This invention relates to a method and apparatus for manufacturing curved elements of electro-active material. More particularly, it relates to a method and apparatus for manufacturing electro-active actuators curved around an axis which is itself curved.
Comparably large translation displacements have been recently achieved by using a curved, helical structure of coiled piezoelectric tape in which a multilayer tape is curved helically around an axis which is itself curved. Such devices are found to easily exhibit displacement in the order of millimetres on an active length of the order of centimetres. These structures and variations thereof are described, for example, in WO-01/47041 and in D. H. Pearce et al., Sensors and Actuators A 100 (2002), 281-286.
These structures are ceramic devices of complex curved shape and are currently manufactured using inefficient low output methods which rely heavily on human labor. Other methods using extrusion processes are described for example in WO-02/103819. However the described process may not be feasible for all configurations of super-helical actuators.
Therefore it is seen as an object of the invention to provide a method and apparatus for manufacturing twice coiled actuators with limited human involvement and using flat ceramic tape as base material.
According to an aspect of the invention, there is provided a method of and an apparatus for manufacturing ceramic devices including the steps of transporting ceramic tape in a green state into the proximity of a first forming element; fixing a first end of the tape with respect to the first forming element; moving the tape and first forming element relatively to each other in a motion including simultaneously rotational and translational movements, thus winding the tape around the first forming element; removing the fixing of a first end thereby allowing separation of the tape and first forming element to generate a helically wound pre-formed tape; fixing at least one end of the pre-formed tape with respect to a second forming element; and moving the pre-formed tape and second forming element relatively to each other in a motion including at least a rotational movement, thus winding the pre-formed tape around the second forming element.
The invention preferably includes the step of and devices for moving the tape and the first forming element relatively to each other including the step of continuously pressing during the movement the tape onto the first forming element at a zone where the tape first contacts the first forming element.
Furthermore the invention preferably includes the step of exerting a force on the edge of the tape at a zone where the tape first contacts the first forming element to prevent slippage of the tape relative to the first forming element.
The invention preferably includes the step of and devices for closing a second clamping element around the first end of the tape before releasing a first clamping element fixing the tape to the first forming element.
Preferably, the clamping elements used for gripping the tape or other devices designed to exert pressure directly onto the tape are pneumatically operated or spring-loaded to simulate a “tactile” handling of the tape.
The invention preferably includes the step of and devices for passing the first forming element along an edge holding back the pre-formed tape.
Preferably the pre-formed tape is held at both ends using clamping elements with one of the clamping elements fixing one end of the pre-formed tape with respect to the second forming element while the other clamping element performs a rotational movement around the second forming element.
The invention preferably includes the step of and devices for removing the fixing with respect to the second forming element and transferring the wound pre-formed tape onto a support structure; and placing the support structure into heated environment for drying and/or sintering.
The present invention is particularly advantageous used to manufacture twice-coiled helices, particularly twice-coiled actuators of piezoelectric material.
These and other aspects of inventions will be apparent from the following detailed description of non-limitative examples making reference to the following drawings.
In the drawings:
The actuator 10 has a curved portion 12 of multi-layer tape 11, for example of a bimorph construction, that is wound helically around a first axis 13 referred to as the minor axis. For illustration, the minor axis is shown as a dashed line 13 in
The manufacture of the actuator 10 from a precursor ceramic tape is a very complex task usually performed by manual labor. It involves the steps of slowly winding a helix of the tape around a cylindrical rod and, and after carefully removing the rod, placing the helix into a “sagger” that supports the helix in its coiled form during subsequent drying until the ceramic tape is sufficiently stiff to support its own weight. The coiled helix is then burned to remove binder and other organic components and sintered to form the ceramic actuator.
While the above steps can be performed manually, the process does not readily lend itself for automation. The properties of the precursor ceramic tape are such that, though pliable, it slackens readily and is unable to support its own weight.
Referring now to
The rod 23 acts as a primary or first former. Its diameter is chosen such that it matches the inner diameter of the primary helix.
The conveyor and the axis of the rod form an acute angle to feed tape at this angle onto the rod. As the strip is pushed by the conveyor across the rod 23, the rotation of the rod 23 causes the strip 21 to be wound around it. Simultaneously with the rotation, the rod 23 is moved in direction of its axis. Both motions are synchronized such that the tape is wound around the rod in a helical manner.
In
After the strip of tape 21 is fully wound around the primary former 23, the second end of the tape forms a second short stub (not shown) similar to the stub 211. The rod 23 is then moved by the linear drive of the block 231 to a second forming element. During the transport both clamps 241, 242 remain in place.
At the location of the second former 33, two clamps 351, 352 grip the tape at the stubs 211 as illustrated in
The inner cylinder 332 is spring-mounted within a bore of an outer cylinder 333 of the second former 33, such that pressure on the front face of the inner cylinder causes it to retract into the bore while the advancing sleeve of the outer cylinder pushes the wound tape 21 from the former.
At this stage of the process the twice-coiled actuator of
In
The various clamping devices described above are using pneumatically operated actuators commercially available for example from Festo. Commercially available DC servo motors are used to generate other movements of the components. All components are under the control of a computer program stored in and executed from an Intel processor based workstation.
Variations of the above example are readily within the scope of a skilled person. It is for example feasible to design the forming elements in a segmented manner to alter their diameter and hence the dimensions of the actuator. It is also possible to replace the second forming element with a removable sagger and thus wind the pre-formed tape directly onto the sagger.
Number | Date | Country | Kind |
---|---|---|---|
03031507 | Feb 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/00485 | 2/9/2004 | WO | 11/2/2005 |