The present invention relates to a method and an apparatus for manufacturing a rolling die when manufacturing an hourglass worm.
A reduction gear mechanism using an hourglass worm is known in the art. The hourglass worm has more teeth that mate with a cylindrical worm than a worm wheel, and is thus used for vehicles, for example, in small-size motors, which incorporate reduction gear mechanisms, and high-load reduction gears.
Generally, an hourglass worm is manufactured through a cutting process performed by a screw cutting machine or a gear hobbing machine and the like, or a grinding process using a grindstone. However, in such processing methods, the processing time is long, and is difficult to produce the hourglass worm in large quantities. A rolling process using a die is thus performed to produce the hourglass worm in large quantities. Japanese Laid-Open Patent Publication No. 2003-320434 describes a method for manufacturing a die used in rolling.
The above publication describes a method for manufacturing a circular die. The circular die is manufactured by forming teeth grooves to roll an hourglass worm on the peripheral surface of a disk-shaped workpiece using a rotary tool (rotary grindstone). The workpiece is formed so that when viewing a cross-section of the workpiece that includes the workpiece axis, the peripheral surface is arcuate and projects radially outward with a radius of curvature equal to that of the round surface at the teeth roots of an hourglass worm.
The rotary tool is attached to an oscillating unit supported by two oscillating arms. More specifically, two holders projecting towards the workpiece are arranged in the oscillating unit. The rotary tool is rotatably supported by the holders. A drive motor for rotating the rotary tool is mounted on one of the holders. An auxiliary motor for inclining the rotary tool is mounted on the oscillating unit at the surface opposite the workpiece so that the axis of the rotary tool inclines with respect to the axis of the workpiece by the lead angle of the hourglass worm.
When forming the teeth grooves for rolling an hourglass worm on the peripheral surface of a workpiece, the rotary tool and the workpiece are rotated with the axis of the rotary tool inclined relative to the axis of the workpiece by an amount equivalent to the lead angle of the hourglass worm. Simultaneously, the oscillating arms oscillate the oscillating unit about the center of curvature of the arc on the peripheral surface of the workpiece in synchronization with the rotation of the workpiece. This oscillates the rotary tool about the center of curvature of the arc. Further, the rotary tool is fed towards the workpiece by extending or retracting the oscillating arms or the holders. Therefore, the teeth grooves for rolling an hourglass worm is formed on the peripheral surface of the workpiece by oscillating the rotary tool in a reciprocating manner within the thickness range of the workpiece, while rotating the workpiece in forward and reverse directions in a state in which the inclination of the rotary tool is kept constant.
However, in the circular die manufacturing method described in the above publication, the rotary tool is rotated and oscillated by the oscillating unit in addition to being fed towards the workpiece to form the teeth grooves on the die. Thus, error caused by rotation of the rotary tool, error caused by oscillation of the tool, and processing error caused by feeding the tool are cumulative. This may increase the pitch error of the teeth grooves formed on the peripheral surface of the workpiece. The hourglass worm of a small-size motor requires high accuracy. Thus, it is desirable that the hourglass worm be manufactured with a circular die that is highly accurate.
It is an object of the present invention to provide a method and an apparatus for manufacturing an hourglass worm rolling die that improves the processing accuracy.
One aspect of the present invention is a method for manufacturing a die for rolling an hourglass worm. The hourglass worm includes a curved root surface with a cross-section extending along an axis of the hourglass worm that defines an arc. The method includes the steps of rotating a disk-shaped workpiece about an axis of the workpiece, the workpiece including a peripheral surface with a cross-section extending along the axis of the workpiece that defines an arc corresponding to the arc of the root surface of the hourglass worm, rotating a rotary grindstone about an axis of the rotary grindstone, inclining the axis of the rotary grindstone relative to the axis of the workpiece by a lead angle of the hourglass worm, moving the workpiece relative to the rotary grindstone so that the workpiece, when viewed from the rotary grindstone, swings about a reference axis substantially perpendicular to the axis of the workpiece and extends substantially through a center of curvature of the arc defined on the peripheral surface of the workpiece, and forming teeth grooves, for rolling the hourglass worm, on the peripheral surface of the workpiece by rotating and pressing the rotary grindstone against the peripheral surface of the workpiece while moving the workpiece with respect to the rotary grindstone in synchronism with the rotation of the workpiece.
A further aspect of the present invention is an apparatus for manufacturing a die for rolling an hourglass worm. The hourglass worm includes a curved root surface with a cross-section extending along an axis of the hourglass worm that defines an arc. The apparatus includes a swing table swingable about a swing axis. A movement table is movably mounted on the swing table. A workpiece shaft is arranged on the movement table. The workpiece shaft rotates a disk-shaped workpiece about an axis of the workpiece. The axis of the workpiece is substantially perpendicular to a swing axis of the swing table. The workpiece includes a peripheral surface with a cross-section extending along the axis of the workpiece that defines an arc substantially identical to the arc of the root surface of the hourglass worm. The movement table is arranged so that the swing axis of the swing table extends substantially through a center of curvature of the arc defined on the peripheral surface of the workpiece. A rotary grindstone forms teeth grooves, for rolling the hourglass worm, on the peripheral surface of the workpiece. An axis of the rotary grindstone is inclined relative to the axis of the workpiece by a lead angle of the hourglass worm. The rotary grindstone is movable towards or away from the center of curvature of the arc defined on the peripheral surface of the workpiece. A synchronization mechanism swings the swing table in synchronism with the rotation of the workpiece shaft.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
A first embodiment of the present invention will now be described with reference to the drawings.
The motor 2 will be now described. As shown in
When drive current from an external device is supplied to the motor portion 11, the drive current flows via the brush 19 and the commutator 18 to a wire wound around the armature 16. The armature 16 (rotary shaft 17) is then rotated, that is, the motor portion 11 is rotatably driven based on the supply of the drive current.
The reduction gear portion 12 includes a gear housing 21, a worm shaft 3, a worm wheel 22, and an output shaft 23. The worm shaft 3 and the worm wheel 22 are accommodated in the gear housing 21. As shown in
As shown in
The motor portion 11 and the reduction gear portion 12 are coupled to each other by attaching the yoke 14 to the gear housing 21. Further, the rotary shaft 17 of the armature 16 is connected to the worm shaft 3 by the clutch 13. The clutch 13 includes a driving side rotating body 24, which is attached to the distal end of the rotary shaft 17, located on the side closer to the reduction gear portion 12, and the driven side rotating body 3b. The clutch 13 transmits the rotation of the driving side rotating body 24, driven by the motor portion 11, to the driven side rotating body 3b and rotates the worm shaft 3. The speed of the rotation is reduced by the hourglass worm 4 and the worm wheel 22. Then, the rotation is output from the output shaft 23 to the window regulator. If a load that rotates the output shaft 23 is applied from the window regulator when the motor 2 is stopped, the clutch 13 functions to lock the driven side rotating body 3b and restrict the rotation of the output shaft 23.
The rolling die 5 will now be described. As shown in
The structure of the manufacturing apparatus 1 will now be described. As shown in
As shown in
The slide table 32 is mounted on the upper surface of the swing table 31 with a slide mechanism 51 arranged in between. The slide mechanism 51 is formed by a ball screw, which includes a screw shaft 51a and a nut 51b, which is movably connected to the screw shaft 51a. The screw shaft 51a extends parallel to the swing table 31 above the swing table 31. A holding member 52 is attached to the swing table 31, and a bearing 53 is fitted in the holding member 52. One end of the screw shaft 51a is rotatably supported by the bearing 53, and the other end is connected to a slide table drive motor 54 (refer to
The slide table 32 is attached on the upper part of the nut 51b so as to be parallel to the swing table 31 and moves integrally with the nut 51b. Therefore, when the slide table drive motor 54 is driven, the screw shaft 51a is rotated in accordance with the driven direction. When the screw shaft 51a is rotated, the rotation slides (moves) the nut 51b in a direction corresponding to the rotation direction and along the axial direction of the screw shaft 51a. When the nut 51b slides, the slide table 32 moves integrally with the nut 51b.
A pair of support members 61 and 62 (refer to
As shown in
The grindstone base 72 is arranged so that the rotary grindstone 34, which is attached to the grindstone shaft 73, contacts the peripheral surface 70a of the workpiece 70 from the radial outward side of the workpiece 70. When the grindstone base drive motor 76 (refer to
As shown in
A spindle for rotating a workpiece 85 is connected to the spindle drive motor 82. The spindle drive motor 82 generates rotation in accordance with a signal output from the numerical control panel 81. This rotates the spindle, or the workpiece 85. Further, an encoder 86 is included in the spindle drive motor 82. The encoder 86 sends a signal corresponding to the rotation state of the spindle drive motor 82 to the numerical control panel 81. Based on the signal, the numerical control panel 81 determines the rotation state of the spindle drive motor 82, that is, the number of rotations, the rotation speed, and the rotation position, and accordingly controls the spindle drive motor 82.
The table 37, to which the workpiece 85 is attached, is connected to the table drive motor 83. The table drive motor 83 generates rotation in accordance with a signal output from the numerical control panel 81 to move the table 37. An encoder 87 is included in the table drive motor 83 to send a signal, which corresponds to the rotation state of the table drive motor 83, to the numerical control panel 81. Based on the signal, the numerical control panel 81 determines the rotation state of the table drive motor 83, that is, the number of rotations, the rotation speed, and the rotation position, and accordingly controls the table drive motor 83. A linear scale 88 is included in the table 37 to send a signal, which corresponds to the position of the table 37, to the numerical control panel 81. The numerical control panel 81 determines the position of the table 37 based on the signal.
The grindstone base 72 is connected to the grindstone base drive motor 76. The grindstone base drive motor 76 generates rotation in accordance with a signal output from the numerical control panel 81 to move the grindstone base 72. This feeds a rotary grindstone 91 towards the workpiece 85. An encoder 89 is included in the grindstone base drive motor 76 to send a signal, which corresponds to the rotation state of the grindstone base drive motor 76, to the numerical control panel 81. The numerical control panel 81 determines the rotation state of the grindstone base drive motor 76, such as, the number of rotations, the rotation speed, and the rotation position, and accordingly controls the grindstone base drive motor 76. A linear scale 90 is included in the grindstone base 72 to send a signal, which corresponds to the position of the grindstone base 72, to the numerical control panel 81. The numerical control panel 81 determines the position of the grindstone base 72 based on the signal and controls the amount the rotary grindstone 91 is fed towards the workpiece 85.
The grindstone drive motor 74 is connected to the numerical control panel 81 by an inverter 92. The rotary grindstone 91 is connected to the grindstone drive motor 74 by the grindstone shaft 73. The inverter rotates the grindstone drive motor 74 in accordance with the signal output from the numerical control panel 81 to rotate the grindstone shaft 73, or the rotary grindstone 91.
The grindstone shaft 73 is connected to the grindstone inclination motor 75. The grindstone inclination motor 75 generates rotation in accordance with a signal output from the numerical control panel 81 to swing the rotary grindstone 91 by the lead angle of the worm that is to be processed on the workpiece 85. An encoder 93 is included in the grindstone inclination motor 75 to send a signal corresponding to the rotation state of the grindstone inclination motor 75 to the numerical control panel 81. Based on the signal, the numerical control panel 81 determines the rotation, that is, the number of rotations, the rotation speed, and the rotation position of the grindstone inclination motor 75, and accordingly controls the grindstone inclination motor 75.
In the multi-purpose screw grinding machine 36 of the present embodiment, the workpiece shaft drive motor 63 is connected to the numerical control panel 81 in place of the spindle drive motor 82, as shown in
The method for manufacturing the rolling die 5 for rolling the hourglass worm 4 with the multi-purpose screw grinding machine 36 incorporating the above manufacturing apparatus 1 will now be described.
First, the workpiece 70 that is formed into the rolling die 5 will be described. As shown in FIGS. 8(a) and 8(b), the workpiece 70 is disk-shaped. The thickness of the workpiece 70 in the axial direction is equal to the axial length of the hourglass worm 4. The peripheral surface 70a of the workpiece 70 is arcuate and has a curvature radius R3 equal to the curvature radius R1 of the root surface at the teeth 4b of the hourglass worm 4 when viewed along a plane S2 that extends radially along the axis L3 of the workpiece 70. In other words, the peripheral surface 70a of the workpiece 70 is arcuate and identical to the arcuate root surface of the teeth 4b in the hourglass worm 4 as viewed on a cross-section including the axis L3 of the workpiece 70. That is, the peripheral surface 70a of the workpiece 70 of the present embodiment is arcuate and projects outwardly at a curvature equal to the curvature of the peripheral surface 5a of the rolling die 5, which is formed by processing the workpiece 70.
A method for manufacturing the rolling die 5 will now be described. As shown in
Subsequently, the numerical control panel 81 drives the workpiece shaft drive motor 63 and the grindstone drive motor 74 to rotate the workpiece 70 and the rotary grindstone 34. The numerical control panel 81 drives the workpiece shaft drive motor 63 and the swing shaft drive motor 45 so that the swing table 31 swings synchronously with the rotation of the workpiece 70 in the thicknesswise direction of the workpiece 70 about a swing axis (center of swing), which is the center of curvature O3 that coincides with the swing axis L5 of the swing shaft 39. That is, the numerical control panel 81 changes the position of the workpiece 70 with respect to the rotary grindstone 34 in synchronization with the rotation of the workpiece 70 so that the workpiece 70, when viewed from the rotary grindstone 34, swings about a reference axis that lies along the center of curvature O3 of the arcuate peripheral surface 70a. The reference axis is perpendicular to the axis L3 of the workpiece 70. In the present embodiment, the position of the workpiece 70 with respect to the rotary grindstone 34 is changed by swinging the swing table 31 about the swing axis L5 that coincides with the reference axis. The rotary grindstone 34 is then fed towards the workpiece 70 in the radial direction of the workpiece 70 by driving the grindstone base drive motor 76. In this manner, the rotary grindstone 34 is moved towards or away from the center of curvature O3 of the workpiece 70.
Thus, the teeth grooves 5b for forming the hourglass worm 4 is formed on the peripheral surface of the workpiece 70 by swinging the workpiece 70 in a reciprocating manner in the thicknesswise direction of the workpiece 70, that is, about the swing axis L5 with the axis L4 of the rotary grindstone 34 inclined by the lead angle α of the hourglass worm 4 with respect to the axis L3 of the workpiece 70, and by rotating the workpiece 70 about the axis L3 in forward and reverse directions.
When manufacturing the worm shaft 3 including the hourglass worm 4 with the rolling die 5 manufactured through the above manufacturing method, before the formation of the hourglass worm 4, the worm shaft 3 is arranged between the pair of rolling dies 5, as shown in
The first embodiment has the advantages described below.
(1) The swinging operation necessary for forming the teeth grooves 5b, which form the hourglass worm 4 on the peripheral surface of the workpiece 70, is performed by swinging the workpiece 70. The teeth grooves 5b, which form the hourglass worm 4, are formed by feeding the rotary grindstone 34 towards the workpiece 70 in the radial direction of the workpiece 70. Thus, compared to when swinging and moving (feeding) only either the workpiece 70 or the rotary grindstone 34, the occurrence of cumulative error is suppressed. This improves the accuracy of the manufactured hourglass worm rolling die 5, which in turn, improves the accuracy of the hourglass worm 4 manufactured by the rolling die 5.
(2) The manufacturing apparatus 1 is mounted on the table 37 of the multi-purpose screw grinding machine 36. Thus, since the multi-purpose screw grinding machine 36 is employed when using the manufacturing apparatus 1, a completely new device does not need to be manufactured from scratch. This prevents the manufacturing cost of the manufacturing apparatus 1 from being increased.
(3) The manufacturing apparatus 1 includes the slide table 32 that coincides the swing axis L5 of the swing shaft 39 and the swing axis (center of curvature O3) of the workpiece 70. Thus, the swing axis L5 of the swing shaft 39 and the swing axis of the workpiece 70 may be coincided regardless of the size of the workpiece 70 and the curvature of the peripheral surface 70a. Therefore, the workpiece 70 may have any size and curvature radius R3 when manufacturing the rolling die 5. Further, the workpiece 70 swings about the center of curvature O3, which is the swing axis, by simply sliding the slide table 32 and coinciding the swing axis L5 of the swing shaft 39 with the center of curvature O3 of the peripheral surface 70a of the workpiece 70 in the plane S3.
(4) The workpiece shaft 33 is driven by the workpiece shaft drive motor 63 arranged on the swing table 31. Therefore, the workpiece shaft 33 is rotated by the workpiece shaft drive motor 63 even if connection of the workpiece shaft 33 to a drive mechanism (e.g., spindle) of the multi-purpose screw grinding machine 36 is difficult.
(5) The workpiece shaft drive motor 63, the swing shaft drive motor 45, and the slide table drive motor 54 are connected to a vacant control axis in the numerical control panel 81. Therefore, the workpiece shaft drive motor 63, the swing shaft drive motor 45, and the slide table drive motor 54 are driven without modifying the numerical control panel 81 to operate the manufacturing apparatus 1.
A second embodiment of the present invention will now be described with reference to the drawings. To avoid redundancy, like or same reference numerals are given to those components that are the same or similar in the first embodiment.
As shown in
As shown in
As shown in
As shown in
The position control of the workpiece 70 and the rotary grindstone 34 executed by the numerical control panel 81 will now be described with reference to
The rotation amount (rotation angle) of the workpiece is represented by θ. The workpiece 70 swings (the swing shaft 39 pivots) in synchronization with the rotation of the workpiece 70 (rotation of the workpiece shaft 33) in the same manner as in the first embodiment. Thus, the swing amount (swing angle) of the workpiece 70 is a function of the rotation amount θ of the workpiece 70. The swing amount of the workpiece 70 is expressed as B(θ)[°]. The swing amount B(θ) of the workpiece 70 is an angle obtained by using as a reference (B(θ)=0), the position of the workpiece 70 before it swings, that is, the angle of the workpiece 70 when it is attached to the workpiece shaft 33. The state satisfying B(θ)=0 is a state in which the axis L3 of the workpiece 70 is parallel to the axis L4 of the rotary grindstone 34 when viewing the workpiece 70 and the rotary grindstone 34 from above, as shown in the state of
Δx(θ)=D·(1−cos B(θ)
Δz(θ)=D·sin B(θ)
The numerical control panel 81 obtains Δx(θ) and Δz(θ) through the above equations using the swing amount B(θ) of the workpiece 70, feeds the rotary grindstone 34 towards the workpiece 70 by x(θ)+Δx(θ), and slides the workpiece 70 by Δz(θ) in a direction orthogonal to the direction the rotary grindstone 34 is fed in accordance with the swing amount B(θ) of the workpiece 70. The center of curvature O3 is moved by Δx(θ) in the direction the rotary grindstone 34 is fed. The intersection point P2 is moved by Δz(θ) in a direction orthogonal to the direction the rotary grindstone 34 is fed (intersection point P2 after movement is shown as P3 in
A method for manufacturing the rolling die 5 with the manufacturing apparatus 200 will now be described.
First, as shown in
Subsequently, the numerical control panel 81 drives the workpiece shaft drive motor 63 and the grindstone drive motor 74 to rotate the workpiece 70 and the rotary grindstone 34. The numerical control panel 81 controls the workpiece shaft drive motor 63 and the swing shaft drive motor 45 so that the swing table 31 is swings in synchronization with the rotation of the workpiece 70. The numerical control panel 81 determines the swing amount B(θ) of the workpiece 70 based on the signal input from the encoder 96 arranged in the swing shaft drive motor 45. The numerical control panel 81 then drives the table drive motor 83 and the grindstone base drive motor 76 in accordance with the detected swing amount B(θ) of the workpiece 70 to move the table 37 by Δz(θ) and to move the grindstone base 72 by x(θ)+Δx(θ). This feeds the rotary grindstone 34 towards the workpiece 70 by x(θ)+Δx(θ) and slides the workpiece 70 by Δz(θ). Therefore, the position of the rotary grindstone 34 relative to the workpiece 70 corresponding to the swing amount of the workpiece 70 swung about the intersection point P2 is the same as the position of the rotary grindstone 34 relative to the workpiece 70 corresponding to the swing amount of the workpiece 70 swung about the center of curvature O3 of the peripheral surface 70a of the workpiece 70. That is, the numerical control panel 81 changes the position of the workpiece 70 with respect to the rotary grindstone 34 in synchronization with the rotation of the workpiece 70 so that the workpiece 70, when viewed from the rotary grindstone 34, swings about the reference axis extending through the center of curvature O3 of the circular arc of the peripheral surface 70a. The reference axis is perpendicular to the axis L3 of the workpiece 70. In the present embodiment, the swing table 31 supporting the workpiece 70 is swung about the swing axis L5, which is separated from the reference axis. Thus, the numerical control panel 81 controls the movement (i.e., slide) of the swing table 31 and the movement of the rotary grindstone 34 in accordance with the swing of the swing table 31. The movement direction (i.e., sliding direction) of the swing table 31 is orthogonal to the movement direction of the rotary grindstone 34.
In this manner, the teeth grooves 5b for forming the hourglass worm 4 is formed on the peripheral surface of the workpiece 70 by swinging the workpiece 70 in a reciprocating manner in the thicknesswise direction about the swing axis L5 while maintaining the axis L4 of the rotary grindstone 34 inclined with respect to the axis L3 of the workpiece 70 by the lead angle α of the hourglass worm 4, and by rotating the workpiece 70 about the axis L8 in the forward and reverse directions.
In addition to advantages (1) and (4) of the first embodiment, the second embodiment has the advantages described below.
(1) The numerical control panel 81 controls the position of the workpiece 70 and the rotary grindstone 34 in accordance with the rotation amount θ of the workpiece 70 so that the position of the rotary grindstone 34 relative to the workpiece 70 swung about the intersection point P2 is the same as the position of the rotary grindstone 34 relative to the workpiece 70 swung about the center of curvature O3 of the peripheral surface 70a of the workpiece 70. Therefore, even if the swing shaft 39 is arranged so that its swing axis L5 extends through the intersection point P2 of the axis L3 of the workpiece 70 and the center line L9 extends through the thickness direction of the workpiece 70 and the workpiece 70 is swung about the intersection point P2, the teeth grooves 5b, which form the hourglass worm 4, is formed on the peripheral surface 70a of the workpiece 70 in the same manner as when the workpiece 70 is swung about the center of curvature O3.
(2) The intersection point P2 of the axis L3 of the workpiece 70 and the center line L9 extending through the center of the workpiece 70 in the thicknesswise direction is the center point of the workpiece 70. Since the swing axis L5 of the swing shaft 39 extends through the center point of the workpiece 70, the workpiece 70 swings more stably. This improves the accuracy of the rolling die 5 manufactured by the manufacturing apparatus 200.
(3) In the manufacturing apparatus 200, the axis L8 of the workpiece shaft 33 and the swing axis L5 of the swing shaft 39 are orthogonal to each other. Thus, when the workpiece 70 is attached to the workpiece shaft 33, the swing axis L5 of the swing shaft 39 extends through the intersection point P2 of the axis L3 of the workpiece 70, and the center line L9 extends through the center of the workpiece 70 in the thicknesswise direction. Therefore, unlike the manufacturing apparatus 1 of the first embodiment, the swing axis L5 of the swing shaft 39 does not need to coincide with the center of curvature O3 of the peripheral surface 70a of the workpiece 70 in the plane S3 that extends through the axis L3 of the workpiece 70 and that is parallel to the swing table 31 when sliding the slide table 32. As a result, the manufacturing time for the rolling die 5 is shortened.
As long as the workpiece 70 has a diameter supportable by the workpiece shaft 33 and is attached to the workpiece shaft 33, the swing axis L5 of the swing shaft 39 extends through the intersection point P2 (intersection point of the axis L3 of the workpiece 70 and the center line L9 passing through the center in the thickness direction of the workpiece 70). Therefore, the teeth grooves 5b, which form the hourglass worm 4, is formed on the peripheral surface 70a of the workpiece 70 having any size or any curvature as long as the workpiece 70 is within a range supportable by the workpiece shaft 33.
Further, in the manufacturing apparatus 200, the manufacturing apparatus 200 is easily assembled if the axis L8 of the workpiece shaft 33 and the swing axis L5 of the swing shaft 39 are orthogonal to each other.
(4) The manufacturing apparatus 200 of the second embodiment has a structure in which the slide table 32 in the manufacturing apparatus 1 of the first embodiment is eliminated. Therefore, the manufacturing apparatus 200 may be more compact compared to the manufacturing apparatus 1 of the first embodiment. Further, when the manufacturing apparatus 200 has the same size as the manufacturing apparatus 1, a larger rolling die 5 may be manufactured due to the elimination of the slide table 32. Since the slide table 32 is eliminated, the manufacturing apparatus 200 has a simpler structure than the manufacturing apparatus 1 of the first embodiment and maintenance work is easier to perform than the manufacturing apparatus 1.
(5) The workpiece shaft drive motor 63 and the swing shaft drive motor 45 are connected to the available control shaft existing in the numerical control panel 81. Therefore, the workpiece shaft drive motor 63, the swing shaft drive motor 45, and the slide table drive motor 54 are driven without modifying the numerical control panel 81 to operate the manufacturing apparatus 1.
(6) The numerical control panel 81 determines the positions of the grindstone base 72 and the table 37, which are moved when processing the workpiece 70, based on the signals input from the linear scale 88 and the linear scale 90 and accordingly controls the table drive motor 83 and the grindstone base drive motor 76. Therefore, in addition to the signals from the encoders 87 and 89 representing the rotation state of the table drive motor 83 and the grindstone base drive motor 76, the linear scales 88 and 90 directly detecting the positions of the moved table 37 and grindstone base 72 are used so that the numerical control panel 81 executes the position control of the table 37 and the grindstone base 72 with further accuracy. As a result, the accuracy of the rolling die 5 manufactured in the manufacturing apparatus 200 is further improved.
(7) When swinging the workpiece 70 about the intersection point P2, the swing angle of the workpiece 70 necessary for processing the workpiece 70 is smaller compared to when swinging the workpiece 70 about the center of curvature O3 of the peripheral surface 70a. Therefore, the manufacturing time of the rolling die 5 is shortened.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the present invention may be embodied in the following forms.
In the first and the second embodiments, the workpiece shaft 33 is rotated by the workpiece shaft drive motor 63, which is arranged on the swing table 31. However, the present invention is not limited to such arrangement. For example, as shown by the broken line in
In the first and the second embodiments, the manufacturing apparatus 1, 200 is attached to the table 37 of the multi-purpose screw grinding machine 36. However, the present invention is not limited to such arrangement. For example, an exclusive device for operating the manufacturing apparatus 1 may be employed.
In the first and the second embodiments, the numerical control panel 81 is used as a synchronization mechanism for synchronizing the rotation of the workpiece shaft 33 and the swinging of the swing shaft 39. However, the present invention is not limited to such arrangement. For example, gears may be combined to synchronize the rotation of the workpiece shaft 33 and the swinging of the swing shaft 39.
In the first and the second embodiments, the inverter 92 controls the rotation speed of the rotary grindstone 34 or 91 with the grindstone drive motor 74. However, the present invention is not limited to such arrangement. For example, the grindstone drive motor 74 may be a motor including an encoder like the grindstone base drive motor 76. In this case, the numerical control panel 81 controls the grindstone drive motor 74 based on a signal corresponding to the rotation state of the grindstone drive motor 74 output from the encoder.
In the second embodiment, the workpiece 70 swings about the intersection point P2 of the axis L3 of the workpiece 70 and the center line L9 extending through the center in the thicknesswise direction of the workpiece 70. However, the present invention is not limited to such arrangement. The workpiece 70 may swing about a position separated from the center of curvature O3 of the peripheral surface 70a of the workpiece 70. That is, the swing shaft 39 may be arranged so that the swing axis L5 of the swing shaft 39 is separated from the center of curvature O3 of the peripheral surface 70a of the workpiece 70. In this case, the numerical control panel 81 also controls the positions of the workpiece 70 and the rotary grindstone 34 in accordance with the rotation amount θ of the workpiece 70 so that the position of the rotary grindstone 34 relative to the workpiece 70 swung about the position separated from the center of curvature O3 is the same as the position of the rotary grindstone 34 relative to the workpiece 70 swung about the center of curvature O3. When configured in this manner, the degree of freedom of the arrangement position of the swing shaft 39 increases. When the swing shaft 39 is arranged so that the center line L9, which extends through the center in the thicknesswise direction of the workpiece 70, and the swing axis L5 of the swing shaft 39 are orthogonal to each other, the position control of the table 37 and the rotary grindstone 34 performed by the numerical control panel 81 is facilitated. Further, the numerical control panel 81 calculates and controls the position of the workpiece 70 and the feed amount of the rotary grindstone 34 so that the position of the workpiece 70 relative to the rotary grindstone 34 is the same as when swinging the workpiece 70 about the center of curvature O3 of the peripheral surface 70a of the workpiece 70. Thus, by simply changing the contents of the calculation performed in the numerical control panel 81, the rolling die including a cutaway part on the worm shaft 3 for forming may be manufactured without modifying the entire manufacturing apparatus 200.
In each embodiment, the workpiece 70 has an arcuate peripheral surface 70a that projects with the same curvature as the root surface of the hourglass worm 4. However, the shape of the workpiece 70 is not limited in such manner. As long as the workpiece 70 is disk-shaped, the workpiece 70 may be, for example, cylindrical. In this case, the swing axis of the workpiece 70 is set based on the center of curvature of the peripheral surface 5a of the rolling die 5 formed by processing the workpiece 70.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-170147 | Jun 2004 | JP | national |