The present invention relates to gas turbines, and more particularly, to a method and apparatus for controlling distortion in the casings of gas turbines.
In the gas turbine industry, a common problem with structural turbine casings is distortion of the casing, e.g., out-of-roundness, caused by the response of the casing to various temperature and pressure conditions during turbine operation. Gas turbines undergo rapid thermal transient loading during normal operation that produce large thermal gradients in the casing structures. If the thermal mass distribution is non-homogeneous around the casing, then there will be a resultant distortion from the intended circular shape.
Typical turbine and compressor housings are formed in upper and lower halves connected one to the other along a horizontal plane by vertical bolts extending through radially outwardly directed and enlarged flanges at the housing splitline. These split-wall casings with large flanges running down the split-line joint result in a thermal mass concentration that can result in casing distortion during a thermal transient event. One reason for the casing to distort is that the mass of the splitline flange is large, causing it to respond thermally at a rate slower than the response time for the balance of the turbine housing. Coupled with this large mass is a large thermal gradient through the flange which causes the flange to pinch inwards due to thermally induced axial strain.
Distortion is a large component of setting stage 1 and 2 turbine clearances, which can be the most sensitive in the machine, and generally affect efficiency and output to the largest degree. Current gas turbines have large distortions during transient operations, which are generally the worst on a hot restart, and clearances are generally opened on a one-for-one basis to account for distortion, directly impacting steady state clearances. This type of distortion is an important component to setting steady state clearances for the stage 1 turbine rotor, and tighter clearances result in improved gas turbine operability and performance.
Additional distortion can result from the hoop load discontinuity at a split-line of a multi-piece casing. The total resulting distortion from the ideal circular shape is one factor in determining the minimum clearance between rotating and stationary parts, as the rotating parts can not expand beyond the minimum radius of the casing, even if this minimum radius exists over a very small portion of the casing. In order to provide for tighter clearances, the casing should be as circular as possible whenever the clearances are small. Minimum tip clearance results in less leakage of working fluid over the tip of the blade/vane which yields the highest efficiency operation of the gas turbine.
Another cause of distortion is a result of internal casing pressure. Further, it will be appreciated that there is an offset between the centerline of the bolt holes and the main portion of the turbine casing at the split-line flanges. Because of this offset, a moment is introduced by the hoop field stress transferred through the bolts, causing the split-lines to deflect radially inwardly.
To mitigate distortion, sometimes “false” flanges are used to provide additional thermal mass at other circumferential locations on the casing. U.S. Pat. No. 5,605,438 (“the '438 patent”) discloses casings for rotating machinery, such as turbines and compressors, which significantly reduces distortion and out-of-roundness through the use of “false” flanges. The '438 patent discloses a turbine casing that is provided with a strategically located circumferential rib and a plurality of axially extending flanges. The '438 patent also discloses a compressor casing that is provided with only a plurality of axially extending flanges. The entire contents of the '438 patent are incorporated herein by reference.
“False” flanges, similar to flanges 46 and 52 shown in
In an exemplary embodiment of the invention, a cylindrical casing used in a turbine in which distortion is controlled comprises a semi-cylindrical upper casing half, the upper casing half having first and second upper split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the upper casing half, a semi-cylindrical lower casing half, the lower casing half having first and second lower split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the lower casing half, the first and second upper split-line flanges being joined to the first and second lower split-line flanges, respectively, to thereby join the upper and lower casing halves to one another to form the housing, a first false flange extending generally radially from and horizontally along a side of the upper casing half, and a second false flange extending generally radially from and horizontally along a side of the lower casing half, each of the first and second false flanges including a split in the flange's inner diameter so as to allow the housing's hoop stiffness to be adjusted to match the hoop stiffness of bolted joints in the split-line flanges and the ability of the split-line flanges to bear a hoop load or hoop force.
In another exemplary embodiment of the invention, a turbine housing in which distortion is controlled comprises a semi-cylindrical upper casing half, the upper casing half having first and second upper split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the upper casing half, a semi-cylindrical lower casing half, the lower casing half having first and second lower split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the lower casing half, the first and second upper split-line flanges being bolted to the first and second lower split-line flanges, respectively, to thereby join the upper and lower casing halves to one another to form the housing, and first and second false flanges spaced diametrically opposite one another on the housing, the first false flange extending generally radially from and horizontally along a side of the upper casing half, the second false flange extending generally radially from and horizontally along a side of the lower casing half, each of the first and second false flanges including a split in the flange's inner diameter so as to allow the housing's hoop stiffness to be adjusted to match the hoop stiffness of bolted joints in the split-line flanges and the ability of the split-line flanges to bear a hoop load or hoop force.
In a further exemplary embodiment of the invention, a method of controlling distortion in a cylindrical casing used in a gas turbine comprises the steps of providing a semi-cylindrical upper casing half with first and second upper split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the upper casing half, providing a semi-cylindrical lower casing half with first and second lower split-line flanges extending generally radially from and horizontally along diametrically opposite ends of the lower casing half, joining the first and second upper split-line flanges to the first and second lower split-line flanges, respectively, to thereby join the upper and lower casing halves to one another to form the cylindrical casing, providing a first false flange extending generally radially from and horizontally along a side of the upper casing half, providing a second false flange extending generally radially from and horizontally along a side of the lower casing half, and providing in each of the first and second false flanges a split in the flange's inner diameter to thereby adjust the housing's hoop stiffness to match the hoop stiffness of bolted joints in the split-line flanges and the ability of the split-line flanges to bear a hoop load or hoop force.
In one embodiment of the invention, distortion in a turbine casing is controlled by providing splits in the flange inner diameter underneath false flanges on the casing. By providing splits in the flange inner diameter underneath the false flanges, the hoop stiffness of the casing can be “tuned” to match the hoop stiffness of the bolted joints in split-line flanges between semi-cylindrical upper and lower casing halves, and thus, the ability of the false flanges to bear a corresponding hoop load or hoop force. By matching the hoop stiffness and hoop load capability of the split-line flanges, as well as the thermal mass effect of these flanges in the false flanges, the distortion in the casing can be channeled to a higher order distortion mode that can evenly distribute the deflection and thereby allow the casing to approach a more pure circular form.
Also shown in
False flanges 24 and 26 are sized and/or dimensioned to substantially match the stiffness and the thermal mass of the split-line flanges 16A/B and 18 A/B. It should be noted, however, that, where each of the split-line flanges have a slot that runs from a bolt hole to an outside surface of the split-line flange, so that there is a reduction in strain in the split-line flange, the false flanges 24 and 26 could be designed to be smaller in mass than the split-line flanges 16A/B and 18A/B. That is, the axial false flanges 24 and 26 would not be as massive as the split-line flanges 16A/B and 18A/B. It should be noted, however, that the radial ‘sawcuts’ in the split-line flanges 16A/B and 18 A/B are not directly relevant to the present invention, in that they can be used in conjunction with the invention, but are not required. The splits under the false flanges, such as splits 28 and 30 under false flanges 24 and 26, are present to “tune” the hoop stiffness of housing 10. The size and mass of false flanges 24 and 26 are intended to match the thermal response rate of housing 10, which is a different problem. The splits would still effective if the false flanges 16A/B and 18 A/B are of a differing size and mass from the split line flanges 24 and 26.
The cross-sectional view of
“Stiffness” measures the elastic response of an object to an applied load. “Hoop stiffness” is the hoop force per unit length required to elastically change the diameter of a cylindrical object, like a turbine casing. “Hoop force” or “hoop load” is the force acting circumferentially in an object subjected to internal or external pressure.
Flanges 16A/B and 18A/B have a predetermined hoop stiffness and load path. By providing splits 28 and 30 in false flanges 24 and 26, the flanges 24 and 26 are caused to have a hoop stiffness and load path substantially the same as that of the split-line flanges 16A/B and 18A/B. By matching the hoop stiffness and load path of the split-line flanges, as well as the thermal mass effect of these flanges in the false flanges 24 and 26, the distortion in housing 10 can be channeled to a higher order distortion mode that can evenly distribute the deflection and thereby allow housing 10 to approach a more pure circular form.
The shape of the splits 28 and 30 in the false flanges 24 and 26 is not restricted. A straight channel as shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4412782 | Monsarrat | Nov 1983 | A |
5063661 | Lindsay | Nov 1991 | A |
5605438 | Burdgick et al. | Feb 1997 | A |
6352404 | Czachor et al. | Mar 2002 | B1 |
6691019 | Seeley et al. | Feb 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20100080698 A1 | Apr 2010 | US |