Method and apparatus for manufacturing composite materials

Information

  • Patent Grant
  • 6629557
  • Patent Number
    6,629,557
  • Date Filed
    Tuesday, April 3, 2001
    23 years ago
  • Date Issued
    Tuesday, October 7, 2003
    21 years ago
Abstract
A method and apparatus for manufacturing composite materials. In a first embodiment, a binding material is placed on a heat-resistant filter that is placed on hollow particles in a pressurizable container. Under pressure and heat, the binding material flows through the filter and infiltrates the spaces between the hollow particles. In a further embodiment, composite material wire is produced by coating the surfaces of inorganic fiber bundles with a metal oxide by dipping in a solution of a hydrolyzable organic metal compound and hydrolyzing and heat-treating prior to continuous infiltration under pressure. In a further embodiment, the apparatus includes orifices with enlarged diameter sections. In a still further embodiment, an apparatus is provided with ultrasonic vibration.
Description




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




N/A




BACKGROUND OF THE INVENTION




It is known that materials with superior strength and abrasion-resistance may be developed as composite materials by embedding such reinforcing materials as carbon-based fibers, ceramic-based fibers, or ceramic particles in a metal matrix material such as an aluminum alloy. Such metal matrix composite materials can be manufactured by a die-casting machine


100


such as that shown in

FIGS. 1 and 2

. In a precasting process, a preform


103


is sintered to a desired shape after inorganic fibers or ceramic particles are mixed with water, dehydrated and dried. The preform


103


is placed in a metal mold


101


, while a plunger pump


102


is filled with a molten metal


104


of matrix material. Then a piston


105


forces the metal matrix material to infiltrate into the preform in the metal mold to create a metal matrix composite


106


. The metal matrix composite may find various industrial applications including in airplanes and automobiles as a high-strength, light-weight composite material containing inorganic fibers or ceramic particles ranging from 10 to 50% by volume.




Such a manufacturing method of metal matrix composite materials has two problems. First, because the metal matrix composite is not formed in a hermetic state, chemical reactions such as decomposition, precipitation and metal oxidation occur during infiltration, leading to deterioration in the strength characteristics of the composite. Also, when hollow particles are used as a filling material, gravity (buoyancy)-induced particle separation may occur during metal infiltration, making it difficult to manufacture composite materials with a high content of hollow particles.




Fiber-reinforced composite wires manufactured through the infiltration of metals into inorganic (carbon, ceramics, metals, etc.) fiber bundles may also find many industrial applications. Fiber-reinforced composite wires are known to exhibit superior characteristics in durability and reliability. To this end, a molten metal must infiltrate into the interfiber spacing and increase the overall metal volume percentage. One process for the production of such fiber-reinforced composite wires of the required quality is described in U.S. Pat. No. 5,736,199, the disclosure of which is incorporated by reference herein.




This continuous infiltration process uses a metal infiltration apparatus


200


as shown in

FIGS. 3 and 4

. This apparatus is comprised of a pressure chamber


201


and a bath container


203


for a molten metal


202


, such as aluminum, aluminum alloy, or copper. The bath container is heated by a heater


204


and is equipped with an entering orifice


205


at a bottom surface


201




a


of the pressure chamber and an intermediate orifice


207


for passing inorganic fiber bundles through the bath container for metal infiltration. The entering orifice, connected to a bottom surface


203




a


of the bath container, allows inorganic fiber bundles


210


to enter the bath container. The intermediate orifice extends from a position within the molten metal to a closure member


206


that covers the opening section of the bath container. Furthermore, an exit orifice


208


, provided at an upper surface


201




b


of the pressure chamber, allows the metal-infiltrated inorganic fiber bundles to exit from the pressure chamber.




Referring to

FIG. 4

, functions of the orifices will be described by taking the entering orifice


205


as an example. The orifice is cylindrical in shape, and the exterior surface of the orifice is covered with a cooling jacket


214


. An insertion hole


205




b


is formed along the central axis of an orifice body


205




a


and has an inside diameter slightly greater than the outside diameter of fiber bundles


210


that travel upwardly into the insertion hole. A temperature gradient is provided along the orifice such that the temperature is above the melting temperature of the material in the bath nearest the bath container and below the melting temperature farthest from the bath chamber.




A non-reacting gas, such as argon and nitrogen, is introduced into the pressure chamber


201


from a gas supply source


209


. Thus, the interior spaces of both the pressure chamber and the bath container


203


are respectively maintained at preset pressures when the fiber bundles are infiltrated by metal.




In the infiltration apparatus having such a configuration, inorganic fiber bundles that are fed continuously from a bobbin


211


are introduced into the bath container by way of the entering orifice


205


and are brought into contact with the molten metal


202


. Because the interior spaces of both the pressure chamber and the bath container are pressurized by a gas supplied from the gas supply source


209


, the molten metal infiltrates into the interfiber spacing of the inorganic fiber bundles. The metal-infiltrated fiber bundles then leave the bath container


203


by way of the intermediate orifice


207


.




While the inorganic fiber bundles travel through the inside of the pressure chamber


201


, the molten metal that has adhered to and infiltrated into the inorganic fiber bundles is cooled, so that a part of the metal solidifies within and around the inorganic fiber bundles. Subsequently, a take-up bobbin


213


takes up a fiber-reinforced metal matrix composite wire


212


coming out of the pressure chamber


201


through the exit orifice


208


.




The fiber-reinforced metal matrix composite wire thus produced should be impregnated with the metal in the interior as well as the surface of the bundles. However, for certain metal-fiber combinations with poor wetting characteristics, it is difficult to achieve metal infiltration deep into the interfiber spacing of fiber bundles.




Various efforts have been reported for better metal infiltration through improved wetting characteristics by surface-treating inorganic fiber bundles, including thermal CVD (chemical vapor deposition) reactors and vacuum vapor deposition reactors to deposit metal particles on the surface of fiber bundles. These surface treatments are not effective, however, in depositing metal particles deep within inorganic fiber bundles. Additional requirements of these reactors also increase the manufacturing cost of fiber-reinforced composite wires.




Additionally, when the diameter of a fiber-reinforced metal matrix composite wire produced by the above-described continuous infiltration method is reduced, the through holes of the orifices must become smaller accordingly, making it difficult to pass fiber bundles through holes in this method. Also, the walls of the through holes have been made of carbon-based materials such as graphite, which do not exhibit good durability against wear caused by the friction between the walls and the moving wire. If, on the other hand, the walls are made of materials with high resistance against abrasion, the fiber bundles become more vulnerable to breakage within the orifice.




SUMMARY OF THE INVENTION




In a first embodiment of the present invention, a method is provided of manufacturing high-strength, light-weight composite materials with a high content of hollow particles. In particular, the method provides a composite material comprising hollow particles with a mean particle size ranging from 10 to 100 μm and a metal as a binding agent. The binding material is placed on top of a layer of hollow particles in a pressurizable container. The binding material is separated from the layer of hollow particles by a heat-resistant filter securely fixed at a position between the two materials. After evacuating the pressurizable container, the binding material is heated until it melts completely. The pressurization of the pressurizable container from above, preferably by injection of an inert gas, forces the binding agent to infiltrate into the spaces between the hollow particles.




Preferably, the hollow particles are either ceramic-based hollow particles, particularly, silas balloons, glass balloons, or alumina balloons, or carbon balloons. Preferably, the binding agent comprises gold, silver, copper, tin, iron, cobalt, nickel, lead, aluminum, or their alloys. Preferably, the heat-resistant filter is a ceramic-based filter, in particular, formed from a mullite-based material.




After the pressurization step, the resulting composite material is cooled to a predetermined temperature. Preferably, the composite material is cooled rapidly to achieve finer metal grains, which improve the strength of the composite material. The metal-based binding agent is charged with the ceramic-based hollow particles at a charging ratio of 50% by volume or greater, thus providing a light-weight, high-strength metal matrix composite.




In a further embodiment of the present invention, a method and an apparatus are provided for the continuous pressure infiltration of wire that facilitates insertion of fiber bundles into orifices, realizes superior workability, and ensures consistent wire quality by preventing breakage in the fiber bundles during the manufacturing process.




More particularly, the surfaces of inorganic fiber bundles are coated with a metal oxide by dipping the fiber bundles in a solution of a hydrolyzable organic metal compound and hydrolyzing and heat-treating the organic metal compound deposited on the fiber surfaces to form the metal oxide. The coated inorganic fiber bundles are passed through continuous pressure infiltration apparatus to infiltrate a molten metal into the fiber bundles.




Because metal oxides in general possess a high degree of affinity with metal, the metal oxide, formed uniformly on the surface of the fibers within the fiber bundles, facilitates the subsequent step of pressure infiltration of a molten metal deep into the inorganic fiber bundles. The combined steps of the pretreatment and the pressure infiltration allow the inorganic fiber bundles to be fully impregnated with the molten metal in the bath container, thus producing fiber-reinforced metal matrix composite wires of the desired quality.




In a further embodiment, the continuous pressure infiltration apparatus is provided with orifices having enlarged diameter sections at the entering ends and also at the exit ends. The enlarged diameter sections allow the fibers to be more readily inserted and guided into the orifices. Also the interior surface of the passageways in the orifices are preferably finished with a mirror finish. The material of the orifices is selected to have a low reactivity with both the molten metal and the inorganic fiber bundles. Preferably, the orifices are formed from stainless steel, tantalum, molybdenum, platinum, tungsten, or sintered zirconia-ceramic-based materials.




In a still further embodiment, a pressure infiltration apparatus is provided with an ultrasonic generator made of a ceramic material that does not react with the molten metal in the bath container. Application of ultrasonic vibrations promotes the infiltration of molten metal within the fiber bundles.











DESCRIPTION OF THE DRAWINGS




The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:





FIG. 1

is a schematic diagram of a prior art method and apparatus of manufacturing a composite material;





FIG. 2

is a schematic diagram of the method and apparatus of

FIG. 1

after completion of the steps illustrated by

FIG. 1

;





FIG. 3

is a cross-sectional view illustrating a prior art apparatus and method of continuous pressure infiltration of wire;





FIG. 4

is a perspective view showing an orifice in the apparatus of

FIG. 3

;





FIG. 5

is a schematic diagram of a method of manufacturing a composite material in a first embodiment of the present invention;





FIG. 6

is a schematic diagram of the method of

FIG. 5

after completion of the steps illustrated by

FIG. 5

;





FIG. 7

is a schematic diagram of an embodiment for the production of a fiber-reinforced composite wire;





FIG. 8

is a cross-sectional view of the apparatus of the present invention for the continuous pressure infiltration of wire;





FIG. 9

is a cross-sectional view of a first embodiment of an orifice for use in the apparatus of

FIG. 8

;





FIG. 10

is a cross-sectional view of a further embodiment of an orifice for use in the apparatus of

FIG. 8

;





FIG. 11

is a schematic diagram of a further embodiment of an apparatus for the continuous production of composite wire;





FIG. 12

illustrates the relationship between composite wire production speed and infiltration pressure; and





FIG. 13

illustrates the relationship between composite wire production speed and infiltration pressure showing the shift in the boundary line due to ultrasonic vibration.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIGS. 5 and 6

, a method of manufacturing a composite material according to a first embodiment of the present invention is described. In

FIG. 5

, a pressurizable container


1


is provided having a cylindrical container body


3


defining a charging chamber


4


with an open upper end. A closure section


2


is provided for closing the open upper end. An operation hole


5


at the center of the closure section is provided for evacuating or pressurizing the pressure container. In the container body


3


, heaters


9


and water-cooled tubes


10


are arranged alternately in the external peripheral wall of the charging chamber, as well as on the outer surface of the bottom of the charging chamber.




A predetermined amount of ceramic-based hollow particles


6


, such as glass balloons with a mean particle size of 0.1 to 300 μm, preferably 10 to 100 μm, is placed in the charging chamber


4


from the open upper end of the container body. A ceramic-based heat-resistant filter


7


is secured on top of the ceramic-based hollow particles. The heat-resistant filter is formed from a porous mullite-based material. A metal binding agent


8


for the metal matrix, such as aluminum, is placed on top of the heat-resistant filter. In

FIG. 5

, the metal matrix is in a molten state.




The upper end of the container body


3


is closed with the closure section


2


. The charging chamber is evacuated by connecting the operation hole


5


to an evacuating device such as a vacuum pump. The container body is heated to above the melting temperature of the infiltrating material, for example, 550 to 660° C., depending on the material.




As shown in

FIG. 6

, the upper surface of the metal matrix


8


is pressurized for a predetermined period of time at a predetermined pressure, for example, 5 to 10 kgf/cm


2


, by connecting the operation hole to a supply line of an inert gas such as argon. The pressurization causes a flow of the metal matrix


8


through the heat-resistant filter


7


into the ceramic-based hollow particles, creating a metal matrix composite


17


in which gaps among the ceramic-based hollow particles are fully charged with the fused metal-based binding agent at a high charging ratio. In this state, the metal-based binding agent distributed throughout the composite material remains at a high temperature.




The interior space of the charging chamber is cooled rapidly to a predetermined temperature, not more than 100° C., such as by the water-cooled pipes


10


, whereby the metal matrix becomes fine-grained, resulting in a light-weight, high-strength metal matrix composite. In this metal matrix composite, the ceramic-based hollow particles can be charged with the metal matrix at a charging ratio of 50 to 74% by volume.




Referring to

FIG. 7

, a further embodiment of the present invention provides a method and apparatus for forming a fiber-reinforced metal matrix composite wire. In a first step, indicated by I in

FIG. 7

, inorganic fiber bundles are coated with a metal oxide. In a second step, indicated by II, the metal-oxide-coated inorganic fiber bundles are infiltrated with a metal to produce a fiber-reinforced metal matrix composite wire.




In step I, an organic metal compound solution


12


containing a hydrolyzable organic metal compound is provided in a suitable tank


11


. Inorganic fiber bundles


20


, which have been freed of fiber-surface coating materials, including sizing material, are immersed in the organic metal compound solution in the tank so that the organic metal compound is allowed to infiltrate fully into the gaps between the fibers constituting the bundles. Preferably, the tank is equipped with an ultrasonic wave generator by which the bundles of inorganic fibers are subjected to ultrasonic vibration to promote the infiltration of the organic metal compound into the gaps between the fibers. Furthermore, the tank is continuously supplied with a non-reacting gas such as argon or nitrogen from a suitable source


22


so that the air therein is replaced by the inert gas.




The organic metal compound solution


12


is an organic metal compound dissolved in an organic solvent. The organic metal compound may be properly selected based on the kind of inorganic fibers to be treated, the kind of coating metal, and the combination thereof. The organic metal compound undergoes a hydrolysis reaction so that it is converted to a metal oxide that renders the inorganic fibers wettable. Among metal oxides, silicon dioxide is a good agent to render inorganic fibers wettable, regardless of the kind of inorganic fibers or the coating metal used. Hence, it is preferable to use an organic silicon compound as the organic metal compound. Alkoxysilanes are particularly preferred among organic silicon compounds from the standpoint of hydrolyzability. Typical examples of such alkoxysilanes include tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane. An organic chloride may be additionally used to promote the hydrolysis of the organic metal compound. For example, if an alkoxysilane is used as an organic metal compound, it is preferable to also use silicon chloride. The organic solvent to be employed is not limited to a specific solvent as long as it dissolves the organic chloride therein. In practice, toluene is a preferred solvent if an alkoxysilane is used as the organic metal compound and silicon chloride is used as the organic chloride.




The formulation of the organic metal compound solution need not be specified exactly. For example, the organic metal compound solution may be made up of 0.5% by volume to 30% by volume of an organic metal compound, from 0.5% by volume to 30% by volume of an organic chloride, and the balance of an organic solvent.




The bundles of inorganic fibers into which the organic metal compound and the organic chloride have infiltrated are then passed through a heating oven


13


. The heating oven is constantly supplied with steam (water vapor) from a source


24


so that the organic metal compound and the organic chloride that have infiltrated into the bundles of inorganic fibers are hydrolyzed. The heating oven is also supplied with a non-reacting gas such as argon or nitrogen from a gas supply source


14


. The heating oven is kept at a preset temperature, about 80 to 100° C., so that the hydrolysis reaction involving the organic metal compound and the organic chloride proceeds effectively. Subsequently, the bundles of inorganic fibers are passed through a further heating oven


15


for pyrolysis, in which the hydrolyzate of the organic metal compound and the organic chloride are converted to metal oxides. The further heating oven is kept at a preset temperature between 200 and 750° C., preferably about 700° C., so that the organic solvent, water, the surplus organic metal compound, and the organic chloride are all vaporized. The heating oven is continuously supplied with a non-reacting gas such as argon or nitrogen from a gas supply source


16


. The foregoing hydrolysis reaction of the organic metal compound and the organic chloride proceeds throughout the bundles of inorganic fibers. Thus, this heat treatment causes metal oxides to be uniformly produced within the bundles of inorganic fibers.




In the foregoing pretreatment step I, the bundles of inorganic fibers are conveyed at a suitable speed so that both hydrolysis and pyrolysis can proceed effectively.




The bundles of inorganic fibers


20


that have been subjected to the pretreatment are then passed to the second step, step II, of metal infiltration. The second step is effected using the pressure infiltration apparatus


30


shown in

FIG. 7

, in which the bundles of inorganic fibers are introduced through an entering orifice


32


into a bath container


34


where they are brought into contact with a molten metal


36


for pressure infiltration. The bath container includes heaters


35


and a closure


37


. The fiber bundles then exit from the bath container through an intermediate orifice


38


, which peels off excess molten metal and prevents surface impurities from adhering to the fiber. From a pressure chamber


40


, the fiber bundles pass through an exit orifice


42


, to be taken up by a winding bobbin


44


as a fiber-reinforced metal matrix composite wire


46


. A gas supply source


48


, for example, of argon or nitrogen, is provided to supply a pressurized gas to the bath container and the pressure chamber.




In this two-step arrangement, various kinds of fiber-reinforced metal matrix composite wires can be produced depending on the kind of inorganic fibers and of the molten metal. The bundles of inorganic fibers may be of carbon fibers; or ceramic fibers made of boron, aluminum oxide, silicon carbide or other ceramics; or of metal fibers made of tungsten or other metals. Also, the molten metal may be aluminum, titanium, chromium, cobalt, zinc, tin, copper or their alloys, or superalloys of nickel, chromium, or cobalt.




In a further apparatus


50


of the present invention, one or more of the orifices


52


,


54


,


56


is provided with an enlarged diameter section formed at least at the entrance of the orifice where the inorganic fibers


20


are introduced into the orifices. See

FIGS. 8-10

. The apparatus


50


is otherwise similar to the apparatus


30


described above, and the same reference numerals are used to identify like elements. It will be appreciated that the apparatus


50


may be used alone or in conjunction with the apparatus and method of step I described above.




Referring more particularly to

FIG. 9

, the enlarged diameter section is preferably provided by a conical portion


58


that converges toward an intermediate body portion


60


of the orifice. In this manner, the fibers can be more readily inserted and guided into the orifices. Also, the exit of one or more of the orifices may also be enlarged by providing a conical portion


62


that diverges from the intermediate portion. In the embodiment illustrated more particularly in

FIG. 9

, the enlarged diameter section is formed by flaring the body portion of the orifice outwardly from the intermediate body portion


60


. The enlarged diameter section at the exit is formed by a tapered widening of the interior surface of the passageway through the orifice. In a further embodiment, illustrated more particularly in

FIG. 10

, the exit is formed with a conical portion


68


diverging from the intermediate section


66


, similar to the flared walls of the conical portion


64


at the entrance. This conical portion


68


minimizes vibrations of the fiber from gas passing through the orifice, which would otherwise tend to cut off the fiber bundles.




The interior surface


70


of the passageway is also preferably finished with a mirror finish. A mirror finish assists in smooth insertion of the fiber bundles through the orifice.




The material of the orifices is selected to have a low reactivity with both the molten metal and the inorganic fiber bundles. Preferably, the orifices are formed from stainless steel, tantalum, molybdenum, platinum, tungsten, or sintered zirconia-ceramic-based materials.




In a still further embodiment of the present invention, the apparatus includes a pressure chamber


72


and a bath container


74


for a molten metal


76


. See FIG.


11


. The bath container


74


is heated by a heater


78


and is equipped with an entering orifice


80


and an intermediate orifice


82


for passing inorganic fiber bundles


84


through the bath container. The orifices


80


,


82


are respectively connected to an entering orifice


86


and an exit orifice


88


of the pressure chamber


72


. The pressure in the pressure chamber is sufficiently low, for example, from 20 to 50 psi, to more readily control or prevent any blow out of the molten material through the orifices. An ultrasonic wave generating device


90


is connected to the pressure chamber


72


with a vibration-emitting transducer, the end


92


of which is immersed in the molten metal


76


. The end is made of a ceramic material that does not react with the molten metal. The ultrasonic wave generating device is connected to a controller


94


for vibration frequency, output, etc. The pressure chamber


72


is supplied with a non-reacting gas such as argon or nitrogen from a gas supply source


95


so that the interior of the pressure chamber


72


is kept at a preset pressure in order to pressurize the molten metal during metal infiltration. If necessary, cooling water W may be passed through the sealing part


91


of the pressure chamber


72


as well as the ultrasonic wave generating device


90


.




In operation of the apparatus of the present invention, inorganic fiber bundles


84


that have been freed of sizing materials are continuously fed from a delivery bobbin


83


through the entering orifice


80


into the bath container


74


where they are brought into contact with the molten metal


76


. Because both the inorganic fiber bundles


84


and the molten metal


76


are under the application of the ultrasonic vibration, the molten metal


76


can infiltrate more readily into the bundles of inorganic fibers. Accordingly, inorganic fiber bundles are fully infiltrated by the metal, forming a fiber-reinforced metal matrix composite wire


96


, which is discharged out of the apparatus through the exit orifice


82


and then taken up by the winding bobbin


85


.




Using the apparatus of the present invention, various kinds of fiber-reinforced composite wire


96


can be produced depending on the combination of bundles of inorganic fibers


84


and molten metal


76


used. The bundles of inorganic fibers may be of carbon fibers; of ceramic fibers made of boron oxide, aluminum oxide, silicon carbide, or other ceramic materials; or of metal fibers made of tungsten or other metals. The molten metal may be aluminum, titanium, chromium, cobalt, zinc, tin, copper or their alloys; or superalloys of nickel, chromium, or cobalt.




The present invention will be further described in the following operational example with and without the application of ultrasonic vibration.




Desized carbon fiber bundles were directly fed into the apparatus of

FIG. 11

, where they were infiltrated by copper to produce copper-infiltrated bundles of carbon fibers. The infiltration conditions of the carbon fiber bundles were inspected for each run as both the wire-processing speed and the infiltration pressure were varied systematically.

FIG. 12

illustrates the results, in which the broken line A indicates an approximate boundary between good copper-infiltration runs (indicated by filled circles) and insufficient copper-infiltration runs (indicated by squares).




Using the apparatus shown in

FIG. 11

, desized carbon fiber bundles were continuously immersed into molten copper under application of ultrasonic vibration having an output of 1.5 kW at a frequency of 20 kHz to produce copper-coated carbon fiber bundles. The same infiltration inspections as the above-mentioned comparative example revealed, as illustrated in

FIG. 13

, that the boundary line shifted from a line indicated by A (without the application of ultrasonic vibration) to a line indicated by A′ (under the application of ultrasonic vibration), implying that the metal infiltration is promoted by ultrasonic vibration, which in turn leads to a cost reduction associated with the consumption of the pressurizing gas as well as the required strength and the fabrication of the pressure chamber, and an improvement in the durability of the whole apparatus.




The invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.



Claims
  • 1. An apparatus for continuous pressure infiltration of metal into fiber bundles comprising:a pressure chamber housing a bath container; an entering orifice at an inlet at a bottom of the bath container; an intermediate orifice between the bath container and the pressure chamber; an exit orifice at an outlet at a top of the pressure chamber; the entering orifice, the intermediate orifice, and the exit orifice defining an upwardly directed path for the fiber bundles; an enlarged diameter section formed at an entrance end of each of the entering orifice, the intermediate orifice, and the exit orifice; and an enlarged diameter section formed at an exit end of the exit orifice sufficient to minimize vibrations of fiber bundles from gas passing through the exit orifice.
  • 2. The apparatus of claim 1, wherein the orifices are formed from at least one material that has a low reactivity with both molten metal and the fiber bundles, the material comprising stainless steel, tantalum, molybdenum, platinum, tungsten, or sintered zirconia-ceramic-based materials.
  • 3. The apparatus of claim 1, wherein passageways through each orifice are formed with a mirror finish.
  • 4. The apparatus of claim 1, further comprising an enlarged diameter section formed at an exit end of each of the entering orifice and the intermediate orifice.
  • 5. The apparatus of claim 4, wherein the enlarged diameter section comprises flared walls.
  • 6. The apparatus of claim 4, wherein the enlarged diameter section comprises a tapered passageway.
  • 7. The apparatus of claim 1, wherein the enlarged diameter section comprises flared walls.
  • 8. The apparatus of claim 1, wherein the enlarged diameter section comprises a tapered passageway.
  • 9. An apparatus for the production of a fiber-reinforced metal matrix composite wire comprising:a pressure chamber housing a bath container for holding a molten metal, an entering orifice at an inlet to the bath container, an intermediate orifice at an outlet of the bath container, and an exit orifice at an outlet of the pressure chamber, the orifices sized for passage of inorganic fiber bundles; an ultrasonic wave generating device including a ceramic portion for applying ultrasonic vibration to the molten metal under pressure in the bath container, the ceramic portion penetrating through a seal in the pressure chamber; a gas supply source for supplying a non-reacting gas into both the pressure chamber and the bath container; and a conveying device for transporting and winding an inorganic fiber-reinforced metal matrix composite wire.
  • 10. The apparatus of claim 9, wherein the pressure chamber is maintained at a pressure sufficiently low to prevent blow out of molten material through the orifices.
  • 11. The apparatus of claim 9, wherein the pressure chamber is maintained at a pressure no greater than 50 psi.
  • 12. A method for the production of a fiber-reinforced metal matrix composite wire comprising:providing an apparatus comprising a pressure chamber housing a bath container for holding a molten metal, an entering orifice at an inlet to the bath container, an intermediate orifice at an outlet of the bath container, and an exit orifice at an outlet of the pressure chamber, the orifices sized for passage of inorganic fiber bundles, and an ultrasonic wave generating device including a ceramic portion penetrating through a seal in the pressure chamber; continuously transporting the inorganic fiber bundles through the apparatus; infiltrating under pressure the molten metal into the inorganic fiber bundles; and applying ultrasonic vibration to the molten metal under pressure in the bath container.
  • 13. The method of claim 12, further comprising providing the inorganic fiber bundles as boron fibers, carbon fibers, ceramic fibers, or metal fibers.
  • 14. The method of claim 13, wherein the ceramic fiber bundles comprise fibers of aluminum oxide or silicon carbide.
  • 15. The method of claim 13, wherein the metal fiber bundles comprise tungsten fibers.
  • 16. The method of claim 12, wherein in the infiltrating step, the molten metal comprises aluminum, an aluminum alloy, titanium, a titanium alloy, chromium, a chromium alloy, cobalt, a cobalt alloy, zinc, a zinc alloy, tin, a tin alloy, copper, a copper alloy, a superalloy of nickel, a superalloy of chromium, or a superalloy of cobalt.
  • 17. The method of claim 12, wherein the pressure chamber is maintained at a pressure sufficiently low to prevent blow out of molten material through the orifices.
  • 18. The method of claim 12, wherein the pressure chamber is maintained at a pressure no greater than 50 psi.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/194,529, filed on Apr. 4, 2000, the disclosure of which is incorporated by reference herein.

US Referenced Citations (13)
Number Name Date Kind
3090352 Knapp May 1963 A
3654897 Trattner et al. Apr 1972 A
4082864 Kendall et al. Apr 1978 A
4659593 Rocher et al. Apr 1987 A
4779563 Ishikawa et al. Oct 1988 A
4948406 Kornmann Aug 1990 A
5736199 Blucher Apr 1998 A
6035925 Blucher Mar 2000 A
6245425 McCullough et al. Jun 2001 B1
6329056 Deve et al. Dec 2001 B1
6460597 McCullough et al. Oct 2002 B1
6485796 Carpenter et al. Nov 2002 B1
6524658 Murofushi et al. Feb 2003 B2
Foreign Referenced Citations (6)
Number Date Country
0436807 Jul 1991 EP
0 436 807 Jul 1991 EP
01145352 Jun 1989 JP
1-145352 Jun 1989 JP
04176851 Jun 1992 JP
8-176701 Jul 1996 JP
Provisional Applications (1)
Number Date Country
60/194529 Apr 2000 US