Longitudinal” means a direction running substantially perpendicular from a waist edge to a longitudinally opposing waist edge of an absorbent article when the article is in a flat out, uncontracted state, or from a waist edge to the bottom of the crotch, i.e. the fold line, in a bi-folded article. Directions within 45 degrees of the longitudinal direction are considered to be “longitudinal.” “Lateral” refers to a direction running from a longitudinally extending side edge to a laterally opposing longitudinally extending side edge of an article and generally at a right angle to the longitudinal direction. Directions within 45 degrees of the lateral direction are considered to be “lateral.”
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films, and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” means a porous, fibrous material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as, for example, spunbonding, meltblowing, airlaying, carding, coforming, hydroentangling, and the like. These processes may also be combined. Filaments may have aspect ratio (length to diameter) greater than about 10. Filaments can be mono-component or multi-components. Filaments can be laid and bonded by any means to form web except weaving and knitting. Nonwovens do not have a woven or knitted filament pattern. Nonwovens may be liquid permeable or impermeable.
The term “film” or “film substrate” means a sheet-like material wherein the length and width of the material far exceed the thickness of the material (e.g., 10×, 50×, or even 1000× or more). Films are typically liquid impermeable but may be configured to be breathable. Typically, films have a thickness of about 0.5 mm or less. Films may be formed by any suitable method in the art, for example, by extruding molten thermoplastic and/or elastomeric polymers through a slit die and subsequently cooling the extruded sheet. Other non-limiting examples for making film forms include casting, blowing, solution casting, calendering, and formation from aqueous or, non-aqueous cast dispersions. Films may be a mono-layer film, and/or co-extruded with other materials to form a multi-layer film.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, rear waist fastened or seamed.
“Pre-fastened” refers herein to pant diapers manufactured and provided to consumers in a configuration wherein the front waist region and the back waist region are fastened or connected to each other as packaged, prior to being applied to the wearer. As such pant diapers may have a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. As discussed in more detail below, a diaper pant can be preformed by various techniques including, but not limited to, joining together portions of the diaper using refastenable and/or permanent closure members (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). In addition, pant diapers can be preformed anywhere along the circumference of the waist region (e.g., side fastened or connected, front waist fastened or connected, rear waist fastened or connected).
The term “taped diaper” refers to disposable absorbent articles having an initial front waist region and an initial rear waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about its lateral central axis with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers disclosed in various suitable configurations are disclosed in U.S. Pat. Nos. 5,167,897; 5,360,420; 5,599,335; 5,643,588; 5,674,216; 5,702,551; 5,968,025; 6,107,537; 6,118,041; 6,153,209; 6,410,129; 6,426,444; 6,586,652; 6,627,787; 6,617,016; 6,825,393; and 6,861,571.
The present disclosure relates to methods and apparatuses for assembling absorbent articles, and more particularly, methods and apparatuses for using a laser source to cut one or more portions of a substrate that may be used as a component of an absorbent article.
To help provide additional context to the subsequent discussion of the process embodiments, the following provides a general description of absorbent articles in the form of diapers, feminine hygiene articles, and other consumer products that may be assembled in accordance with the methods and apparatuses disclosed herein. Although the methods and apparatuses herein are discussed below in the context of manufacturing absorbent articles, it is to be appreciated that the assembly methods and apparatuses herein may be configured to manufacture various types of substrates.
With continued reference to
As shown in
The periphery of the chassis 102 may be defined by the first longitudinal side edge 128, a second longitudinal side edge 130; a first laterally extending end edge 144 disposed in the first waist region 116; and a second laterally extending end edge 146 disposed in the second waist region 118. Both side edges 128 and 130 extend longitudinally between the first end edge 144 and the second end edge 146. When the absorbent article 100 is worn on the lower torso of a wearer, the front waist edge 121 and the back waist edge 122 of the chassis 102 may encircle a portion of the waist of the wearer. At the same time, the chassis side edges 128 and 130 may encircle at least a portion of the legs of the wearer. Moreover, the crotch region 120 may be generally positioned between the legs of the wearer with the absorbent core 142 extending from the front waist region 116 through the crotch region 120 to the back waist region 118. The chassis 102 may have opposing longitudinal edges that are oriented generally parallel to the longitudinal centerline 124. However, for better fit, longitudinal edges 128, 130 may be curved or angled to produce, for example, an “hourglass” shape diaper when viewed in a plan view, such as disclosed in U.S. Pat. No. 8,939,957 and U.S. Patent Publication No. 2012/0277702.
It is also to be appreciated that a portion or the whole of the absorbent article 100 may also be made laterally extensible. The additional extensibility may help allow the absorbent article 100 to conform to the body of a wearer during movement by the wearer. The additional extensibility may also help, for example, allow the diaper 100, including a chassis 102 having a particular size before extension, to extend in the front waist region 116, the back waist region 118, or both waist regions of the diaper 100 and/or chassis 102 to provide additional body coverage for wearers of differing size, i.e., to tailor the diaper to an individual wearer. Such extension of the waist region or regions may give the absorbent article a generally hourglass shape, so long as the crotch region is extended to a relatively lesser degree than the waist region or regions, and may impart a tailored appearance to the article when it is worn.
As previously mentioned, the diaper 100 may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may be impervious or at least partially impervious to fluids (e.g., menses, urine, and/or runny feces) and may be manufactured from a thin plastic film, although other flexible liquid impervious materials may also be used. The backsheet 136 may prevent the exudates absorbed and contained in the absorbent core from wetting articles that contact the diaper 100, such as bedsheets, pajamas, and undergarments. The backsheet 136 may also include a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material (e.g., having an inner film layer and an outer nonwoven layer). The backsheet may also include an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Exemplary polyethylene films are manufactured by Clopay Corporation of Cincinnati, Ohio, under the designation BR-120 and BR-121 and by Tredegar Film Products of Terre Haute, Ind., under the designation XP-39385. The backsheet 136 may also be embossed and/or matte-finished to provide a more clothlike appearance. Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136. The size of the backsheet 136 may be dictated by the size of the absorbent core 142 and/or particular configuration or size of the diaper 100.
In one embodiment, an adhesive may be applied to the garment-facing exterior of the backsheet for the purpose of holding the absorbent article in place by adhering to the wearer's underwear. Such adhesive may be especially desirable for use with adult incontinence and feminine hygiene type absorbent articles.
Also described above, the absorbent article 100 may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be compliant, soft feeling, and non-irritating to the wearer's skin. It may be elastically stretchable in one or two directions. Further, the topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art.
Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets, and apertured nonwoven topsheets. Apertured film topsheets may be pervious to bodily exudates, yet substantially non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
In some embodiments, the topsheet may comprise graphics such that depth perception is created as described in U.S. Pat. No. 7,163,528.
The absorbent article 100 may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core may comprise a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 and 2004/0097895.
The absorbent article 100 may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 may be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs, or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. For example, in some embodiments, a gasketing leg cuff 160 may be positioned adjacent to the side edge 130, 128 of the chassis 102 and a barrier leg cuff 158 may be positioned between a gasketing leg cuff 160 and the longitudinal axis 124 of the absorbent article 100. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; U.S. Patent Publication No. 2009/0312730 A1; and U.S. Patent Publication No. 2013/0255865 A1.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, the absorbent article may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
The central region 106c of the first elastic belt is connected with the first waist region 116 of the chassis 102, and the central region 108c of the second elastic belt 108 is connected with the second waist region 118 of the chassis 102. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer layer 162 and the inner layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, or panels extending along the lengths of the elastic belts. As shown in
As shown in
In some embodiments, the elastic strands 168 may be disposed at a constant interval in the longitudinal direction. In other embodiments, the elastic strands 168 may be disposed at different intervals in the longitudinal direction. As discussed in more detail below, the belt elastic strands 168, in a stretched condition, may be interposed and joined between the uncontracted outer layer and the uncontracted inner layer. When the belt elastic material is relaxed, the belt elastic material returns to an unstretched condition and contracts the outer layer and the inner layer. The belt elastic material may provide a desired variation of contraction force in the area of the ring-like elastic belt. It is to be appreciated that the chassis 102 and elastic belts 106, 108 may be configured in different ways other than as depicted in
In some embodiments, as illustrated in
In some embodiment, referring to
In some embodiments, the elasticized waistbands may comprise materials that have been “prestrained” or “mechanically prestrained” (i.e., subjected to some degree of localized pattern mechanical stretching to permanently elongate the material). In some embodiments, the materials may be prestrained using suitable deep embossing techniques. In other embodiments, the materials may be prestrained by directing the material through an incremental mechanical stretching system as described in U.S. Pat. No. 5,330,458. The materials may then be allowed to return to their substantially untensioned condition, thus forming a zero strain stretch material that is extensible, at least up to the point of initial stretching. Examples of zero strain materials are disclosed in U.S. Pat. Nos. 2,075,189; 3,025,199; 4,107,364; 4,209,563; 4,834,741; and 5,151,092. The waistband may be any shape and size that allows the absorbent article to fit the wearer as desired about the waist region.
In some embodiments, the waistband may be positioned between the side panels 114 and/or the back ears 174 and/or front ears 184. In other embodiments the waistband may be positioned such that a portion of the waistband overlaps a portion of the side panels 114 and/or the back ears 174 and/or the front ears 184.
In some embodiments, the absorbent article 100 may comprise side panels 115. The side panels 115 may be discrete from or integral with the chassis 100. A discrete side panel is formed as a separate element that is joined to the chassis 100. In some embodiments, this includes a plurality of side panels, e.g.
In some embodiments, the side panels in the back waist region may connect with the garment facing surface of the absorbent article in the front waist region to form a waist circumference that may encircle the wearer during wear of the absorbent article. In other embodiments, the side panels disposed in the back waist region may connect with the side panels disposed in the front waist region at a seam, which forms a waist circumference that may encircle the wearer during wear of the absorbent article. The seam may be an overlapping seam or a butt seam. Further, in some embodiments, the seam may be refastenable, such that the side panels may be detached and reattached, or permanent, such that the seam may not be detached and reattached.
The side panels may comprise an inner nonwoven layer and an outer nonwoven layer and elastic elements, such as elastic strands or a film, therebetween. The inner and outer nonwoven layers may be joined using adhesive or thermoplastic bonds. Various suitable side panel configurations can be found in U.S. Pub. No. 2013/0211363.
An integral side panel is a portion, one or more layers, of the chassis that projects laterally outward from the longitudinal edge. The integral flap may be formed by cutting the chassis to include the shape of the flap projection.
While many of the embodiments illustrated in this application having belt-like side flaps are pant articles, taped articles may have belt-like side flaps disposed in one or both waist regions as well. The side panels may be any shape that allows the absorbent article to fit the wearer as desired about the waist region and the leg openings.
The absorbent article may also include a fastening system. When fastened, the fastening system interconnects the front waist region 116 and the rear waist region 118 resulting in a waist circumference that may encircle the wearer during wear of the absorbent article 10. This may be accomplished by ears 174, 184 or side panels 115, for example. The ears 174 or side panels 115 in the back waist region interconnect with ears 184 or side panels 115 in the front waist region or by the flaps or side panels in the back waist region interconnecting with the chassis 100 in the front waist region. The fastening system may comprises a fastener 176 such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs and slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. The fasteners may releasably engage with a landing zone 182, which may be a woven or nonwoven. Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594; 4,662,875; 4,846,815; 4,894,060; 4,946,527; 5,151,092; and 5,221,274. An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140. The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622. The fastening system may be constructed to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. Nos. 5,242,436; 5,499,978; 5,507,736; and 5,591,152.
It is to be appreciated that any of the aforementioned components of the absorbent article may include one or more substrates. For example, a substrate having a single layer with a basis weight from about 8 to about 40 g/m2 may form a component or portion of a component of the absorbent article. It is also to be appreciated that the substrate may include more than one layer.
Particularly regarding feminine hygiene products, one suitable material for the backsheet can be a liquid impervious thermoplastic film having a thickness of from about 0.012 mm (0.50 mil) to about 0.051 mm (2.0 mils), for example including polyethylene or polypropylene. Typically, the backsheet can have a basis weight of from about 5 g/m2 to about 35 g/m2. The backsheet can be typically positioned adjacent the outer-facing surface of the absorbent core and can be joined thereto. For example, the backsheet may be secured to the absorbent core by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Illustrative, but nonlimiting adhesives, include adhesives manufactured by H. B. Fuller Company of St. Paul, Minn., U.S.A., and marketed as HL-1358J. An example of a suitable attachment device including an open pattern network of filaments of adhesive is disclosed in U.S. Pat. No. 4,573,986. Another suitable attachment device including several lines of adhesive filaments swirled into a spiral pattern is illustrated by the apparatus and methods discussed in U.S. Pat. Nos. 3,911,173; 4,785,996; and 4,842,666. Alternatively, the attachment device may include heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment device or combinations of these attachment devices.
Further, the absorbent article, such as a feminine hygiene product, may comprise “wings” (not shown) intended to wrap the edges of the wearer's undergarments in the crotch region and/or affix the article to the undergarment to avoid poor folding and premature detachment. Exemplary absorbent articles comprising wings are disclosed in U.S. Pat. No. 8,039,685.
It is to be appreciated that the features of the absorbent article described herein may be excluded or combined to form various embodiments of an absorbent article.
As previously mentioned, the methods according to the present disclosure may be utilized to assemble discrete absorbent articles 100 and/or various components of absorbent articles 100, such as for example, chassis 102, elastic belts 106, 108, and/or leg cuffs 156. Although the following methods may be provided in the context of absorbent articles 100, as shown in
Other materials that may be considered substrates, or include substrates as a part of a final product, with respect to the disclosure include films. Suitable films include water-soluble or water-dispersible films. The films may be thermo-formable and/or vacuum-formable. The film may include polymeric materials. Suitable polymeric materials include polyvinyl alcohols, hydroxypropyl methyl cellulose (HPMC), copolymers thereof, derivatives thereof, or combinations thereof. The film may further include one or more additive ingredients, such as plasticizer, surfactant, cleaning additives, water, or other suitable adjuncts. The films may be obtained by casting, blow-molding, extrusion or blown extrusion of the polymeric material, as known in the art. The film may have a thickness of from about 20 to 150 microns, or from about 50 to 110 microns. Suitable water-soluble films may include those supplied by MonoSol, LLC (Merrillville, Ind., USA) under the trade references M8630, M8900, M8779, M9467, and M8310, as well as films, such as PVA films, having corresponding solubility, deformability, and/or sealing characteristics. Suitable films are also described in U.S. Pat. No. 6,166,117, U.S. Pat. No. 6,787,512, US 2006/0213801, WO 2010/119022, US 2011/0186468, and US 2011/0188784.
The films may be formed, for example by thermoforming and/or vacuum-forming, into unitized dose pouches, such as single- or multi-compartment pouches. One or more films may be formed into a web of sealed compartments via a continuous or a discontinuous process, and the web may be cut to form individual pouches. The pouches may contain a composition, such as a fabric care or hard surface care composition. Such compositions may be in the form of liquid, gel, solid, granular, or combinations thereof. Suitable pouches and processes for making such pouches are described in WO 2002/042408 and WO 2009/098659. Commercially available pouches include those marketed as TIDE PODS, GAIN FLINGS, and CASCADE ACTIONPACS (each available from The Procter & Gamble Company, Cincinnati, Ohio, USA).
Further, substrates may be used in cleaning products. For example, a duster cleaning article may comprise a nonwoven sheet having tow fibers joined thereto. The cleaning article may have a longitudinal axis. The tow fibers may be joined to the nonwoven sheet in a generally transverse direction and particularly in a direction normal the longitudinal axis, to provide a laminate structure of two layers.
If desired, the cleaning article may comprise additional layers, also referred to herein as laminae. For example, the tow fibers may be disposed intermediate two nonwoven sheets. Plural laminae of tow fibers may be disposed intermediate the nonwoven sheets and/or outboard thereof. Optionally, one or more of the nonwoven sheets may be cut to comprise strips. The strips may be generally normal to the longitudinal axis.
The tow fibers and/or nonwoven sheets may comprise an additive to assist in removal of dust and other debris from the target surface. The additive may comprise wax, such as microcrystalline wax, oil, adhesive and combinations thereof. The cleaning article may be made according to U.S. Pat. No. 6,813,801 and according to commonly assigned U.S. Pat. Nos. 7,803,726; 8,756,746; 8,763,197 and 8,931,132.
The laminae of the cleaning article may be joined together using adhesive, thermal bonding, ultrasonic welding, etc. If desired, the bonding lines may be generally parallel to the longitudinal axis and may be continuous, or discontinuous as desired. Three longitudinally parallel bonding lines may be utilized to define two sleeves.
The two sleeves may accept one or more complementary fork tines of a handle. The fork tines may be removably inserted into the sleeves of the cleaning article to provide for improved ergonomics. The handle may be plastic and made according to the teachings of U.S. Pat. Nos. 7,219,386; 7,293,317, 7,383,602 and/or commonly assigned U.S. Pat. No. 8,578,564. Representative dusters are sold by the instant assignee under the name SWIFFER®.
Further still, substrates may include cleaning sheets. The cleaning sheet may comprise a nonwoven. The nonwoven may be synthetic and/or have cellulosic fibers therein. The synthetic fibers may comprise carded, staple, wet laid, air laid and/or spunbond fibers. The nonwoven cleaning sheet may be made according to a hydro-entangling process to provide a texture and a basis weight of about 20 to about 120 g/m2.
Optionally, the cleaning sheet may further comprise an additive, to improve cleaning performance and/or enhance the cleaning experience. The additive may comprise wax, such as microcrystalline wax, oil, adhesive, perfume and combinations thereof. The cleaning sheet according to the present invention may be made according to commonly assigned U.S. Pat. Nos. 6,305,046; 6,484,346; 6,561,354; 6,645,604; 6,651,290; 6,777,064; 6,790,794; 6,797,357; 6,936,330; D409,343; D423,742; D489,537; D498,930; D499,887; D501,609; D511,251 and/or D615,378.
In some embodiments, the cleaning sheet may comprise layers, to provide for absorption and storage of cleaning fluid deposited on the target surface. If desired, the cleaning sheet may comprise absorbent gelling materials to increase the absorbent capacity of the cleaning sheet. The absorbent gelling materials may be distributed within the cleaning sheet in such a manner to avoid rapid absorbency and absorb fluids slowly, to provide for the most effective use of the cleaning sheet.
The cleaning sheet may comprise plural layers disposed in a laminate. The lowest, or downwardly facing outer layer, may comprise apertures to allow for absorption of cleaning solution therethrough and to promote the scrubbing of the target surface. Intermediate layers may provide for storage of the liquids, and may comprise the absorbent gelling materials. The cleaning sheet may have an absorbent capacity of at least 10, 15, or 20 grams of cleaning solution per gram of dry cleaning sheet, as set forth in commonly assigned U.S. Pat. Nos. 6,003,191 and 6,601,261.
The top or upwardly facing outer layer, maybe liquid impervious in order to minimize loss of absorbed fluids. The top layer may further provide for releasable attachment of the cleaning sheet to a cleaning implement. The top layer may be made of a polyolefinic film, such as LDPE.
As previously mentioned, the apparatuses and methods according to the present disclosure may be used to cut a substrate and to assemble absorbent articles that include components comprising one or more substrates. Some of these components may require cutting so that the component is the proper size and/or the proper shape, for example, to be joined to other components.
A laser source is one method used to cut these components or substrates. The laser source may be used to project a laser beam at a scan head that directs the laser beam, also referred to herein as a laser, at the component part, which may be, for example, an advancing substrate, such as a nonwoven, a film, or a laminate. An example of a scan head is the SCANcube III available from SCANLAB America, Inc. of St. Charles, Ill. The laser beam interacts with a portion of the advancing substrate resulting in the cutting of that portion of the advancing substrate. Upon being cut, the advancing substrate is separated into a first portion and a second portion. Each of the first portion and the second portion has a cut edge. The cut edge is the edge formed from the laser beam causing the ablation or ablation and melting of the substrate. Generally, the more power used by the laser source, the faster the substrate may be separated. Due to relatively high manufacturing speeds, cutting substrates using a laser source requires the laser to cut relatively quickly, which has traditionally required the laser to operate at a relatively high power output.
However, increasing the power of the laser source has traditionally resulted in degradation of the final cut edge. More specifically, cutting substrates with the use of a laser source operating at a relatively high power, which generates a greater amount of heat, may create a relatively rough feeling at the cut edge of the substrate. For nonwoven substrates, this rough edge is due to the formation of accumulated material. The accumulation of material is due, in part, to the elastic and/or thermal deformation of the substrate during the separation of the substrate. For example, for a nonwoven substrate, the individual fibers that are in relatively direct contact with the laser beam are ablated. However, the individual fibers of the nonwoven substrate along the cut edge that do not get ablated undergo melting and/or shrinkage and subsequent cooling. The amount of melting of the nonwoven substrate is greater when the heat generated by the laser beam during cutting has a greater time to penetrate the nonwoven substrate. The heat generated from the laser source generally penetrates the nonwoven beginning at the cut edge and extending perpendicular to the cut edge toward the central portion of the substrate or parallel to the direction of the laser beam. It is to be appreciated that heat affects the nonwoven in the area surrounding the laser beam. When cutting through the nonwoven, some material is ablated or vaporized to form the cut edge. In some embodiments, during the subsequent cooling of the separated nonwoven, the fibers along the cut edge snap-back, which also may be described as roll back, resulting in an accumulation of material at the end portion of the fibers, which will be referred to herein as an accumulation bulb 220 such as illustrated in
It is also to be appreciated that a portion of the snap-back, also referred to as roll back, may be due to the processes used to form the nonwoven substrate. The individual fibers used to form a nonwoven substrate may be made by an extrusion process, for example. An extruder forces the individual fibers through a tubular structure resulting in the individual fibers being under some tension. As the fibers are laid down to form the nonwoven substrate, the individual fibers are still under a relative amount of tension. However, when the laser source acts on the individual fibers to separate them, the tension in the individual fibers is released causing the individual fiber to want to relax. This release of tension and relaxation of the individual fiber may contribute to the accumulation of material at the end of individual fiber, the accumulation bulb, that has undergone separation by the laser. The tension in the individual fiber may only be one of numerous factors that contribute to the accumulation bulb at the end of the individual fiber.
Further, when cutting through films, some material is ablated or vaporized to form the cut edge. The material adjacent the cut edge or in the heat modified zone may deform such that the edge undulates forming a wave-like pattern. The heat transferred to the film may also result in thermal distortion and roughness at the cut edge. The heat may also affect properties of the film such as its strength and degradation rate. The material in the heat modified zone may also be chemically transformed such that the molecular structure of the film are changed due to the effect of the heat. For example, the degree of crystallinity and polymer chain alignment may be changed. A high degree of crystallinity and/or polymer chain alignment is likely associated with a stiff, high modulus material. Heating the material of a film above its melting point may result in an undesirable change in crystallinity once the material re-solidifies. Also, melting the material may also result in a loss of polymer chain alignment induced by radial expansion, which may adversely affect the material. The greater the heat generated by the laser source, the greater the undesirable impact on the film and the larger or more rough the heat modified zone.
As previously discussed, it is desired to produce a substrate that includes minimal or no accumulation bulbs and clusters, or minimal or no changes to the properties of the substrate. Stated another way, it is desirable to minimize or eliminate the heat modified zone. The heat modified zone is the zone of the substrate that is not removed during cutting but is exposed to the energy from the laser beam, either directly or indirectly. Direct exposure may be due to exposure of the substrate from a section of the laser beam with an intensity that is not great enough to remove the substrate material. For example, the portions of the laser beam near its edges may not have an intensity sufficiently high to ablate or remove the substrate material. A substrate may also be exposed to energy indirectly due to heat conduction. For example, a nonwoven material may heat up causing distortion and roughness at the edge, which may be due to clusters and/or accumulation bulbs forming along the cut edge. The heat may also alter the properties of the substrate material resulting in changes in, for example, chemical properties, strength, degradation rate, stiffness, and edge sharpness.
Each laser source operates at a certain pulse duration and frequency. The pulse duration, also referred to herein as pulse, is the period of time over which the laser beam imparts energy to the material. The frequency is the time period starting from the beginning of a first pulse and ending at the beginning of the next, subsequent pulse, as illustrated, for example in
Ultra short pulse lasers refer to lasers having pulse durations less than about 100 picoseconds (10−12). Ultra short pulse lasers may have pulse durations on the order of femtoseconds (10−15). Ultra short pulse lasers are distinguishable from continuous wave lasers and longer-pulse lasers, which may have a pulse duration of nanoseconds (10−9). Examples of ultra short pulse lasers include Ti-Sapphire and Dye lasers. Ultra short pulse lasers are available to be supplied, for example, by Coherent, Inc. of Santa Clara, Calif.; TRUMPF Inc. of Farmington, Conn.; and ROFIN-SINAR Laser GmbH of Hamburg, Germany. Similarly, examples of continuous wave lasers and longer-pulse lasers include CO2 and Nd:Yag.
Referring to
By contrast,
It is also to be appreciated that the wavelength of ultra short pulse lasers and longer pulse lasers are different. The wavelength of the ultra short pulse laser is less than about 1 micron. For example, the wavelength of the ultra short pulse laser may be from about 300 nanometers to about 1080 nanometers and/or from about 700 nanometers to about 1030 nanometers, including all 0.1 nanometer increments therebetween. Further, in some embodiments, the wavelength of the ultra short pulse laser may be from about 1000 nm to about 1080 nm and/or from about 1020 nm to about 1070 nm and/or from about 1030 nm to about 1050 nm, including all 0.1 nm increments therebetween. Generally, each different material has a wavelength or range of wavelengths at which its absorptivity is greatest or optimal. Thus, a laser source may be chosen such that the wavelength emitted by the laser is more readily absorbed by the substrate. It is to be appreciated that materials may be altered to increase their absorptivity even if the laser source is operating outside their optimal range of wavelengths. In some embodiments, the substrate may be chemically altered such that the substrate has an increased rate of energy absorption, or absorptivity. It is believed that due to the pulse duration at which the ultra short pulse laser operates and the great amount of energy imparted to the substrate over such a short period of time, the ultra short pulse laser is able to modify materials that have a greater heat sensitivity, and, thus, are less dependent on the wavelength at which the absorptivity is greatest or optimal.
The substrate 301 was cut forming a cut edge 212.
The substrate 301 was cut forming a cut edge 212.
The substrate 301 was cut forming a cut edge.
In summary, as illustrated in
It is to be appreciated that the ultra short pulse laser source may not sever the elastic strands 168, as illustrated in
As evidenced by the Figures, the cut edge 212 formed by the ultra short pulse laser source includes less material accumulation than the cut edge 212 formed by the CO2 laser source. The reduction in material accumulation leads to the edge being perceived as relatively soft and/or smooth. An edge with less material accumulation is more consumer acceptable. Further, the ultra short pulse laser allows manufacturers to create cut edges having various profiles and shapes and to manufacture various sized products using the same laser source.
The present disclosure relates to a method and apparatus to overcome the aforementioned deficiencies while utilizing an ultra short pulse laser source, and to manufacture a substrate and/or other component parts that are perceived to be softer and/or smoother as compared to a similar substrate and/or other component parts that have undergone cutting by a longer pulse laser source.
It has been found that the heat modified zone may be minimized by using an ultra short pulse laser. The ultra short pulse laser may be pulsed at a frequency from about 100 kHz to about 100 MHz for a pulse duration from about 5 femtoseconds to about 10 picoseconds. Further, the ultra short pulse laser includes a peak energy from about 20 μJ to about 875 μJ. The exact operating parameters depend in part on the material proprieties of the substrate, such as the thickness, density, material makeup (i.e. nonwoven, film, laminate), and chemical additives. In some embodiments, using an ultra short pulse laser to cut the substrate to form a cut edge may produce a heat modified zone having a maximum width that is less than about 200 microns or less than about 100 microns or less than about 50 microns or less than about 20 microns. The maximum width of the heat modified zone is measured from the edge in a direction perpendicular to the cut edge toward a central region of the substrate. In some embodiments, using an ultra short pulse laser to cut the substrate to form a cut edge may produce a heat modified zone including a cluster and/or an accumulation bulb. As previously discussed, a cluster results from fibers that have been affected by the laser resulting in one or more fibers melting and joining together. Clusters may be formed from two or more fibers that have melted and joined together. Each cluster and accumulation bulb has a maximum linear length. The maximum linear length is measured according to the Nonwoven Substrate Edge Quality test method disclosed herein. The maximum linear length of a cluster may be less than about 50 μm and/or less than about 80 μm and/or less than about 100 μm and/or less than about 150 μm and/or less than about 200 μm. The cut edge may also include a number of clusters per centimeter (cm). An ultra short pulse laser may produce a cut edge having less than about 1 cluster/cm or less than about 2 clusters/cm or less than about 3 clusters/cm or less than about four clusters/cm. The cut edge may also include a Free Fiber End value, which may be greater than 1 for a cut edge produced with an ultra short pulse laser source. Further, as previously discussed, an ultra short pulse laser may produce a cut edge that is less rough than a cut edge produced by a longer pulse laser source. Further, with respect to films, an ultra short pulse laser source may produce a cut edge having a Distortion Ratio that is greater than the Distortion Ratio for a cut edge produced by a longer pulse laser source, such as a CO2 laser source. For example, the Distortion Ratio, which is the ratio of the edge length to the linear length once the ultra short pulse laser source has acted on the film substrate. The Distortion Ratio may be less than about 1.
The following description relates to processes and apparatuses that use a laser source to cut a substrate. It is to be appreciated that the laser source used in the following description may be an ultra short pulse laser source.
The first guide roller 306 may rotate about the first axis of rotation 304 resulting in the substrate 301 advancing toward at a laser source 312. The first laser source 312 may be used to cut the substrate 301. More specifically, the laser source 312 may transmit a first laser beam to a first scan head 313. The scan head 313 may direct the first laser beam such that the first laser beam engages the substrate. The substrate 301 may be cut into a first substrate portion and a second substrate portion. Each of the first substrate portion and the second substrate portion include a cut edge.
The substrate 301 may be advanced to a second guide roller 314. The portion of the substrate 301 positioned between the first guide roller 302 and the second guide roller 314 is referred to herein as the unsupported portion. The unsupported portion is the area of the substrate 301 on which the laser beam may affect the substrate 301. The distance between the first guide roll 306 and the second guide roll 314 is referred to herein as the process distance PD. The process distance PD may be such that the unsupported portion of the belt assembly remains substantially taut as the cut is imparted by the laser beam. The process distance PD may be any distance that holds the substrate in the desired position and allows the laser beam to cut the substrate in the desired location. In some embodiments, for example, the process distance PD may be less than about 3 times the substrate width SW and/or less than about 2 times the substrate width SW and/or less than about the substrate width SW and/or less than about 0.5 times the substrate width SW and/or less than about 0.25 times the substrate width SW. The substrate width SW, as illustrated in
The second guide roller 314 may be used to advance the substrate 301 to one or more subsequent processes and/or to maintain the tension and/or position of the substrate. The second guide roller 314 may rotate about a second axis of rotation 315. The second guide roller 314 may be driven by a motor or may rotate freely about the second axis of rotation 315. The substrate 310 may be disposed about an outer circumferential surface 316 of the second guide roller 314. The first surface 208 of the substrate 301 may be in facing relationship with the outer circumferential surface 316 of the second guide roller 314. Facing relationship may include items that are directly next to one another or items that are separated by one or more additional items. For example, the first surface 208 may be positioned in facing relationship with the outer circumferential surface 316 such that the first surface 208 is in contact with the outer circumferential surface 316. The first surface 208 may be positioned in facing relationship with the outer circumferential surface 316 such that an intermediate substrate layer is positioned between the first surface 208 and the outer circumferential surface 316. This process and apparatus will be described in more detail herein. The substrate 301 having been separated by a cut into a first portion and a second portion may advance to additional processes such as separating the first portion from the second portion and/or adding additional components to the substrate 301.
It is to be appreciated that the substrate may be positioned such that the first surface of the substrate engages the outer circumferential surface of the first guide roller and the second surface of the substrate engages the outer circumferential surface of the second guide roller.
As illustrated in
In some embodiments, the substrate 301 may include greater than two layers or may be of such thickness that using two laser sources to emit two laser beams or a single laser source that is configured to operate with a splitter to emit at least two laser beams may be beneficial to producing a consumer acceptable cut edge. Using two laser sources or more than one laser beam may aid in reducing the heat modified zone of the substrate upon cutting. Referring to
The first scan head 313 may be offset from the second scan head 322 by an offset distance OD. The offset distance OD may be any distance such that the first laser beam does not interfere with the second scan head 322 and/or laser source 324 and the second laser beam does not interfere with the first scan head 313 and/or laser source 312. The offset of the first scan head 313 and the second scan head 322 may prevent the opposing laser beam from potentially being directed back to the laser source through the scan head and causing damage to the laser source and/or the scan head. However, it is to be appreciated that the first scan head 313 and the second scan head 322 need not be offset from one another. In some embodiments, the first scan head 313 may be positioned opposite to the second scan head 322 and each laser source and scan head may be controlled such that there is no effect on the opposite laser source and/or scan head.
The first laser source 312 may supply a first laser beam to the first scan head 313. The first scan head 313 directs the first laser beam such that the first laser beam cuts into the first surface 208 of the substrate 301. The second laser source 324 may supply a second laser beam to the second scan head 322. The second scan head 322 directs the second laser beam such that the second laser beam cuts into the second surface 210 of the substrate 301. The first cut line may be coincident with the second cut line. The first cut line is coincident with the second cut line when the first cut line and the second cut line are separated by a distance less than about 2 mm and/or less than about 1.5 mm and/or less than about 1 mm and/or less than about 0.5 mm, including all 0.1 increments.
As illustrated in
In some embodiments, during processing of the belt assembly 204, the first guide roller 306 and the second guide roller 314 may be positioned adjacent one another, as illustrated in
For example, as illustrated in
As illustrated in
Further, as the substrate 310 is transferred from the second guide roller 314, the substrate 301 may engage a trim removal member 338, as illustrated in
It is also to be appreciated that one or more additional devices such as a cutting device including a blade, an additional laser source, or another roller may be used to aid in the removal of the trim 340 from the substrate 301.
As the substrate traverses through the processes previously described, the substrate 301 may be placed under tension in at least one of the machine direction MD and the cross direction CD. More specifically, referring to
The tension on the substrate 301 may aid in the separation of the substrate 301 once the substrate has been acted on by the laser beam. As described above, as the substrate 301 is being cut, the portion of the substrate adjacent to the cut line may undergo some melting. By placing the substrate 301 under tension, the substrate 301 wants to contract once it has been cut. Thus, the tension aids in separating the cut edge of the first substrate portion from the second substrate portion once the substrate has been cut. Providing tension on the substrate 301 prevents the first substrate portion from joining the second substrate portion along the cut edge while the cut edge is in a tacky state. It is to be appreciated that either cross direction tension or machine direction tension may aid in separation of the first and second substrate portions along the cut line.
By placing only machine direction tension on the substrate 301, the substrate 301 may be stretched in the machine direction but experience neck down in the cross direction. Stated another way, because the substrate 301 is being stretched in the machine direction, the substrate 301 may contract in the cross direction CD due to the tension in the machine direction MD. Thus, when the substrate 301 undergoes cutting, the material may contract in the cross direction, which may result in re-weld of the cut substrate 301. To prevent re-weld due to neck down in the cross direction, cross machine direction tension may be applied to the substrate upon being cut. This cross machine direction tension may be applied through spreading rolls, cross direction grippers, bar, or canted idlers, for example. In some other embodiments, a crowned roll or a roll that has a radius that varies from the center of the cylindrical roll to the ends of the cylindrical roll may be used to prevent re-weld. For example, the radius at the end of the cylindrical roll may be less than the radius at the center of the cylindrical roll. The crowned roll aids in the separation of the first substrate portion from the second substrate portion in the cross machine direction upon being cut.
The substrate 301 is a material which has a thickness (in a Z direction) that is relatively small in comparison to its length (in an X direction or Machine Direction MD) and width (in a Y direction or cross direction CD). Substrates may include a web, layer or layers of fibrous materials, nonwovens, films, and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers joined together. The substrate 301 may be a single layer of fibrous material, nonwoven, film, and/or foil. The substrate 301 may also include multiple layers, as illustrated in
As illustrated in
A substrate 301 having one or more layers may be bonded. For example, as illustrated in
As illustrated in
As illustrated in
It is also to be appreciated that the cut of the first laser beam and the cut of the second laser beam may be imparted to the substrate at two different points in time or at the same time. For example, in some embodiments, the first laser beam may cut the substrate and, subsequently, the second laser beam may cut the substrate. By using two laser sources to cut through the substrate layer(s), the heat modified zone produced at the cut edge may be minimized and, thus, the substrate edge may be perceived as softer feeling and more appealing to consumers. The heat modified zone may be smaller when using two laser beams to cut the substrate as compared to a single laser beam to cut through the entire substrate. As previously described, the heat modified zone may be proportional to the time the laser beam acts on the substrate and, thus, the time the heat has to dissipate into the material. Since using two laser sources may allow each laser beam to interact for a short period of time with the material, the heat modified zone may be smaller and, thus, a more desirable cut edge is produced. It is also to be appreciated that by using two laser sources, each laser source may operate at a lower power which may also contribute to minimizing the heat modified zone.
The cut line 212 separates the substrate 301 into one or more portions. For example, as illustrated in
It is to be appreciated that a substrate may include both discrete and continuous cut lines. For example, a substrate may include a first product pitch extending parallel to the machine direction MD and a second product pitch adjacent to the first product pitch and extending parallel to the machine direction. The laser beam acts on the substrate to form a cut edge. The cut edge may include a first cut edge portion and a second cut edge portion. The first cut edge portion may be disposed within the first product pitch and the second cut edge portion may be disposed within the second product pitch. The first cut edge may be formed from a discrete or continuous cut line. Similarly, the second cut edge may be formed from a discrete or continuous cut line. Due to the versatility of the laser beam, a substrate may include numerous product pitches each including a different cut line pattern. Product pitches which are positioned adjacent one another may include different cut line patterns. However, for large scale manufacturing the cut line may be the same or similar for a span of product pitches.
As illustrated in
The substrate 301 may be any material as discussed. The following is an example of a substrate 301 used in absorbent articles. The substrate 301 may be a belt assembly 204, as illustrated in
In some embodiments, as illustrated in
The belt assembly 204 may advance on to the outer circumferential surface 308 of the process member 302, as illustrated in
It is also to be appreciated that the characteristics of the cut edge may make it advantageous to have either the outer layer 162 or the inner layer 164 in facing relationship with the laser beam. As described herein, the cut edge of a substrate may include a heat modified zone. Within the heat modified zone may be accumulation bulbs and clusters, such as for nonwoven substrates, and/or modification of properties, such as crystallinity, strength, degradation rate, and polymer chain, such as for films. The type and properties of the substrate may be one variable that affects the severity of the heat modified zone that form along the cut edge. The heat modified zone may be greater on the layer positioned in facing relationship with the laser source or, stated differently, the layer that the laser beam first encounters when acting on the substrate may include a greater number of accumulation bulbs and clusters. The layer having a greater heat modified zone may be positioned on the absorbent article such that when the absorbent article is worn it reduces or eliminates contact with the wearer's skin, and the layer having a smaller heat modified zone may be positioned on the absorbent article such that when the absorbent article is worn there may be some contact with the wearer's skin. Minimizing the portion of the inner layer 164 or outer layer 162 having the greater heat modified zone may aid in the perceived softness of the layers. The process and apparatus described herein may act on either the inner layer 164 or the outer layer 162 of a substrate, such as the belt assembly.
In some embodiments, the elastic strands 168 may be positioned in a certain location on the outer circumferential surface of the process member or the guide rollers. Thus, the outer circumferential surface may include one or more grooves into which the elastic stands 168 may be disposed, as illustrated in
Further, the outer circumferential surface may include one or more grooves 320. The one or more grooves may surround the outer circumferential surface such that the groove extends about the axis of rotation 310, 304, 315. In some embodiments, all or some of the grooves may extend only partially around the axis of rotation 310, 304, 315. The grooves 320 may be placed such that there are ungrooved portions between groove portions. Further, the grooves may be spaced in the cross direction such that there is a uniform distance between each groove 320. It is also to be appreciated that the grooves 320 may be spaced in the cross direction such that there is a non-uniform distance between each groove 320, as illustrated in
It is to be appreciated that the outer circumferential surface 308, 307, 316 may include grooves that extend parallel to the longitudinal axis or orthogonal to the longitudinal axis. The outer circumferential surface 308, 307, 316 may be machined in a number of configurations to aid in maintaining the position of and transferring the belt assembly 204.
As illustrated in
As illustrated in
Referring to
It is also to be appreciated that a discrete cut line may also be imparted to the substrate by a laser source that continually emits a laser beam. For example, the laser beam may cut the substrate along the discrete cut line and, subsequently, may be diverted to a position adjacent the edge of the substrate once the cut line is complete. The laser source may remain in an active state, meaning a laser beam is being emitted, while the substrate advances in the machine direction. As the substrate advances in the machine direction, the laser beam may be directed such that it imparts a cut line and, subsequently, the laser beam may be diverted such that the laser beam is positioned adjacent the edge of the substrate or, state another way, does not act on the substrate.
Further, the power output of the laser source may be adjusted while the laser source is being sequenced. For example, the energy output of the laser source may be adjusted during a dwell period. It is to be appreciated that a sequencing the laser source, as previously discussed, is not the same as the pulse duration or frequency of the laser. Additionally, the pulse duration and frequency may be adjusted. The specifications of the particular laser source selected may limit how much the pulse duration and frequency may be adjusted. The average power is calculated by multiplying the pulse duration by the frequency. For example, for a laser source having an average power of 200 Watts, the following combinations of pulse duration and frequency may be used: 200 μJ at 1 MHz; 20 μJ at 10 MHz; 50 μJ at 4 MHz. The laser source may also be adjusted such that it operates at less power, such as 150 Watts or 100 Watts. When the power of the laser source is adjusted, the pulse duration and frequency are each adjusted accordingly. It is to be appreciated that the operating parameters of the laser source may be selected and subsequently adjusted based on the type of material to be cut and the desired characteristics of the final cut edge.
For example, a first discrete cut line may be imparted to the belt assembly at a first power output and a second discrete cut line may be imparted to the belt assembly at a second power output, wherein the first power output is greater than or less than the second power output. The power output of the laser source may also be adjusted while imparting a single, discrete cut line. More specifically, the laser source may impart a portion of the discrete cut line at a first power output and impart another portion of that discrete cut line at a second power output, which is greater than or less than the first power output. In some embodiments, for example, a belt assembly may include a first portion including a single substrate layer and a second portion including more than one substrate layer, such as two or three substrate layers. A discrete or continuous cut line may be required to be imparted over both the first portion and the second portion of the belt assembly. Thus, the laser source may operate at a first power output as it imparts the cut line over the first portion including only a single substrate layer and the laser source may operate at a second power output, which is different than the first power output, as it imparts the cut line over the second portion including several substrate layers. The laser source may be adjusted from the first output power to the second output power while it is powered on and imparting the cut line into the belt assembly. The power output of the laser source may increase as the number of layers of substrate into which the cut line needs to be imparted increases. It is to be appreciated that there may be one or more laser sources depending on the type of cut that needs to be imparted to the belt assembly 204 and the material properties of the belt assembly. Once a given power is selected the pulse duration and frequency may also be adjusted to impart a cut line and ultimately obtain a cut edge, such as illustrated in
It is to be appreciated that the speed at which the laser beam moves about the substrate may be varied in addition to the power output or independent of the power output. For example, the laser beam may move such that the laser beam traverses over the substrate at a speed of at least about 8 m/s or from about 8 m/s to about 11 m/s. The speed at which the substrate is moving and the speed at which the laser source cuts the substrate also impact the final quality of the cut edge. For example, the greater time the laser beam acts on a particular portion of the substrate the more likely a greater heat modified zone will be present along the cut edge.
A laser source may emit many hundreds of watts, which can be concentrated over a relatively small spot, referred to as the spot size, which is a measure of the diameter of the spot. For example, the spot size may be from about 5 μm to about 300 μm, and/or from about 50 μm to about 200 μm, and/or from about 100 μm to about 150 μm, including all 0.1 μm therebetween. An ultra short pulse laser, for example, may have a spot size of at least about 10 μm or from about 40 μm to about 60 μm. A CO2 laser may have a spot size of at least about 100 μm. It is to be appreciated that spot size is also dependent on the wavelength of the laser beam. The spot size of the laser beam may be varied. For example, the scan head may be configured such that the laser beams spot size on the substrate may be widened and narrowed. When the spot size of the laser beam is widened such that the laser beam covers a greater area of the substrate, the laser beam affects the substrate less. As the spot size of the laser beam is narrowed, becoming concentrated over a relatively smaller area of the substrate, the more likely that the laser beam may affect the substrate. Thus, the spot size of the laser beam may be widened over portions of the substrate that are desired to be unaffected or minimally affected by the laser beam, and the spot size of the laser beam may be narrowed over portions of the substrate that are desired to be affected by the laser beam. The spot size allows the laser beam to precisely cut the substrate. The smaller the spot size, the greater the precision of the cut line. For example, the spot size of the ultra short pulse laser source is smaller than that of a CO2 laser source. Thus, the ultra short pulse laser source is able to cut with greater precision than the CO2 laser source.
The speed of the laser beam, the power output of the laser source, and the spot size of the laser beam are all variables that may be altered to impart a cut line into a surface of a substrate, which may be a belt assembly, to obtain a desired cut edge. Altering any one of these variables may change the characteristics of the cut line. Ultra short pulse lasers provide optimal operating parameters that may be adjusted to impart a cut line that produces a cut edge having a relatively smaller heat modified zone and a desirable separation edge quality.
The cut line may be a continuous cut line, as illustrated in
In some embodiments, a series of laser sources may be used, as illustrated in
The laser source may be configured to sever any number of elastics 168. Thus, the size of the gap 330 in the elastic stands 168 may differ across a belt assembly 204. For example, if the elastic strands 168 have been continuously bonded to the substrate, there may be no gap 330 or minimal gap 330 between severed elastic strands 168. Alternatively, if the elastic strands 168 have been intermittently bonded to the substrate, the severed elastic strands 168 may snap back to a portion of the elastic strand that has been bonded to the substrate forming a gap 330. Thus, the gap 330 may be of a uniform width or a non-uniform width.
It is to be appreciated that a configuration of laser sources and their associated scan heads may also be present adjacent the opposite side of the substrate as set forth in
In some embodiments, the laser source may be operated in the cross direction as the belt assembly advances in the machine direction to sever the one or more elastic strands. More specifically, the laser source and/or the laser beam emitted by the laser source may be operated such that it imparts a cut line across the portion of the elastic strands that are desired to be severed. It is to be appreciated that the laser source 312 and/or laser beam may also move in a direction at an angle to the cross direction CD. For example, the laser source 312 or laser beam may move in a substantially diagonal direction due to the movement of the belt assembly 204 in the machine direction MD. Thus, the movement of the belt assembly in the machine direction may be accounted for in the movement of the laser such that the laser source and/or laser beam moves in a diagonal direction so that the elastic strands are severed in a direction extending parallel to the cross direction.
It is to be appreciated that the laser source that imparts a cut line into the nonwoven substrate may be the same type of laser source that cuts the elastic strands or a different type of laser source. For example, the laser source used to impart the cut line into the nonwoven substrate may be an ultra short pulse laser source and the laser source used to sever the elastic strands may be a longer pulse laser source, such as a CO2 laser source.
In some embodiments, a mask 332 may be used to prevent the laser beam from engaging the substrate at certain locations. For example, a mask 332 may be used to prevent those portions of the nonwoven that do not overlap an elastic strand 168 from being affected by the laser source. The mask 332 may be positioned between the laser source 324 and the belt assembly 204, as illustrated in
It is to be appreciated that to use the laser source to sever one or more elastics, the location of the elastics should be known or detected. As previously described, the outer circumferential surface of the process member and guide rollers may include one or more grooves. Thus, each elastic strand may be disposed within a groove, or those elastic strands that are to be severed may be disposed within one or more grooves. The location of the grooves may be predetermined and, therefore, the location of the elastic strands may be known. Alternatively or in addition to the aforementioned, a high speed camera may be used to detect the position of the elastic strands. The position of the elastic strands may then be communicated to the laser source and the laser source may be operated accordingly.
In some embodiments, the laser source may be sequenced so that certain portions of the substrate, which may be a belt assembly, remain unaffected by the laser source. For example, the laser source may be controlled such that the laser source emits a laser beam for a certain period of time, active period, and the laser source fails to emit a laser beam for a certain period of time, dwell period. The duration of the dwell period and active period may depend, in part, on the speed of the belt assembly advancing in the machine direction and the desired characteristics of the cut line. The duration of the dwell period and the active period may be changed each time the laser source completes a sequence. Thus, the time of a first active period, when the laser source emits a laser beam, may be longer than a second, subsequent active period. This may apply to the dwell period as well.
It is to be appreciated that when severing the elastic strands, it is desirable to minimize the destruction of the belts by controlling the exposure of the substrate layers to the laser source and to ensure that the elastic strands are separated by the laser. Stated another way, the intent is to sever the elastic strand prior to separating all nonwoven fibers. Generally, the nonwoven substrate that is disposed between the laser source and the elastic strand will degrade, such as by melting and/or ablating, prior to the elastic strand due to the properties of the nonwoven substrate and the elastic strand. More specifically, the nonwoven belts and the elastic strands each have a wavelength or range of wavelengths at which its absorptivity is greatest or optimal. Thus, a laser source may be chosen such that the wavelength emitted by the laser beam is more readily absorbed by the elastic strands than the nonwoven substrate. In this case, the elastic strands may break prior to all the fibers of the nonwoven substrate separating. It is to be appreciated that the elastic strands may be under tension when they are acted on by the laser source. Elastics under tension want to relax. This property of the elastic strands may also aid in cutting the elastic strand prior to breaking or separating all the fibers of the nonwoven substrate.
Materials may be altered to increase their absorptivity even if the laser source is operating outside the optimal range of wavelengths that coincide with the optimum absorptivity. In some embodiments, the elastic strands may be chemically altered such that the elastic strands have an increased rate of energy absorption, or absorptivity at a certain wavelength. These chemical additives may be added to the material that forms each elastic strand prior to the elastic strand being formed, such as by extrusion or other known methods. These chemicals additives may also be added to the elastic strand after formation. For example, these chemicals may be applied topically to each elastic strand. These chemical additives may also be added to the adhesive that attaches the elastic strand to the nonwoven substrate. Such chemical additives are available from Clearweld, Binghamton, N.Y. These chemical additives may be added to ensure that the elastic strands 168 are severed or can be severed by a relatively low force upon separation of the trim from the belt assembly 204, and to ensure that the elastic strands 168 present in the region of the belt assembly 204 are severed while not destroying the substrate layers.
It is also to be appreciated that any number of laser sources and/or laser beams may be used to either weaken or sever the elastic strands and/or to impart a continuous or discontinuous cut line into the belt assembly. For example, a single laser source may be used to impart a continuous or discontinuous cut line into the first and second belts 106, 108 and another laser source may be used to sever the elastic strands in both the first and second belts 106, 108.
In some embodiments, for example, an ultra short pulse laser may be used to cut the nonwoven portions of the belt assembly and a longer-pulse laser, such as a CO2 laser, may be used to cut the elastic strands. The ultra short pulse laser operates at a wavelength that coincides with the nonwoven substrate layers of the belt assembly. However, the ultra short pulse laser may not be ideal for cutting elastic strands. It has been found that using a CO2 laser with a wavelength from about 9.4 μm to about 10.6 μm results in optimum absorptivity of the elastic strand material. Thus, an ultra short pulse laser may be used to cut the nonwoven substrate layers of the belt assembly and a CO2 laser may be used to cut the elastic strands. To act only on areas that include the elastic strands, the CO2 laser may be sequenced, such that the laser source oscillates between dwell periods and active periods, or the pulse duration may be adjusted such that the laser beam imparts energy to the substrate during the pulse duration and fails to impart energy for the remainder of the period, which is constrained by the frequency. Referring to
It is also to be appreciated that the elastic strands may be treated with an additive that allows the ultra short pulse laser to sever or weaken the elastic strands. Thus, for example, referring to
As previously discussed, the belt assembly 204 may undergo one or more processes.
The belt assembly 204 may advance in a machine direction MD toward the process member 302. A first guide roller 306 may aid in the transfer of the belt assembly 204 onto an outer circumferential surface 308 of the process member 302. The outer circumferential surface 308 of the process member 302 may include one or more apertures. A vacuum source, not shown, may be in fluid communication with the one or more apertures. The vacuum source allows a fluid to be circulated through the one or more apertures toward the longitudinal axis of rotation 310. The movement of fluid may result in the belt assembly 204 being forced toward the outer circumferential surface 308 of the process member 302. The process member 302 may rotate about the longitudinal axis of rotation 310 causing the belt assembly 204 to advance toward a laser source 312, which may include one or more laser sources, as previously discussed. The laser source 312 may be used to impart a cut line into the belt assembly 204.
In some embodiments, the process member 304 may then advance the belt assembly 204 to a cutting member 350. The cutting member 350 may be used to sever one or more elastic strands 168. The cutting member 350 may be an apparatus such as disclosed in U.S. Pat. No. 8,440,043. It is also to be appreciated that a second laser source may be used in place of the cutting member to sever or weaken the elastic strands as previously discussed.
The belt assembly 204 including at least one cut line may advance to a trim removal member 338. The trim removal member 338 may remove the trim 340, which may include a discrete portion and/or a continuous portion of the belt assembly, as illustrated in
The belt assembly 204 may then be advanced to an adhesive applicator 342. The adhesive applicator may apply adhesive, such as glue, to the belt assembly 204. The adhesive may be applied to a portion of the first belt 106 and a portion of the second belt 108. The adhesive may be applied to portions of the first belt 106 and the second belt 108 where additional components for the absorbent article are to be added. In some embodiments, for example, the adhesive may be applied to the portion of the belt assembly 204 having severed elastic strands 168.
Upon applying adhesive to the belt assembly 204, the belt assembly 204 may be advanced to operatively engage with a transfer apparatus 344. The transfer apparatus 344 may be used to transfer and/or rotate a discrete component 346 of the absorbent article. An example of a discrete component 346 is a chassis 102, such as discussed with reference to
As illustrated in
Still referring to
As previously discussed, the belt assembly 204 may include a garment facing layer, also referred to as an outer layer, of nonwoven 162 and a wearer facing layer, also referred to as an inner layer, of nonwoven 164 and one or more elastic strands 168 disposed between the outer layer 162 and the inner layer 164. In some embodiments, the belt assembly 204 may be assembled on the outer circumferential surface 308 of the process member 302, as illustrated in
As illustrated in
Still referring to
It is also to be appreciated that the elastic strands may be disposed on the first continuous substrate layer 362 prior to adhesive being disposed on the elastic strands. Stated another way, the elastic strands 168 may be disposed on the first continuous substrate layer 362. The first continuous substrate 362 including the elastic strands 168 may be advance to an adhesive applicator 366. The adhesive applicator 366 may apply the adhesive to the one or more strands 168, which are disposed on the first continuous substrate 362. The elastic strands 168 are bonded to the first continuous substrate layer 362.
Still referring to
It is to be appreciated that the aforementioned may apply to the formation of both the first belt 106, the second belt 108, and the body substrate 206. With respect to the belt assembly 204, the first belt 106 and the second belt 108 may be assembled adjacent one another in the cross direction CD on the outer circumferential surface 308 of the process member 302.
It is also to be appreciated that assembling the first belt 106, the second belt 108, and/or the body substrate 206 on the outer circumferential surface 308 of the process member 302 may aid in locating the one or more elastic strands 168 for severing. Assembling the belt or substrate on the process member 302 may lead to better control of how and where each component is disposed on the outer circumferential surface. Further, a portion of the adhesive may transfer through the first continuous layer causing some adhesion to the outer circumferential surface 308, which may cause the elastic strands to remain in relatively the same location for subsequent processing. Once the belt assembly 204 has been assembled, the belt assembly 204 may proceed to additional processes, as previously discussed.
In some embodiments, an absorbent article may be manufactured by an apparatus 300 as illustrated in
The belt assembly 204 having a cut line may advance to a trim removal member 338. The trim removal member 338 may remove the trim 340, which may include a discrete portion and/or a continuous portion of the cut line, as illustrated in
The belt assembly 204 may advance in a machine direction MD toward a process drum 382. A fourth guide roller 384 may aid in the transfer of the belt assembly 204 onto an outer circumferential surface 386 of the process drum 382. The outer circumferential surface 386 of the process drum 382 may include one or more apertures. A vacuum source, not shown, may be in fluid communication with the one or more apertures. The vacuum source allows a gas to be circulated through the one or more apertures toward the longitudinal axis of rotation 388. The movement of fluid may result in the belt assembly 204 being forced toward the outer circumferential surface 386 of the process device 382. The process device 382 may rotate about the longitudinal axis of rotation 388 causing the belt assembly 204 to advance toward one or more processes. For example, the process device 382 may then advance the belt assembly 204 to a cutting member 350. The cutting member 350 may be used to sever one or more elastic strands 168 or any other portion of the belt assembly 204. The cutting member 350 may be an apparatus such as disclosed in U.S. Pat. No. 8,440,043. It is to be appreciated that the cutting member may be substituted with a second laser source which emits a second laser beam configured to sever the elastic strands.
The belt assembly 204 may then be advanced to an adhesive applicator 342. The adhesive applicator may apply adhesive, such as glue, to the belt assembly 204. The adhesive may be applied to a portion of the first belt 106 and a portion of the second belt 108. The adhesive may be applied to portions of the first belt 106 and the second belt 108 where additional components of the absorbent article are to be added. For example, the adhesive may be applied to the portion of the belt assembly 204 having severed elastic strands 168.
Upon applying adhesive to the belt assembly 204, the belt assembly 204 may be advanced to operatively engage with a transfer member 344. The transfer member 344 may be used to transfer and/or rotate a discrete component 346 of the absorbent article as previously described with reference to
As illustrated in
Still referring to
Although much of the present disclosure is provided in the context of manufacturing absorbent articles, it is to be appreciated that the apparatuses and methods disclosed herein may be applied to the manufacture of other types of articles and products manufactured from continuous substrates. In addition to that which was previously discussed, examples of other products include absorbent articles for inanimate surfaces such as consumer products whose primary function is to absorb and retain soils and wastes that may be solid or liquid and which are removed from inanimate surfaces such as floors, objects, furniture and the like. Non-limiting examples of absorbent articles for inanimate surfaces include dusting sheets, pre-moistened wipes or pads, pre-moistened cloths, paper towels, dryer sheets and dry-cleaning clothes such. Additional examples of products include absorbent articles for animate surfaces whose primary function is to absorb and contain body exudates and, more specifically, devices which are placed against or in proximity to the body of the user to absorb and contain the various exudates discharged from the body. Non-limiting examples of incontinent absorbent articles include diapers, training and pull-on pants, adult incontinence briefs and undergarments, feminine hygiene garments such as panty liners, absorbent inserts, and the like, toilet paper, tissue paper, facial wipes or clothes, and toilet training wipes. Still other examples of products may include packaging components and substrates and/or containers for laundry detergent, which may be produced in pellets or pouches and may be manufactured in a converting or web process or even discreet products produced at high speed such as high-speed bottling lines, cosmetics, razor blade cartridges, and disposable consumer batteries. Still other examples of products include medical bandages, medical wraps, medical gowns, medical pads made of nonwoven materials, and wipes.
Free Fiber End measurements are performed on images generated using a flatbed scanner capable of scanning in reflectance mode at a resolution of 6400 dpi and 8 bit grayscale (a suitable scanner is the Epson Perfection V750 Pro, Epson, USA). The scanner is interfaced with a computer running image analysis software (suitable image analysis software is ImageJ v. 1.46, National Institute of Health, USA). The sample is scanned with a black glass tile (P/N 11-0050-30, available from HunterLab, Reston, Va.) as the background. The free fiber ends along the undisturbed laser cut edge, also referred to as a separation edge, in the scanned sample image are measured using the image analysis software. All testing is performed in a conditioned room maintained at about 23±2° C. and about 50±2% relative humidity.
Obtain a 3.0×3.0 cm square sample from a laser cut substrate, with one of the 3.0 cm sides being an undisturbed laser cut edge of the sheet or laminate. If present, carefully remove any elastic strands from within the sample. A cryogenic spray (such as Cyto-Freeze, Control Company, Houston Tex.) can be used, if necessary. Five substantially similar replicate samples are prepared for analysis. Precondition the samples at 23° C.±2 C.° and 50%±2% relative humidity for 2 hours prior to testing.
Lay the sample flat onto the center of the scanner bed, and place the black glass tile on top of the sample covering it completely. Orient the sample so that the undisturbed laser cut edge is aligned parallel with and perpendicular to the sides of the scanner's glass surface. Close the lid and acquire a 20.0 mm by 20.0 mm scanned image in reflectance mode at a resolution of 6400 dpi (˜4 μm/pixel) and 8 bit grayscale. The resultant image will have the undisturbed laser cut edge centered across the entire field of view. Save the image as an uncompressed TIFF format file. In like fashion, scan the remaining four replicate samples.
Open the sample image in the image analysis program. Threshold the image at an appropriate graylevel (GL) value to generate a binary image. The appropriate threshold value will segregate the sample region, with its free fibers along the undisturbed laser cut edge, from the black background, while maintaining the original dimensions of the free fibers. Initially, the binary image will display the regions containing the sample, those with graylevels above the threshold value as white (GL value of 0), and the regions containing the black background, those with graylevels below the threshold value as black (GL value of 255). Use the fill holes operation to fill in any voids within the black background region. Invert the image so that the sample region above the threshold value will now appear as black (GL value of 255), and those of the background as white (GL value of 0). Create a duplicate copy of this image. Next, two morphological operations are performed on the duplicate binary image to virtually remove the free fibers from the undisturbed laser cut edge in the binary image. First, perform an erosion operation, which will remove a single boundary pixel during each iteration. Perform a sufficient number of erosion operation iterations to remove all of the free fibers along the undisturbed laser cut edge. Second, perform an equivalent number of dilation operations, which will add back a single boundary pixel during each iteration.
Using the image analysis software, measure the perimeter around the sample region in both the image containing the free fibers, and the duplicate image where the free fibers have been removed. Calculate the ratio of the sample perimeter with the free fibers to the perimeter of the sample without the free fibers, and record this Free Fiber End value to the nearest 0.01 units. In like fashion, analyze the remaining four sample images. Calculate and report the average Free Fiber End values to the nearest 0.01 units for the five replicates.
The roughness of a single sheet or laminate substrate cut edge is measured by dragging the substrate across an x-ray photographic film then measuring the surface roughness using a 3D Laser Scanning Confocal Microscope.
Obtain a 2.0×4.0 cm rectangular sample from a laser cut substrate, with one of the 2.0 cm edges being the undisturbed laser cut edge, also referred to herein as a separation edge, of the substrate. If present, carefully remove any elastic strands from within the sample. A cryogenic spray (such as Cyto-Freeze, Control Company, Houston Tex.) can be used, if necessary. Five replicate samples are prepared for analysis. Precondition the samples at 23° C.±2 C.° and 50% 2% relative humidity for 2 hours prior to testing.
Cut a 4.0×6.0 cm rectangular piece of x-ray photographic film (Kodak scientific imaging film X-OMAT, obtainable from Care Stream Health. Inc., Rochester, N.Y.). Submerge the piece of x-ray film in distilled water for 5 seconds. Carefully remove the x-ray film from the water, gently shake off any excess water, and lay the film piece on a flat rigid surface. Once wetted, avoid any contact with the testing surface of the x-ray film, to maintain a smooth testing surface. Without undue delay, lay the sample flat on the wetted x-ray film testing surface with the undisturbed laser cut edge 1.0 cm from, and parallel to, one of the short edges of the x-ray film. Place a 2.0×2.0×0.5 cm rigid rectangular solid Plexiglas (PMMA) support piece on top of the sample, so that it covers a 2.0×1.0 cm testing area of the sample, which includes and places the undisturbed laser cut edge in the middle of the Plexiglas support piece. Place an approximate 200 g weight on the rigid Plexiglas support piece. The sample is then pulled horizontally by the remaining 3.0 cm of uncovered sample along the wetted x-ray film testing surface, parallel to the long edge of the film, at constant rate of 2.0 cm/sec for 2 cm. As the trailing edge is pulled across testing surface it will leave a scratch trail on the surface of the film. The sample is then removed and the x-ray film is allowed to fully dry undisturbed prior to analysis at 23° C.±2° C. and 50%±2% relative humidity. Repeat this procedure for all five of the replicate samples.
The surface roughness is determined via an instrument capable of measuring surface profile between 0 and 45 μm with a precision of 0.01 μm, e.g., via the use of an appropriate calibrated standard. A suitable instrument is 3D Laser Scanning Confocal Microscope (suitable 3D Laser Scanning Confocal Microscope is the Keyence VK-X210, commercially available from Keyence Corporation of America, Itasca, Ill., USA)
Using a 20× objective lens, a 1.0× zoom level and a 0.50 μm pitch (Z-step size), the microscope is programmed to collect a surface height image with a field of view of at least 500 μm×700 μm with an x-y pixel resolution of approximately 0.7 microns (μm)/pixel. The scan area is 2.0×0.5 mm. For this larger field of view, multiple scans, maintaining the x-y resolution, over the surface are collected with approximately 10% overlap between adjacent images and stitched together prior to analysis. The scan is conducted in the middle of the 2.0×2.0 cm scratch area, with the long axis of the scan area perpendicular to the scratch pattern and parallel to the initial laser cut edge of the sample. The height resolution is set at 0.1 nm/digit, over a sufficient height range to capture all peaks and valleys within the field of view. Calibrate the instrument according to the manufacturer's specifications.
Place the sample on the stage beneath the objective lens. Collect a surface height image (z-direction) of the specimen by following the instrument manufacturer's recommended measurement procedures, which may include using the following settings to minimize noise and maximize the quality of the surface data: Real Peak Detection, single/double scan, surface profile mode, standard area, high-accuracy quality; laser intensity (Brightness and ND filter) set using auto gain. Save the surface height image.
Open the surface height image in the surface texture analysis software. Surface texture parameters are calculated for each image separately. Images are prepared for analysis by applying the following filtering procedure to each image according to ISO 25178-2:2012: 1) a Gaussian low pass S-filter with a nesting index (cut-off) of 2.0 μm; and 2) an F-operation of plane tilt (auto) correction. The Gaussian filter is run utilizing end effect correction. This filtering procedure produces the SF surface from which the areal surface texture parameters will be calculated. The surface texture parameters Sq, is described in ISO 25178-2:2012. Sq is the root mean square of the profile heights of the roughness surface. The units of Sq are μm.
Scan and analyze the surface textures of five replicates. Average together the five Sq values and report to the nearest 0.01 μm.
A heat modified zone along the cut edge, also referred to herein as a separation edge, is assessed using Scanning Electron Microscopy (SEM) with a bench top unit (a suitable SEM is the Hitachi TM-1000). A 1.00 cm×1.00 cm specimen is excised from the substrate along a laser cut edge. The specimen is harvested such that the laser cut edge is the primary edge with the two sides perpendicular and the distal edge parallel to that laser cut edge. As needed, remove any elastic strands from the specimen. A cryogenic spray (e.g. Cyto-Freeze) can be used as necessary. The specimen is mounted on a metal support (e.g. a razor blade cut in half at its lateral midpoint) using double-sided adhesive, copper conductive tape. A 1.0 cm square piece of this tape is adhered to the support. The specimen is then placed on a bench and the support pressed gently onto the specimen such that the laser cut edge is parallel to, but slightly protrudes past, the edge of the support. The support with the mounted specimen is placed into a vacuum gold sputter coater in preparation for analysis.
SEM images are collected normal to the plane of the mounted specimen at a magnification of 100×. Using software that is capable of quantifying liner distances, measure and record the diameter of the nonwoven fibers and the diameter of the accumulation bulbs at the ends of those fibers, across the field of view. Measure the maximum linear length of the longest axis of the individual accumulation bulbs and individual clusters within the field of view and report the individual maximum linear lengths to the nearest 0.01 μm. Measure the fiber diameter to the nearest 0.01 μm. Count the number of accumulation bulbs over 1 cm and report as count/cm to the nearest 0.1 units. Count the number of clusters over 1 cm and report as count/cm to the nearest 0.1 units. Calculate the ratio of the maximum linear length of the longest axis (μm) of the accumulation bulb to the fiber diameter (μm) of which the accumulation bulb is attached for 5 individual accumulation bulb and attached fiber pairs and report the arithmetic mean to the nearest 0.01 units.
A total of three (3) replicate analyses should be performed on equivalent sites from three replicate products. Report as the average for the individual maximum linear lengths for each of the accumulation bulbs and clusters, the count/cm and accumulation bulb diameter/fiber diameter.
Distortion Ratio is measured using light microscopy and subsequent image analysis. A benchtop stereo-microscope fitted with a CCD camera with computer interface capable of providing an image at approximately 12× magnification. Appropriate software is used to collect the digital image from the camera and make a calibrated distance measurements along an irregular or linear path.
A 2.0 cm×2.0 cm specimen is excised from a film substrate having a laser cut edge, also referred to herein as a separation edge. The specimen is harvested such that the laser cut edge is the primary edge with the two sides perpendicular and the distal edge parallel to that laser cut edge. As needed, remove any elastic strands from the specimen so that it can lay flat. A cryogenic spray (e.g. Cyto-Freeze) can be used as necessary.
Place the specimen flat on the microscope stage. Acquire and image at 12× magnification at a resolution of about 600×600 pixels. A NIST traceable ruler is included within the image for calibration of the software. Trace along the edge of the laser cut edge across the field of view and calculate the length and record to the nearest 0.001 mm. This is the edge length. Next measure the linear distance between the start and end points of the traced edge and record to the nearest 0.001 mm. This is the linear length. The Distortion Ratio is calculated as the ratio of the edge length/linear length and is recorded to the nearest 0.001 units. A total of five specimens, each harvested from the equivalent position on five replicate samples are measured and the arithmetic mean is calculated and reported to the nearest 0.001 units.
This application claims the benefit of U.S. Provisional Application No. 62/308,274 filed on Mar. 15, 2016, the entirety of which is incorporated by reference herein.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
A1. A method of separating a component of an absorbent article comprising:
advancing a substrate in a machine direction;
providing an ultra-short pulse laser source;
emitting a laser beam with the ultra-short pulse laser source;
directing the laser beam at a portion of the substrate;
cutting a portion of the substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and
forming a heat modified zone along the cut edge, wherein the heat modified zone comprises a maximum width that is less than about 200 microns, wherein the maximum width is measured from the cut edge in a direction perpendicular to the cut edge toward a central region of the substrate.
A2. The method according to paragraph A1, wherein the maximum width of the heat modified zone is less than about 100 microns.
A3. The method according to paragraph A1, wherein the maximum width of the heat modified zone is less than about 50 microns.
A4. The method according to any one of paragraphs A1-A3, applying a machine direction tension of at least about 0.5% to the substrate prior to the cutting step.
A5. The method according to any one of paragraphs A1-A4, wherein the laser beam has a wavelength from about 300 nanometers to about 1080 nanometers.
A6. The method according to any one of paragraphs A1-A5, comprising rotating a process member about a longitudinal axis of rotation and accepting the substrate on an outer circumferential surface of the process member.
A7. The method according to paragraph A6, comprising applying a vacuum force on the substrate by circulating a fluid through one or apertures defined by the outer circumferential surface of the process member toward the longitudinal axis of rotation of the process member.
A8. The method according to any one of paragraphs A6 or A7, comprising advancing a discrete component toward the process member; orienting the discrete component; and positioning the discrete component on a portion of the substrate.
A9. The method according to any one of paragraphs A1-A8, comprising positioning a nonwoven substrate on the substrate.
A10. The method according to paragraph A9, comprising bonding the nonwoven substrate and the substrate.
A11. The method according to any one of paragraphs A1-A10, comprising forming a component of an absorbent article with the substrate.
A12. The method according to paragraph A11, wherein the component comprises a belt, a side panel, a topsheet, or a backsheet.
B1. A method of separating a component of an absorbent article comprising:
advancing a nonwoven substrate in a machine direction;
providing an ultra-short pulse laser source;
emitting a laser beam with the ultra-short pulse laser source;
directing the laser beam at a portion of the nonwoven substrate;
cutting a portion of the nonwoven substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and
forming a heat modified zone along the cut edge.
B2. The method according to paragraph B1, wherein the heat modified zone comprises a maximum width that is less than about 200 microns, wherein the maximum width is measured from the cut edge in a direction perpendicular to the cut edge toward a central region of the nonwoven or the film.
B3. The method according to paragraphs B2 or B3, comprising positioning a second nonwoven substrate on the nonwoven substrate.
B4. The method according to paragraph B3, comprising positing one or more elastic strands between the nonwoven substrate and the second nonwoven substrate.
B5. The method according to paragraph B4, comprising applying adhesive to a portion of the one or more elastic strands.
B6. The method according to paragraphs B4 or B5, comprising severing a portion of the elastic strands.
B7. The method according to any one of paragraphs B1-B6, wherein the nonwoven substrate has a thickness of less than about 300 microns.
B8. The method according to any one of paragraphs B1-B7, wherein the nonwoven substrate has a Free Fiber End value greater than 1.
B9. The method according to any one of paragraphs B1-B8, wherein the heat modified zone includes less than three clusters along the cut edge.
B10. The method according to any one of paragraphs B1-B9, wherein the heat modified zone comprises a cluster, wherein the cluster has a maximum linear length less than 200 μm.
B12. The method according to paragraph B1, wherein the nonwoven substrate comprises a first product pitch extending parallel to the machine direction and a second product pitch extending parallel to the machine direction, and wherein the first product pitch is adjacent to the second product pitch.
B13. The method according to paragraph B12, wherein the cut edge comprises a first cut edge portion and a second cut edge portion, wherein the first cut edge portion is disposed within the first product pitch and the second cut edge portion is disposed within the second product pitch.
B14. The method according to paragraph B13, wherein the first cut edge portion comprises a discrete cut edge and the second cut edge portion comprises a continuous cut edge.
B15. The method according to paragraph B13, wherein the first cut edge portion comprises a discrete cut edge and the second cut edge portion comprises a second discrete cut edge.
B16. The method according to any of paragraphs B1-B15, wherein the heat modified zone comprises less than three clusters per centimeter.
C1. A method of separating a component of an absorbent article comprising:
advancing a film substrate in a machine direction;
providing an ultra-short pulse laser source;
emitting a laser beam with the ultra-short pulse laser source;
directing the laser beam at a portion of the film substrate;
cutting a portion of the film substrate using the laser beam to form a cut edge, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and
forming a heat modified zone along the cut edge.
C2. The method according to paragraph C1, wherein the cut edge comprises an edge length and a linear length.
D1. A method of separating a nonwoven substrate of an absorbent article comprising:
advancing a nonwoven substrate in a machine direction;
providing an ultra-short pulse laser;
emitting a laser beam with the ultra-short pulse laser;
directing the laser beam at a portion of the nonwoven substrate;
cutting a portion of the nonwoven substrate using the ultra-short pulse laser to form a cut edge, wherein the ultra-short pulse laser is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the ultra-short pulse laser comprises a pulse duration from about 5 femtoseconds to 10 picoseconds, and wherein the ultra-short pulse laser comprises a level of peak energy of from about 20 μJ to about 875 μJ; and
forming a heat modified zone along the cut edge, wherein the heat modified zone comprises a cluster of laser affected fibers, wherein the cluster of laser affected fibers comprise a maximum linear length, and wherein the maximum linear length is less than 200 μm.
D2. The method according to paragraph D1, wherein the maximum linear length of the cluster is less than 100 μm.
D2. The method according to paragraph D1, wherein the maximum linear length of the cluster is less than 80 μm.
D3. The method according to paragraph D1, wherein the maximum linear length of the cluster is less than 60 μm.
E1. A method of separating a component of an absorbent article, the method comprising:
transferring a substrate onto an outer circumferential surface of a process member, wherein the substrate comprises one or more fibers, wherein each fibers includes a fiber diameter;
rotating the process member about its longitudinal axis of rotation;
advancing the substrate to an ultra-short pulse laser;
cutting a portion of the substrate using the ultra-short pulse laser to form a cut edge, wherein the ultra-short pulse laser is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the ultra-short pulse laser comprises a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the ultra-short pulse laser comprises a level of peak energy of from about 20 μJ to about 875 μJ; and
forming a heat modified zone along the cut edge,
wherein the heat modified zone comprises one or more accumulation bulb including an accumulation bulb diameter, and
wherein the heat modified zone comprises less than three clusters.
E2. The method according to paragraph E1, comprising joining the substrate with a second substrate and one or more elastic strands to form a belt assembly.
E3. The method according to paragraph E2, comprising:
advancing the belt assembly to a second laser;
severing a portion of the one or more elastic strands using the second laser;
advancing a discrete component toward the process member;
orienting the discrete component; and
positioning the discrete component on a portion of the belt assembly.
E4. The method according to any of paragraphs E1-E3, comprising circulating a fluid through one or more apertures defined by the outer circumferential surface of the process member toward the longitudinal axis of rotation of the process member.
E5. The method according to any of paragraphs E1-E3, comprising forming a portion of an absorbent article with the substrate.
F1. A method for manufacturing an absorbent article, the method comprising:
advancing a substrate around a portion of a first guide roller, wherein the substrate comprises a first substrate layer and a second substrate layer, wherein the substrate has a first surface and a second surface;
advancing the substrate around a portion of a second guide roller, wherein an unsupported portion of the substrate is suspended between the first guide roller and the second guide roller;
directing a laser beam emitted by an ultra short pulse laser source at the first surface of the substrate, wherein the laser beam acts on the unsupported portion of the substrate;
imparting a cut line into the substrate, wherein the laser beam is pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the laser beam has a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the laser beam has a level of peak energy from about 20 μJ to 875 μJ; and
forming a heat modified zone along the cut edge.
F2. The method according to paragraph F1, wherein the heat modified zone comprises a maximum width that is less than about 200 microns, wherein the maximum width is measured from the cut edge in a direction perpendicular to the cut edge toward a central region of the substrate.
F3. The method according to paragraphs F1 or F2, wherein the substrate is a nonwoven substrate comprising one or more fibers, wherein each of the one or more fibers has a fiber diameter.
F4. The method according to paragraph F3, wherein the nonwoven substrate has greater than 1 Free Fiber Ends.
F5. The method according to paragraphs F1 or F2, wherein the substrate is a film.
F6. The method according to paragraph F5, wherein the cut edge of the film comprises a edge length and a linear length.
G1. A method for manufacturing an absorbent article, the method comprising:
advancing a substrate around a portion of a first guide roller, wherein the substrate comprises a first substrate layer and a second substrate layer, wherein the substrate has a first surface and a second surface;
advancing the substrate around a portion of a second guide roller, wherein an unsupported portion of the substrate is suspended between the first guide roller and the second guide roller;
directing a first laser beam emitted by a first ultra short pulse laser source at the first surface of the substrate, wherein the first laser beam acts on the unsupported portion of the substrate;
directing a second laser beam emitted by a second ultra short pulse laser source at the second surface of the substrate, wherein the second laser beam acts on the unsupported portion of the substrate;
imparting a cut line into the substrate, wherein the first laser beam and the second laser beam are pulsed at a frequency from about 100 kHz to about 100 MHz, wherein the first and second laser beams have a pulse duration from about 5 femtoseconds to about 10 picoseconds, and wherein the first and second laser beam have a level of peak energy from about 20 μJ to 875 μJ; and
forming a heat modified zone along the cut edge.
G2. The method according to paragraph G1, wherein the heat modified zone comprises a maximum width that is less than about 200 microns, wherein the maximum width is measured from the cut edge in a direction perpendicular to the cut edge toward a central region of the nonwoven or the film.
G3. The method according to paragraphs G1 or G2, wherein the substrate is a nonwoven substrate comprising one or more fibers, wherein each of the one or more fibers has a fiber diameter.
G4. The method according to paragraph G3, wherein the heat modified zone of the nonwoven substrate has less than three clusters.
G5. The method according to paragraphs G1 or G2, wherein the substrate is a film.
G6. The method according to paragraph G5, wherein the cut edge of the film comprises an edge length and a linear length.
H1. A consumer product comprising:
a nonwoven substrate comprising a first nonwoven layer and a second nonwoven layer in a facing relationship, wherein the nonwoven substrate comprises a separation edge and a heat modified zone,
wherein the heat modified zone has a maximum width that is less than about 200 microns, wherein the width is measured from the separation edge in a direction perpendicular to the separation edge toward a central region of the nonwoven substrate.
H2. The consumer product according to paragraph H1, wherein the width of the heat modified zone is less than about 100 microns.
H3. The consumer product according to paragraph H1, wherein the width of the heat modified zone is less than about 50 microns.
H4. The consumer product of claim according to any one of paragraphs H1-H4, wherein the consumer product is an absorbent article.
H5. The consumer product according to paragraph H4, wherein the absorbent article is a diaper, wherein the diaper comprises:
a first waist region;
a second waist region;
a crotch region positioned between the first waist region and the second waist region;
a topsheet extending from the first waist region to the second waist region;
a backsheet extending from the first waist region to the second waist region; and
an absorbent core disposed between a portion of the topsheet and a portion of the backsheet.
H6. The consumer product according to claim H5, wherein the diaper comprises an elastic belt comprising a first elastic belt portion and a second elastic belt portion, and wherein the first elastic belt portion and the second elastic belt portion are configured to join the first waist region and the second waist region.
H7. The consumer product according to claim H6, wherein the first elastic belt and the second elastic belt comprise one or more elastic members.
H8. The consumer product according to any of paragraphs H5-H7, wherein the diaper comprises a back ear disposed in the second waist region and a landing zone disposed in the first waist region, and wherein the back ear is joined to a landing area or landing zone in the first waist region.
H9. The consumer product according to any of paragraphs H5-H7, wherein the diaper comprises a first ear disposed in the second waist region and a second ear disposed in the second waist region; and a landing zone area disposed in the first waist region, and wherein the first ear and the second ear are configured to engage a portion of the landing zone area.
H10. The consumer product according to any one of paragraphs H1-H3, wherein the consumer product is a feminine hygiene product.
H11. The consumer product of claim according to any one of paragraphs H1-H3, wherein the consumer product is a cleaning article.
H12. The consumer product of claim according to any one of paragraphs H1-H3, wherein the consumer product is an adult incontinent article.
H13. The consumer product according to paragraph H12, wherein the adult incontinent article is a pad.
H14. The consumer product according to paragraph H12, wherein the adult incontinent article is a pant.
I1. A consumer product comprising:
a nonwoven substrate comprising a first nonwoven layer and a second nonwoven layer in a facing relationship, wherein the nonwoven substrate comprises a separation edge,
wherein the separation edge has a Free Fiber End value greater than 1.
J1. A consumer product comprising:
a nonwoven substrate comprising a first nonwoven layer and a second nonwoven layer in facing relationship, wherein the nonwoven substrate comprises a separation edge and a heat modified zone,
wherein the heat modified zone comprises less than three clusters per centimeter and one or more accumulation bulbs.
K1. A consumer product comprising:
a nonwoven substrate comprising a first nonwoven layer and a second nonwoven layer in a facing relationship, wherein the nonwoven substrate comprises a separation edge and a heat modified zone,
wherein the heat modified zone comprises a cluster and an accumulation bulb, and
wherein the cluster has a maximum linear length less than about 200 μm.
K2. The consumer product according to paragraph K1, wherein the linear length of the cluster is less than about 100 μm.
K3. The consumer product according to paragraph K1, wherein the linear length of the cluster is less than about 80 μm.
K4. The consumer product according to paragraph K1, wherein the linear length of the cluster is less than about 60 μm.
L1. A consumer product comprising:
a film substrate comprising a separation edge and a heat modified zone, wherein the film substrate comprises an edge length and a linear length, wherein the ratio of the edge length to linear length is less than 1.
L2. The consumer product according to paragraph L1, wherein the consumer product is an absorbent article.
L3. The consumer product according to paragraph L2, wherein the absorbent article is a diaper, wherein the diaper comprises:
a first waist region;
a second waist region;
a crotch region positioned between the first waist region and the second waist region;
a topsheet extending from the first waist region to the second waist region;
a backsheet extending from the first waist region to the second waist region; and
an absorbent core disposed between a portion of the topsheet and a portion of the backsheet.
L4. The consumer product according to paragraph L1, wherein the consumer product is a feminine hygiene product.
L5. The consumer product according to L1, wherein the consumer product is a cleaning article.
L6. The consumer product according to L1, wherein the film substrate is water-soluble or water-dispersible.
L7. The consumer product according to L1, wherein the film forms a portion of a unitized dose pouch.
M1. A consumer product comprising:
a substrate comprising a first nonwoven layer and a film layer in facing relationship, wherein the substrate comprises a separation edge and a heat modified zone,
wherein the heat modified zone comprises a width that is less than about 200 microns, wherein the width is measured from the separation edge in a direction perpendicular to the separation edge toward a central region of the nonwoven substrate.
M2. The consumer product according to paragraph M1, wherein the heat modified zone comprises a cluster and an accumulation bulb, and wherein the cluster has a linear length less than 200 μm.
M3. The consumer product according to paragraph M1 or M2, wherein the separation edge has a Free Fiber End value greater than 1.
M4. The consumer product according to any one of the paragraphs M1-M3, wherein the heat modified zone comprises less than three clusters per centimeter.
M5. The consumer product according to any one of paragraphs M1-M4, wherein the consumer product is a feminine hygiene product.
M6. The consumer product according to any one of paragraphs M1-M4, wherein the consumer product is a diaper.
M7. The consumer product according to any one of paragraphs M1-M4, wherein the consumer product is an adult incontinent pad.
M8. The consumer product according to any one of paragraphs M1-M4, wherein the consumer product is an adult incontinent pant.
Number | Date | Country | |
---|---|---|---|
62308274 | Mar 2016 | US |