Method and apparatus for manufacturing porous three-dimensional articles

Information

  • Patent Grant
  • 10189086
  • Patent Number
    10,189,086
  • Date Filed
    Tuesday, December 18, 2012
    12 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
Disclosed is a method for manufacturing three-dimensional articles with porosity. A model is created of a porous structure, said creating step comprising the steps of: defining a three-dimensional space comprising a predetermined pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts, moving each node in said three-dimensional space a randomized distance, which distance is less than a predetermined value and in a randomized direction, slicing said three-dimensional space into a predetermined number of two-dimensional layers with a predetermined thickness, slicing said three-dimensional article into two-dimensional layers with a predetermined thickness, applying one two-dimensional layer of said article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article, repeating said applying step for all two dimensional layers of said article, manufacturing the three-dimensional article with porosity according to the model by exposing fusible material to an energy source.
Description
BACKGROUND
Related Field

The present invention relates to a method and an apparatus for manufacturing a three-dimensional article with porosity.


Description of Related Art

Additive manufacturing is a method for forming three-dimensional articles through successive fusion of chosen parts of powder layers applied to a worktable.


Such an apparatus may comprise a work table on which said three-dimensional article is to be formed, a powder dispenser, arranged to lay down a thin layer of powder on the work table for the formation of a powder bed, an energy beam source for delivering energy to the powder whereby fusion of the powder takes place, elements for control of the energy given off by the energy beam source over said powder bed for the formation of a cross section of said three-dimensional article through fusion of parts of said powder bed, and a controlling computer, in which information is stored concerning consecutive cross sections of the three-dimensional article. A three-dimensional article is formed through consecutive fusions of consecutively formed cross sections of powder layers, successively laid down by the powder dispenser.


Three-dimensional network structures may be used in body implant articles such as bone replacements. In recent years artificial bone implants may have a solid core with a surface layer having a network structure. Said network structure improves the bone/tissue in-growth capability and thereby strengthens the connection between the human bone and the artificial bone implant. The material used in said network structures may for instance be Titanium, which is a well proven material to be compatible with the human body tissue. Titanium is a relatively light and strong material. An implant may efficiently aggregate to the human body if the network structure is as human like as possible.


One way of enhancing the effectiveness of an orthopedic implant may be to randomize the porous structure of an implant so it better simulates trabecular structures in which it is implanted. One way of doing so is disclosed in WO 2011/060312 relating to a controlled randomized porous structures and methods for making the same. In said document it is disclosed a method for randomizing the network structure in order to meet the above mentioned needs. WO 2011/060312 discloses a method for seamlessly joining randomized units with improved porosity without sacrificing the strength of the final implant article.


One problem with said solution is that the manufacturing process is relatively CPU and memory consuming. Another problem with said solution is that there is some degree of periodicity in the porosity of the final article which may cause mechanical strength limitations.


BRIEF SUMMARY

An object of the invention is to provide a method for an additive manufacturing process for manufacturing three dimensional articles with improved randomized porosity while minimizing the CPU and memory usage.


The above mentioned object is achieved by the features in the method according to claim 1.


In a first aspect of the invention it is provided a method for manufacturing a porous three-dimensional article. Said method comprising the steps of creating a model of a non-porous three-dimensional article comprising a predetermined number of two-dimensional layers with a predetermined thickness, creating a model of a porous structure comprising the steps of:

    • defining a three-dimensional space comprising a randomized pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts,
    • slicing said three-dimensional space into a predetermined number of two-dimensional layers with a predetermined thickness,
    • applying one two-dimensional layer of said model of non-porous three-dimensional article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article,
    • repeating said applying step for all non-porous two-dimensional layers of said article,
  • manufacturing the porous three-dimensional article by exposing fusible material to an energy source, so that a layer of fused material is corresponding to a porous two-dimensional layer of said article.


An advantage of the present invention is that a final porous three-dimensional article can be manufactured which has a porous structure which is randomized in every direction, i.e., the porosity lacks periodicity meaning that the mechanical strength of the porosity is equal in all directions.


In another example embodiment said randomized pattern is defined by moving a predetermined number of nodes in a regular pattern of tetrahedrons, cubes or dodecahedrons a randomized distance, which distance is less than a predetermined value and in a randomized direction.


In an example embodiment said predetermined number of nodes is all nodes.


In still another example embodiment said randomized pattern is defined by the steps of:

    • a. providing a predetermined number of nodes randomly in a 3-dimensional space of predetermined size,
    • b. determining a maximum number of neighbor nodes to a specific node,
    • c. skipping a number x of closest neighbors to said specific node where x is a random integer number being ≥0,
    • d. connecting each of said maximum neighbor nodes to said specific node with a strut,


      repeating step a-d for each node in the 3-D space.


In yet another example embodiment said randomized pattern is defined by the steps of:

    • a. providing randomly a predetermined number of nodes in said three-dimensional space,
    • b. providing said nodes in a Delauney-triangulation giving a predetermined number of Delauney-tetrahedrons,
    • c. providing a Voronoi diagram for each Delauny-tetrahedron connecting a centre of a circumsphere of the Delauny-tetrahedron with the centers of circumspheres for all neighbors of the Delauny-tetrahedron.


An advantage with these embodiments is that the randomized patterns are relatively quickly to produce with a relatively small amount of computer power.


In another example embodiment of the present invention said manufacturing step comprising the steps of:

    • a. providing a layer of powder material on a build platform,
    • b. adapting the thickness of the powder material layer to the thickness of the predetermined thickness of the two-dimensional layer of said article.


An advantage with this embodiment is that the model and manufacturing process are connected to each other resulting in a more precisely manufactured three-dimensional articles. In an example embodiment there may not be an exact correspondence between the thickness of the model layer and the thickness of the powder layer. There might be a scaling factor between the model layer and powder layer depending inter alia on the dimension of the powder particles and/or the type of powder used.


In another aspect of the present invention it is provided an apparatus for manufacturing a three-dimensional article with porosity comprising:

    • means for creating a model of a non-porous three-dimensional article comprising a predetermined number of two-dimensional layers with a predetermined thickness,
    • means for creating a model of a porous structure comprising the steps of:
      • defining a three-dimensional space comprising a randomized pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts,
      • slicing said three-dimensional space into a predetermined number of two-dimensional layers with a predetermined thickness,
      • applying one two-dimensional layer of said model of non-porous three-dimensional article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article,
      • repeating said applying step for all non-porous two-dimensional layers of said article,


        means for manufacturing the porous three-dimensional article by exposing fusible material to an energy source, so that a layer of fused material is corresponding to a porous two-dimensional layer of said article.


An advantage of the present inventive apparatus is that a final porous three-dimensional article can be manufactured which has a porous structure which is randomized in every direction, i.e., the porousity lacks periodicity meaning that the mechanical strength of the porousity is equal in all directions.





BRIEF DESCRIPTION OF THE FIGURES

The invention will be further described in the following, in a non-limiting way with reference to the accompanying drawings. Same characters of reference are employed to indicate corresponding similar parts throughout the several figures of the drawings:



FIG. 1 shows, in a schematic view, an example embodiment of a device for producing a three dimensional product, in which device the inventive method can be applied,



FIG. 2a depicts a regular 2-dimensional network,



FIG. 2b depicts a randomized 2-dimensional network,



FIG. 2c depicts a modified randomized 2-dimensional network,



FIG. 3 depicts a regular 3-dimensional network,



FIG. 4 depicts a single cube inside a regular 3-dimensional network and a displacement vector R,



FIG. 5 depicts a randomized 3-dimensional network,



FIG. 6 depicts a Boolean operation of a 2-dimensional article structure on a 2-dimensional randomized network structure,



FIGS. 7a-7c depict a slice taken out of a random 3-dimensional structure,





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


The term “three-dimensional structures” and the like as used herein refer generally to intended or actually fabricated three-dimensional configurations (e.g. of structural material or materials) that are intended to be used for a particular purpose. Such structures, etc. may, for example, be designed with the aid of a three-dimensional CAD system.


The term “electron beam” as used herein in various embodiments refers to any charged particle beam. The sources of charged particle beam can include an electron gun, a linear accelerator and so on.



FIG. 1 depicts an embodiment of a freeform fabrication or additive manufacturing apparatus 21 in which the inventive method according to the present invention may be implemented.


Said apparatus 21 comprising an electron beam gun 6; deflection coils 7; two powder hoppers 4, 14; a build platform 2; a build tank 10; a powder distributor 28; a powder bed 5; and a vacuum chamber 20.


The vacuum chamber 20 is capable of maintaining a vacuum environment by means of a vacuum system, which system may comprise a turbomolecular pump, a scroll pump, an ion pump and one or more valves which are well known to a skilled person in the art and therefore need no further explanation in this context. The vacuum system is controlled by a control unit 8.


The electron beam gun 6 is generating an electron beam which is used for melting or fusing together powder material provided on the build platform 2. At least a portion of the electron beam gun 6 may be provided in the vacuum chamber 20. The control unit 8 may be used for controlling and managing the electron beam emitted from the electron beam gun 6. At least one focusing coil (not shown), at least one deflection coil 7 and an electron beam power supply (not shown) may be electrically connected to said control unit 8. In an example embodiment of the invention said electron beam gun 6 generates a focusable electron beam with an accelerating voltage of about 15-60 kV and with a beam power in the range of 3-10 Kw. The pressure in the vacuum chamber may be 10−3 mBar or lower when building the three-dimensional article by fusing the powder layer by layer with the energy beam.


The powder hoppers 4, 14 comprise the powder material to be provided on the build platform 2 in the build tank 10. The powder material may for instance be pure metals or metal alloys such as titanium, titanium alloys, aluminum, aluminum alloys, stainless steel, Co—Cr—W alloy, etc.


The powder distributor 28 is arranged to lay down a thin layer of the powder material on the build platform 2. During a work cycle the build platform 2 will be lowered successively in relation to the ray gun after each added layer of powder material. In order to make this movement possible, the build platform 2 is in one embodiment of the invention arranged movably in vertical direction, i.e., in the direction indicated by arrow P. This means that the build platform 2 starts in an initial position, in which a first powder material layer of necessary thickness has been laid down. Means for lowering the build platform 2 may for instance be through a servo engine equipped with a gear, adjusting screws etc.


An energy beam may be directed over said build platform 2 causing said first powder layer to fuse in selected locations to form a first cross section of said three-dimensional article. The energy beam may be an electron beam or a particle beam. The beam is directed over said build platform 2 from instructions given by the control unit 8. In the control unit 8 instructions for how to control the beam gun for each layer of the three-dimensional article is stored.


After a first layer is finished, i.e., the fusion of powder material for making a first layer of the three-dimensional article, a second powder layer is provided on said build platform 2. The second powder layer is preferably distributed according to the same manner as the previous layer. However, there might be alternative methods in the same additive manufacturing machine for distributing powder onto the work table. For instance, a first layer may be provided by means of a first powder distributor 28, a second layer may be provided by another powder distributor. The design of the powder distributor is automatically changed according to instructions from the control unit 8. A powder distributor 28 in the form of a single rake system, i.e., where one rake is catching powder fallen down from both a left powder hopper 4 and a right powder hopper 14, the rake as such can change design.


After having distributed the second powder layer on the build platform 2, the energy beam is directed over said work table causing said second powder layer to fuse in selected locations to form a second cross section of said three-dimensional article. Fused portions in the second layer may be bonded to fused portions of said first layer. The fused portions in the first and second layer may be melted together by melting not only the powder in the uppermost layer but also remelting at least a fraction of a thickness of a layer directly below said uppermost layer.


In the case where an electron beam is used, it is necessary to consider the charge distribution that is created in the powder as the electrons hit the powder bed 5. The invention is, at least partly, based on the realization that the charge distribution density depends on the following parameters: beam current, electron velocity (which is given by the accelerating voltage), beam scanning velocity, powder material and electrical conductivity of the powder, i.e. mainly the electrical conductivity between the powder grains. The latter is in turn a function of several parameters, such as temperature, degree of sintering and powder grain size/size distribution.


Thus, for a given powder, i.e. a powder of a certain material with a certain grain size distribution, and a given accelerating voltage, it is possible, by varying the beam current (and thus the beam power) and the beam scanning velocity, to affect the charge distribution.


By varying these parameters in a controlled way, the electrical conductivity of the powder can gradually be increased by increasing the temperature of the powder. A powder that has a high temperature obtains a considerably higher conductivity which results in a lower density of the charge distribution since the charges quickly can diffuse over a large region. This effect is enhanced if the powder is allowed to be slightly sintered during the pre-heating process. When the conductivity has become sufficiently high, the powder can be fused together, i.e. melted or fully sintered, with predetermined values of the beam current and beam scanning velocity.


In a first embodiment of a method for manufacturing a porous three-dimensional article, a model is created of a non-porous three-dimensional article comprising a predetermined number of two-dimensional layers with a predetermined thickness. This non-porous model may for instance be made in a computer aided design (CAD) tool. The two-dimensional layers in said three-dimensional article may be made by slicing said three-dimensional article by a slicing tool, for instance Magics or Infinity Slicer. The non-porous three dimensional article has an outer boundary which is the same as an outer boundary of the porous final three-dimensional article, i.e., the only difference between the porous article to be manufactured and the non-porous three dimensional article lies in the porosity. It is relatively easy to make a three-dimensional design of an article which is solid in a CAD program. However, it is more difficult to make the same three-dimensional article with a randomized porosity in the same CAD program.


In a next step a model is created of a porous structure. Said modelling comprising a first step of defining a three-dimensional space comprising a randomized pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts.


In a first example embodiment said three-dimensional space is defined by providing a regular three-dimensional pattern of nodes. Said regular pattern of nodes may for instance be made of tetrahedrons, cubes or dodecahedrons, where the nodes are provided in corners and connected together in a predetermined way by struts to form regular three-dimensional structures. A distance between two nodes in the regular pattern of nodes is predetermined and can be chosen arbitrarily by an operator. FIG. 2a depicts a regular 2-dimensional square shaped network structure 100 comprising a 4×4 matrix of inner squares 110. FIG. 3 depicts a regular 3-dimensional cubic-shaped network structure 300 comprising two layers 310, 320 of 2×2 matrixes of cubes. A matrix comprises a predetermined number of nodes 330 connected together in a predetermined way with a predetermined number of struts 340.


The network structure in FIG. 3 may be used as a starting point in the inventive method according to the present invention, in which an improved 3-dimensional article with porosity is to be created which is less CPU and memory consuming compared to the prior art methods.


Each and every node 330 is thereafter moved a randomized distance, which distance is less than a predetermined value and in a randomized direction. This will destroy the regularity of the original structure. In FIG. 4 said randomized distance in said randomized direction is denoted by R, where R≤said predetermined value. The smaller said R is the smaller the destruction of said regularity of said structure will be. FIG. 2b depicts a 2-dimensional illustration of how the square original pattern may look like after moving each node said predetermined distance R in said randomized direction. FIG. 5 depicts a 3-dimensional illustration of how the cubic original pattern may look like after moving each node said predetermined distance R in said randomized direction. From said regular three dimensional structure has a completely randomized three-dimensional space been made without periodicity, which means that the randomization will look the same irrespective in which direction you will look into said three-dimensional randomized space. The hollowness, i.e., degree of empty space in said randomized space is determined by the number of nodes in said three-dimensional space, which in turn determine the number of tetrahedrons, cubes or dodecahedrons which will be stacked in said three-dimensional space. The randomization is determined by moving each node in said randomized direction but a predetermined distance R from its original position.


In a second example embodiment said three-dimensional space is defined by firstly providing a predetermined number of nodes randomly in a 3-dimensional space of a predetermined size.


Secondly a maximum number of neighbor nodes to a specific node is determined. This maximum number may be any positive integer between 1-∞.


Thirdly a number x of closest neighbors to said specific node is skipped. X may be a random positive integer number being ≥0. Being skipped should here be interpreted as ignoring those x nodes which is/are closest to a given node.


Fourthly, each of said maximum neighbor nodes, except those nodes that might have been skipped, are connected to said specific node with a strut. Step a-d is repeated for each node in the 3-dimensional space.


In a third example embodiment said three-dimensional space is defined by firstly providing a predetermined number of nodes randomly in a 3-dimensional space of a predetermined size.


Secondly said nodes are provided in a Delauney-triangulation giving a predetermined number of Delauney-tetrahedrons. In an example embodiment said tetrahedrons are provided with smallest angles connecting the nodes, i.e., the first derivative of two struts connected together via a node is continuous.


Thirdly a Voronoi diagram is provided by for each Delauny-tetrahedron connecting the centre of the circumsphere of the Delanuney-tetrahedron with the centres of the circumspheres for all the neighbors of the Delauney-tetrahedron. The method of constructing a randomized network according to this principle is well known in the art and could be studied in for instance “Randomized incremental construction of Delaunay and Voronoi diagrams” by Leonidas J. Guibas, Donald E. Knuth and Micha Sharir.


In a second step said three-dimensional space is sliced into a predetermined number of two-dimensional layers with a predetermined thickness. The two dimensional layers could be sliced at an arbitrarily plane in said three-dimensional space. The number of two-dimensional planes building up said three-dimensional space is depending on the thickness of said two dimensional planes, the smaller the thickness of said planes the larger the number of planes it takes to build the complete three-dimensional space. FIG. 7a-7c illustrates this operation. In FIG. 7a it is depicted a three-dimensional space 700 comprising a randomized pattern of nodes connected in a predetermined way by struts 720. A two-dimensional plane 730 is grey-shaded in FIG. 7a. Said two-dimensional plane has a predetermined thickness 740. In FIG. 7b said 2-dimensional plane 730 is illustrated separately from three-dimensional structure 700. In FIG. 7c it is illustrated a top view of the 2-dimensional plane which is illustrated from a side view in FIG. 7b. From FIGS. 7b and 7c it is illustrated an example 2-dimensional layer in which structures to be fused in the fusion process for forming the final 3-dimensional porous article.


In a third step one two-dimensional layer of said model of non-porous three-dimensional article is applied on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article. An example embodiment of this is illustrated in FIG. 6. The porous two-dimensional layer is denoted 610. The model of said non porous two-dimensional layer is denoted 620.


The meaning of applying one two-dimensional layer of said model of non-porous three-dimensional article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article is to use a Boolean operation resulting in deletion of the porous structure outside the model of said non porous two-dimensional layer 620 and a creation of a porous structure inside the model of said non porous two-dimensional layer 620, i.e., the two-dimensional layer of said model of non-porous three-dimensional article has become a porous two-dimensional layer of said three-dimensional article denoted by 630 in FIG. 6. The porous structure of said two-dimensional layer of said three-dimensional article is randomized. There is no repeatability of the randomized porous structure within the two-dimensional layer. Since a complete 3-dimensional space comprising a randomized pattern of nodes has been sliced into a predetermined number of two-dimensional layers with a predetermined thickness, there is no repeatability in the porous structure in said three-dimensional article to be produced. End points of lines may end on the outer surface of the three-dimensional article by using this method for creating a porous three-dimensional article, i.e., the porous structure of said final three-dimensional article may have an outer surface which corresponds very well with the outer surface of the model of said three-dimensional article.


In a fourth step said applying step is repeated for all two-dimensional layers of said article in order to create a complete porous 3-dimensional model of the article to be manufactured.


The porous three-dimensional article is manufactured by exposing fusible material to an energy source, so that a layer of fused material is corresponding to a porous two-dimensional layer of said article.


In another example embodiment a layer of powder material is provided on a build platform 2. The thickness of the powder material layer is adapted to the thickness of the predetermined thickness of the two-dimensional layer of said article. When deciding upon the thickness of the two-dimensional layers in said model, said thickness is corresponding to the thickness of the actual powder layer out of which said final three-dimensional article is to be made of.


Said powder material may be made of metal for instance titanium, titanium alloys, Co—Cr alloys, nickel based superalloys, aluminium, aluminium alloys, etc.


Said energy source may be an electron beam source, a laser source or a particle beam source.


A first derivative of at least one connection between two struts may be continuous. This is illustrated in a 2-dimensional case in FIG. 2c. This operation is optional and is used for smoothening the edges of the network structure to become more human-like.


In an example embodiment of the present invention an approximated Voronoi diagram may be used instead of the above mentioned Voronoi diagram.


In an example embodiment of the present invention a randomized pattern of point may be generated inside a volume of the porous three-dimensional object to be manufactured. This may be useful if the outer shape of the manufactured three-dimensional article need not to be identical with the model of said porous three-dimensional article. Since the randomized pattern is generated inside the volume of the three-dimensional object, it is highly likely that the outer surface in said actual manufactured article is lying inside the model of said porous three-dimensional article. The reason for this is that the very few of the randomized pattern of points may be provided exactly on the boarder of said three-dimensional article.


In an example embodiment the struts which may connect the points may be a volume element, an area element or a linear element. An area element may be flat and the linear element may be a one dimensional line.


In the fusion process such lines or points are melted as lines or points or as a 2-dimensional figure around the point or line, e.g., like small circles or ovals.


In an example embodiment a linear element may be inclined with an angle α with respect to a slicing surface, where 15°≤α≤165°. In an example embodiment a linear element may be inclined with an angle α with respect to a slicing surface, where 10°≤α≤170°. If a line which may connect two points lying in two different and adjacent layers is horizontal or almost horizontal, such a line may not connect said two points in said two layers after the slicing procedure and/or the manufacturing procedure.


In still another example embodiment a maximum and minimum value of said angle α may be dependent on the thickness of the slicing layer.


In an example embodiment of the present invention it is provided a method for manufacturing a porous three-dimensional article comprising the steps of: creating a model of a non-porous three-dimensional article comprising a predetermined number of two-dimensional layers with a predetermined thickness, creating a model of a porous structure comprising the steps of: defining a three-dimensional space, larger or equal to the non-porous three-dimensional space, comprising a randomized pattern of nodes, wherein said nodes are connected together in a predetermined manner with struts. Slicing said three-dimensional space into a predetermined number of two-dimensional layers with a predetermined thickness, and if necessary applying one two-dimensional layer of said model of non-porous three-dimensional article on one two-dimensional layer of said porous structure resulting in a porous two-dimensional layer of said article. Repeating said applying step for all non-porous two-dimensional layers of said article, manufacturing the porous three-dimensional article by exposing fusible material to an energy source, so that a layer of fused material is corresponding to a porous two-dimensional layer of said article.


In still another example embodiment of the present invention said struts may either be described by volume, area or line elements or by any combination of these elements.


In still another example embodiment of the present invention said porous two-dimensional layers of said article may be described by either the 2D polygon data created from slicing the volume elements or of 2D line data created from slicing the area elements or of 2D point data created from slicing line elements or by any combination of these three sets of data.


In yet another example embodiment of the present invention said 2D line data and 2D point data in the porous two-dimensional layers of said article may be expanded to a predetermined 2D polygon data located at a predetermined position relative to the 2D line data or to the 2D point data.


The invention is not limited to the above-described embodiments and many modifications are possible within the scope of the following claims. Such modifications may, for example, involve using a different source of ray gun than the exemplified electron beam such as laser beam. Other materials than metallic powder may be used such as powder of polymers or powder of ceramics.

Claims
  • 1. A method for manufacturing a porous three-dimensional article comprising the steps of: creating a model of a non-porous three-dimensional article comprising a predetermined number of layers with a predetermined thickness;creating a model of a porous structure, said creating step comprising the steps of: defining a completely randomized three-dimensional space comprising a randomized arrangement of nodes, said randomized arrangement of nodes defined by the steps of: a. identifying a predetermined number of said nodes initially arranged randomly in the three-dimensional space of predetermined size;b. determining a maximum number of neighbor nodes to a specific node;c. skipping a number x of closest neighbors to said specific node where x is a random integer number being ≥0;d. connecting each of said maximum neighbor nodes, with the exception of the skipped nodes, to said specific node with a strut; ande. repeating steps a-d for each node in the three-dimensional space,wherein said nodes are connected together in the randomized arrangement using struts, wherein said randomized arrangement is randomized in every direction of the completely randomized three-dimensional space, and wherein said randomized arrangement lacks periodicity, such that due to the lacking periodicity, a mechanical strength of a porous structure created therefrom is equal in all directions;slicing said completely randomized three-dimensional space into a predetermined number of layers with a predetermined thickness;applying one layer of said model of the non-porous three-dimensional article on one layer of said randomized three-dimensional space resulting in a model of a porous layer of said porous three-dimensional article; andrepeating said applying step for all layers of said model of the non-porous three-dimensional article; andmanufacturing the porous three-dimensional article by exposing fusible material to an energy source, so that a layer of fused material is corresponding to the model of the porous layer of said porous three-dimensional article,wherein said porous three-dimensional article lacks periodicity.
  • 2. The method according to claim 1, wherein the manufacturing step comprises the steps of: providing a layer of powder material on a build platform; andadapting a thickness of the provided powder material layer to the predetermined thickness of the layer of the porous three-dimensional article.
  • 3. The method according to claim 2, wherein said powder material is made of metal.
  • 4. The method according to claim 1, wherein said energy source is an electron beam source.
  • 5. The method according to claim 1, wherein the randomized arrangement comprises at least a first strut passing through a node and having a continuous derivative to at least a second strut passing through said node.
  • 6. The method according to claim 1, wherein the energy source comprise a laser.
  • 7. The method according to claim 1, wherein the step of creating the model of the porous structure is subsequent to the step of creating the model of the non-porous three-dimensional article.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage application, filed under 35 U.S.C. § 371, of International Application No. PCT/EP2012/076025, filed Dec. 18, 2012, which claims priority to U.S. Provisional Application No. 61/580,775, filed Dec. 28, 2011, the contents of both which are hereby incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2012/076025 12/18/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/098135 7/4/2013 WO A
US Referenced Citations (213)
Number Name Date Kind
2264968 De Forest Dec 1941 A
2323715 Kuehni Jul 1943 A
3634644 Ogden et al. Jan 1972 A
3838496 Kelly Oct 1974 A
3882477 Mueller May 1975 A
3906229 Demeester et al. Sep 1975 A
3908124 Rose Sep 1975 A
4314134 Schumacher et al. Feb 1982 A
4348576 Anderl et al. Sep 1982 A
4352565 Rowe et al. Oct 1982 A
4401719 Kobayashi et al. Aug 1983 A
4541055 Wolfe et al. Sep 1985 A
4818562 Arcella et al. Apr 1989 A
4863538 Deckard Sep 1989 A
4888490 Bass et al. Dec 1989 A
4927992 Whitlow et al. May 1990 A
4958431 Clark et al. Sep 1990 A
4988844 Dietrich et al. Jan 1991 A
5118192 Chen et al. Jun 1992 A
5135695 Marcus Aug 1992 A
5167989 Dudek et al. Dec 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5247560 Hosokawa et al. Sep 1993 A
5393482 Benda et al. Feb 1995 A
5483036 Giedt et al. Jan 1996 A
5511103 Hasegawa Apr 1996 A
5595670 Mombo Caristan Jan 1997 A
5647931 Retallick et al. Jul 1997 A
5753274 Wilkening et al. May 1998 A
5837960 Lewis et al. Nov 1998 A
5876550 Feygin et al. Mar 1999 A
5904890 Lohner et al. May 1999 A
5932290 Lombardi et al. Aug 1999 A
6046426 Jeantette et al. Apr 2000 A
6162378 Bedal et al. Dec 2000 A
6204469 Fields et al. Mar 2001 B1
6419203 Dang Jul 2002 B1
6537052 Adler Mar 2003 B1
6554600 Hofmann et al. Apr 2003 B1
6583379 Meiners et al. Jun 2003 B1
6676892 Das et al. Jan 2004 B2
6724001 Pinckney et al. Apr 2004 B1
6746506 Liu et al. Jun 2004 B2
6751516 Richardson Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6811744 Keicher et al. Nov 2004 B2
6815636 Chung et al. Nov 2004 B2
6824714 Türck et al. Nov 2004 B1
7003864 Dirscherl Feb 2006 B2
7020539 Kovacevic et al. Mar 2006 B1
7165498 Mackrill et al. Jan 2007 B2
7204684 Ederer et al. Apr 2007 B2
7291002 Russell et al. Nov 2007 B2
7452500 Uckelmann Nov 2008 B2
7454262 Larsson et al. Nov 2008 B2
7537722 Andersson et al. May 2009 B2
7540738 Larsson et al. Jun 2009 B2
7569174 Ruatta et al. Aug 2009 B2
7635825 Larsson Dec 2009 B2
7686605 Perret et al. Mar 2010 B2
7696501 Jones Apr 2010 B2
7713454 Larsson May 2010 B2
7754135 Abe et al. Jul 2010 B2
7799253 Höchsmann et al. Sep 2010 B2
7871551 Wallgren et al. Jan 2011 B2
8021138 Green Sep 2011 B2
8083513 Montero-Escuder et al. Dec 2011 B2
8137739 Philippi et al. Mar 2012 B2
8187521 Larsson et al. May 2012 B2
8308466 Ackelid et al. Nov 2012 B2
8992816 Jonasson et al. Mar 2015 B2
9073265 Snis Jul 2015 B2
9079248 Ackelid Jul 2015 B2
9126167 Ljungblad Sep 2015 B2
9254535 Buller et al. Feb 2016 B2
9310188 Snis Apr 2016 B2
9505172 Ljungblad Nov 2016 B2
9550207 Ackelid Jan 2017 B2
9802253 Jonasson Oct 2017 B2
9950367 Backlund et al. Apr 2018 B2
10071422 Buller et al. Sep 2018 B2
20020104973 Kerekes Aug 2002 A1
20020152002 Lindemann et al. Oct 2002 A1
20020195747 Hull et al. Dec 2002 A1
20030043360 Farnworth Mar 2003 A1
20030133822 Harryson Jul 2003 A1
20030205851 Laschutza et al. Nov 2003 A1
20040012124 Li et al. Jan 2004 A1
20040026807 Andersson et al. Feb 2004 A1
20040084814 Boyd et al. May 2004 A1
20040104499 Keller Jun 2004 A1
20040148048 Farnworth Jul 2004 A1
20040173496 Srinivasan Sep 2004 A1
20040173946 Pfeifer et al. Sep 2004 A1
20040204765 Fenning et al. Oct 2004 A1
20040217095 Herzog Nov 2004 A1
20050173380 Carbone Aug 2005 A1
20050186538 Uckelmann Aug 2005 A1
20050282300 Yun et al. Dec 2005 A1
20060108712 Mattes May 2006 A1
20060138325 Choi Jun 2006 A1
20060145381 Larsson Jul 2006 A1
20060147332 Jones et al. Jul 2006 A1
20060157892 Larsson Jul 2006 A1
20060180957 Hopkinson et al. Aug 2006 A1
20060284088 Fukunaga et al. Dec 2006 A1
20070074659 Wahlstrom Apr 2007 A1
20070175875 Uckelmann et al. Aug 2007 A1
20070179655 Farnworth Aug 2007 A1
20070182289 Kigawa et al. Aug 2007 A1
20070298182 Perret et al. Dec 2007 A1
20080236738 Lo et al. Oct 2008 A1
20090017219 Paasche et al. Jan 2009 A1
20090152771 Philippi et al. Jun 2009 A1
20090206056 Xu et al. Aug 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100260410 Taminger et al. Oct 2010 A1
20100305743 Larsson Dec 2010 A1
20100310404 Ackelid Dec 2010 A1
20100316856 Currie et al. Dec 2010 A1
20110061591 Stecker Mar 2011 A1
20110114839 Stecker et al. May 2011 A1
20110133367 Weidinger et al. Jun 2011 A1
20110240607 Stecker et al. Oct 2011 A1
20110241575 Caiafa et al. Oct 2011 A1
20110293770 Ackelid et al. Dec 2011 A1
20110293771 Oberhofer et al. Dec 2011 A1
20110309554 Liska et al. Dec 2011 A1
20110316178 Uckelmann Dec 2011 A1
20120100031 Ljungblad Apr 2012 A1
20120164322 Teulet Jun 2012 A1
20120183701 Pilz et al. Jul 2012 A1
20120193530 Parker et al. Aug 2012 A1
20120211155 Wehning et al. Aug 2012 A1
20120223059 Ljungblad Sep 2012 A1
20120225210 Fruth Sep 2012 A1
20120237745 Dierkes et al. Sep 2012 A1
20120266815 Brunermer Oct 2012 A1
20130055568 Dusel et al. Mar 2013 A1
20130162134 Mattausch et al. Jun 2013 A1
20130186514 Zhuang et al. Jul 2013 A1
20130216959 Tanaka et al. Aug 2013 A1
20130233846 Jakimov et al. Sep 2013 A1
20130264750 Hofacker et al. Oct 2013 A1
20130270750 Green Oct 2013 A1
20130278920 Loewgren Oct 2013 A1
20130300286 Ljungblad et al. Nov 2013 A1
20130343947 Satzger et al. Dec 2013 A1
20140175708 Echigo et al. Jun 2014 A1
20140271964 Roberts, IV et al. Sep 2014 A1
20140308153 Ljungblad Oct 2014 A1
20140314609 Ljungblad et al. Oct 2014 A1
20140314964 Ackelid Oct 2014 A1
20140348691 Ljungblad et al. Nov 2014 A1
20140363327 Holcomb Dec 2014 A1
20140367367 Wood et al. Dec 2014 A1
20150004045 Ljungblad Jan 2015 A1
20150050463 Nakano et al. Feb 2015 A1
20150071809 Nordkvist et al. Mar 2015 A1
20150086409 Hellestam Mar 2015 A1
20150088295 Hellestam Mar 2015 A1
20150130118 Cheng et al. May 2015 A1
20150139849 Pialot, Jr. et al. May 2015 A1
20150151490 Jonasson et al. Jun 2015 A1
20150165524 Ljungblad et al. Jun 2015 A1
20150165525 Jonasson Jun 2015 A1
20150174658 Ljungblad Jun 2015 A1
20150174695 Elfstroem et al. Jun 2015 A1
20150251249 Fager Sep 2015 A1
20150273622 Manabe Oct 2015 A1
20150283610 Ljungblad et al. Oct 2015 A1
20150283613 Backlund et al. Oct 2015 A1
20150290710 Ackelid Oct 2015 A1
20150306819 Ljungblad Oct 2015 A1
20160052056 Fager Feb 2016 A1
20160052079 Ackelid Feb 2016 A1
20160054115 Snis Feb 2016 A1
20160054121 Snis Feb 2016 A1
20160054347 Snis Feb 2016 A1
20160059314 Ljungblad et al. Mar 2016 A1
20160129501 Loewgren et al. May 2016 A1
20160167160 Hellestam Jun 2016 A1
20160167303 Petelet Jun 2016 A1
20160202042 Snis Jul 2016 A1
20160202043 Snis Jul 2016 A1
20160211116 Lock Jul 2016 A1
20160279735 Hellestam Sep 2016 A1
20160282848 Hellestam Sep 2016 A1
20160303687 Ljungblad Oct 2016 A1
20160307731 Lock Oct 2016 A1
20160311021 Elfstroem et al. Oct 2016 A1
20170080494 Ackelid Mar 2017 A1
20170087661 Backlund et al. Mar 2017 A1
20170106443 Karlsson Apr 2017 A1
20170106570 Karlsson Apr 2017 A1
20170136541 Fager May 2017 A1
20170136542 Nordkvist et al. May 2017 A1
20170173691 Jonasson Jun 2017 A1
20170189964 Backlund et al. Jul 2017 A1
20170227417 Snis Aug 2017 A1
20170227418 Snis Aug 2017 A1
20170246684 Hellestam Aug 2017 A1
20170246685 Hellestam Aug 2017 A1
20170259338 Ackelid Sep 2017 A1
20170282248 Ljungblad et al. Oct 2017 A1
20170294288 Lock Oct 2017 A1
20170341141 Ackelid Nov 2017 A1
20170341142 Ackelid Nov 2017 A1
20170348791 Ekberg Dec 2017 A1
20170348792 Fager Dec 2017 A1
20180009033 Fager Jan 2018 A1
20180154444 Jonasson Jun 2018 A1
Foreign Referenced Citations (87)
Number Date Country
2860188 Jun 2006 CA
101607311 Dec 2009 CN
101635210 Jan 2010 CN
201693176 Jan 2011 CN
101607311 Sep 2011 CN
203509463 Apr 2014 CN
19952998 May 2001 DE
20305843 Jul 2003 DE
10235434 Feb 2004 DE
102005014483 Oct 2006 DE
202008005417 Aug 2008 DE
102007018601 Oct 2008 DE
102007029052 Jan 2009 DE
102008012064 Sep 2009 DE
102010041284 Mar 2012 DE
102011105045 Jun 2012 DE
102013210242 Dec 2014 DE
0289116 Nov 1988 EP
0322257 Jun 1989 EP
0688262 Dec 1995 EP
1358994 Nov 2003 EP
1418013 May 2004 EP
1466718 Oct 2004 EP
1486318 Dec 2004 EP
1669143 Jun 2006 EP
1683593 Jul 2006 EP
1721725 Nov 2006 EP
1752240 Feb 2007 EP
1952932 Aug 2008 EP
2011631 Jan 2009 EP
2119530 Nov 2009 EP
2281677 Feb 2011 EP
2289652 Mar 2011 EP
2292357 Mar 2011 EP
2832474 Feb 2015 EP
2980380 Mar 2013 FR
H05-171423 Jul 1993 JP
2003241394 Aug 2003 JP
2003245981 Sep 2003 JP
2009006509 Jan 2009 JP
524467 Aug 2004 SE
WO 9308928 May 1993 WO
WO 1996012607 May 1996 WO
WO 1997037523 Oct 1997 WO
WO 0185386 Nov 2001 WO
WO 2001081031 Nov 2001 WO
WO 2002008653 Jan 2002 WO
WO 2004007124 Jan 2004 WO
WO 2004043680 May 2004 WO
WO 2004054743 Jul 2004 WO
WO 2004056511 Jul 2004 WO
WO 2004106041 Dec 2004 WO
WO 2004108398 Dec 2004 WO
WO 2006091097 Aug 2006 WO
WO 2006121374 Nov 2006 WO
WO 2007112808 Oct 2007 WO
WO 2007147221 Dec 2007 WO
WO 2008013483 Jan 2008 WO
WO 2008057844 May 2008 WO
WO 2008074287 Jun 2008 WO
WO 2008125497 Oct 2008 WO
WO 2008147306 Dec 2008 WO
WO 2009000360 Dec 2008 WO
WO 2009072935 Jun 2009 WO
WO 2009084991 Jul 2009 WO
WO 2010095987 Aug 2010 WO
WO 2010125371 Nov 2010 WO
WO 2011008143 Jan 2011 WO
WO 2011011818 Feb 2011 WO
WO 2011030017 Mar 2011 WO
WO 2011060312 May 2011 WO
WO 2012102655 Aug 2012 WO
WO 2013092997 Jun 2013 WO
WO 2013098050 Jul 2013 WO
WO 2013098135 Jul 2013 WO
WO 2013159811 Oct 2013 WO
WO 2013167194 Nov 2013 WO
WO 2013178825 Dec 2013 WO
WO 2014071968 May 2014 WO
WO 2014092651 Jun 2014 WO
WO 2014095200 Jun 2014 WO
WO 2014095208 Jun 2014 WO
WO 2014195068 Dec 2014 WO
WO 2015032590 Mar 2015 WO
WO 2015091813 Jun 2015 WO
WO 2015120168 Aug 2015 WO
WO 2015142492 Sep 2015 WO
Non-Patent Literature Citations (26)
Entry
European Search Report dated Feb. 16, 2012, for corresponding Application No. EP07852089.7.
International Preliminary Examining Authority, International Preliminary Report on Patentability for International Application No. PCT/EP2012/074383, including Applicant's Sep. 6, 2013 Reply to ISA's Feb. 27, 2013 Written Opinion, dated Jan. 20, 2014, 16 pages, European Patent Office, The Netherlands.
International Preliminary Report on Patentability, dated Nov. 27, 2009, of corresponding international application No. PCT/SE2007/001084.
International Search Report dated Apr. 9, 2010 for Application No. PCT/SE2009/050901.
International Search Report dated Sep. 17, 2008 for Application No. PCT/SE2008/000007.
International Search Report dated Sep. 2, 2008 of corresponding international application No. PCT/SE2007/001084.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/EP2012/074383, dated Feb. 27, 2013, 10 pages, European Patent Office, The Netherlands.
International Searching Authority, International Search Report for International Application No. PCT/SE2011/050093, dated Oct. 20, 2011, 5 pages, The Swedish Patent and Registration Office, Sweden.
Office Action dated Feb. 14, 2012 for U.S. Appl. No. 12/745,081.
Office Action dated Nov. 8, 2011, U.S. Appl. No. 12/745,081.
United States Patent and Trademark Office, Final Office Action for U.S. Appl. No. 12/745,081, dated Jun. 21, 2012, 6 pages, USA.
United States Patent and Trademark Office, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/144,451, dated Sep. 25, 2012, 16 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, dated Sep. 10, 2012, 13 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, dated Dec. 20, 2012, 8 pages, USA.
International Searching Authority (ISA), International Search Report and Written Opinion for International Application No. PCT/EP2012/076025, dated May 17, 2013, 11 pages, European Patent Office, The Netherlands.
International Preliminary Examining Authority (IPEA), Second Written Opinion for International Application No. PCT/EP2012/076025, dated Dec. 4, 2013, 4 pages European Patent Office, Germany.
International Preliminary Examining Authority, International Preliminary Report on Patentability for International Application No. PCT/EP2012/076025, including Applicant's Sep. 10, 2013 Response to the ISA's May 17, 2013 Written Opinion and Applicant's Jan. 14, 2014 Response to the IPEA's Second Written Opinion, dated Apr. 4, 2014, 15 pages, European Patent Office, Germany.
Cheah, Chi-Mun, et al., “Automatic Algorithm for Generating Complex Polyhedral Scaffold Structure for Tissue Engineering”, Tissue Engineering, 2004, pp. 595-610, vol. 10, No. 3/4, XP002691483.
Yang, et al., “The Design of Scaffolds for Use in Tissue Engineering, Part II, Rapid Prototyping Techniques”, Tissue Engineering, 2002, pp. 1-11, vol. 8, No. 1, XP002691484.
Weigel, TH. , et al., “Design and Preparation of Polymeric Scaffolds for Tissue Engineering,” Expert Rev. Med. Devices, 2006, pp. 835-851, vol. 3, No. 6, XP002691485.
Guibas, Leonidas J., et al., “Randomized Incremental Construction of Delaunay and Voronoi Diagrams”, Algorithmica, Jun. 1992, pp. 381-413, vol. 7, Issue 1-6, Springer-Verlag, New York.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, dated Sep. 11, 2014, 7 pages, USA.
International Searching Authority, International Search Report for International Application No. PCT/EP2012/058733, dated Mar. 5, 2013, 4 pages, European Patent Office, The Netherlands.
Gibson, D.W., et al., “Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing”, 2010, pp. 126-129, Springer, New York.
Motojima, Seiji, et al., “Chemical Vapor Growth of LaB6 Whiskers and Crystals Having a Sharp Tip”, Journal of Crystal Growth, vol. 44, No. 1, Aug. 1, 1978 (Aug. 1, 1978), pp. 106-109.
Klassen, Alexander, et al., “Modelling of Electron Beam Absorption in Complex Geometries”, Journal of Physics D: Applied Physics, Jan. 15, 2014, 12 pages, vol. 47, No. 6, Institute of Physics Publishing Ltd., Great Britain.
Related Publications (1)
Number Date Country
20140301884 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61580775 Dec 2011 US