The present invention relates to measurement of a neural response to a stimulus, and in particular relates to measurement of a compound action potential by using one or more electrodes implanted proximal to the neural pathway.
Neuromodulation is used to treat a variety of disorders including chronic pain, Parkinson's disease, and migraine. A neuromodulation system applies an electrical pulse to tissue in order to generate a therapeutic effect. When used to relieve chronic pain, the electrical pulse is applied to the dorsal column (DC) of the spinal cord or dorsal root ganglion (DRG). Such a system typically comprises an implanted electrical pulse generator, and a power source such as a battery that may be rechargeable by transcutaneous inductive transfer. An electrode array is connected to the pulse generator, and is positioned in the dorsal epidural space above the dorsal column. An electrical pulse applied to the dorsal column by an electrode causes the depolarization of neurons, and generation of propagating action potentials. The fibres being stimulated in this way inhibit the transmission of pain from that segment in the spinal cord to the brain.
While the clinical effect of spinal cord stimulation (SCS) is well established, the precise mechanisms involved are poorly understood. The DC is the target of the electrical stimulation, as it contains the afferent Aβ fibres of interest. Aβ fibres mediate sensations of touch, vibration and pressure from the skin. The prevailing view is that SCS stimulates only a small number of Aβ fibres in the DC. The pain relief mechanisms of SCS are thought to include evoked antidromic activity of Aβ fibres having an inhibitory effect, and evoked orthodromic activity of Aβ fibres playing a role in pain suppression. It is also thought that SCS recruits Aβ nerve fibres primarily in the DC, with antidromic propagation of the evoked response from the DC into the dorsal horn thought to synapse to wide dynamic range neurons in an inhibitory manner.
Neuromodulation may also be used to stimulate efferent fibres, for example to induce motor functions. In general, the electrical stimulus generated in a neuromodulation system triggers a neural action potential which then has either an inhibitory or excitatory effect. Inhibitory effects can be used to modulate an undesired process such as the transmission of pain, or to cause a desired effect such as the contraction of a muscle.
The action potentials generated among a large number of fibres sum to form a compound action potential (CAP). The CAP is the sum of responses from a large number of single fibre action potentials. The CAP recorded is the result of a large number of different fibres depolarizing. The propagation velocity is determined largely by the fibre diameter and for large myelinated fibres as found in the dorsal root entry zone (DREZ) and nearby dorsal column the velocity can be over 60 ms−1. The CAP generated from the firing of a group of similar fibres is measured as a positive peak potential P1, then a negative peak N1, followed by a second positive peak P2. This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres.
To better understand the effects of neuromodulation and/or other neural stimuli, it is desirable to record a CAP resulting from the stimulus. However, this can be a difficult task as an observed CAP signal will typically have a maximum amplitude in the range of microvolts, whereas a stimulus applied to evoke the CAP is typically several volts. Electrode artifact usually results from the stimulus, and manifests as a decaying output of several millivolts throughout the time that the CAP occurs, presenting a significant obstacle to isolating the CAP of interest. Some neuromodulators use monophasic pulses and have capacitors to ensure there is no DC flow to the tissue. In such a design, current flows through the electrodes at all times, either stimulation current or equilibration current, hindering spinal cord potential (SCP) measurement attempts. Moreover, high-pass filter poles in measurement circuitry generate increased electrical artifact with mono-phasic pulses. The capacitor recovers charge at the highest rate immediately after the stimulus, undesirably causing greatest artifact at the same time that the evoked response occurs.
To resolve a 10 uV SCP with 1 uV resolution in the presence of an input 5V stimulus, for example, requires an amplifier with a dynamic range of 134 dB, which is impractical in implant systems. As the neural response can be contemporaneous with the stimulus and/or the stimulus artifact, CAP measurements present a difficult challenge of amplifier design. In practice, many non-ideal aspects of a circuit lead to artifact, and as these mostly have a decaying exponential appearance that can be of positive or negative polarity, their identification and elimination can be laborious.
A number of approaches have been proposed for recording a CAP. King (U.S. Pat. No. 5,913,882) measures the spinal cord potential (SCP) using electrodes which are physically spaced apart from the stimulus site. To avoid amplifier saturation during the stimulus artifact period, recording starts at least 1-2.5 ms after the stimulus. At typical neural conduction velocities, this requires that the measurement electrodes be spaced around 10 cm or more away from the stimulus site, which is undesirable as the measurement then necessarily occurs in a different spinal segment and may be of reduced amplitude.
Nygard (U.S. Pat. No. 5,758,651) measures the evoked CAP upon an auditory nerve in the cochlea, and aims to deal with artefacts by a sequence which comprises: (1) equilibrating electrodes by short circuiting stimulus electrodes and a sense electrode to each other; (2) applying a stimulus via the stimulus electrodes, with the sense electrode being open circuited from both the stimulus electrodes and from the measurement circuitry; (3) a delay, in which the stimulus electrodes are switched to open circuit and the sense electrode remains open circuited; and (4) measuring, by switching the sense electrode into the measurement circuitry. Nygard also teaches a method of nulling the amplifier following the stimulus. This sets a bias point for the amplifier during the period following stimulus, when the electrode is not in equilibrium. As the bias point is reset each cycle, it is susceptible to noise. The Nygard measurement amplifier is a differentiator during the nulling phase which makes it susceptible to pickup from noise and input transients when a non-ideal amplifier with finite gain and bandwidth is used for implementation.
Daly (US Patent Application No. 2007/0225767) utilizes a biphasic stimulus plus a third phase “compensatory” stimulus which is refined via feedback to counter stimulus artifact. As for Nygard, Daly's focus is the cochlea. Daly's measurement sequence comprises (1) a quiescent phase where stimulus and sense electrodes are switched to Vdd; (2) applying the stimulus and then the compensatory phase, while the sense electrodes are open circuited from both the stimulus electrodes and from the measurement circuitry; (3) a load settling phase of about 1 μs in which the stimulus electrodes and sense electrodes are shorted to Vdd; and (4) measurement, with stimulus electrodes open circuited from Vdd and from the current source, and with sense electrodes switched to the measurement circuitry. However a 1 μs load settling period is too short for equilibration of electrodes which typically have a time constant of around 100 μs. Further, connecting the sense electrodes to Vdd pushes charge onto the sense electrodes, exacerbating the very problem the circuit is designed to address.
Evoked responses are less difficult to detect when they appear later in time than the artifact, or when the signal-to-noise ratio is sufficiently high. The artifact is often restricted to a time of 1-2 ms after the stimulus and so, provided the neural response is detected after this time window, data can be obtained. This is the case in surgical monitoring where there are large distances between the stimulating and recording electrodes so that the propagation time from the stimulus site to the recording electrodes exceeds 2 ms. Because of the unique anatomy and tighter coupling in the cochlea, cochlear implants use small stimulation currents relative to the tens of mA sometimes required for SCS, and thus measured signals in cochlear systems present a relatively lower artifact. However to characterize the responses from the dorsal columns, high stimulation currents and close proximity between electrodes are required, and therefore the measurement process must overcome artifact directly, in contrast to existing “surgical monitoring” techniques.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
According to a first aspect the present invention provides a method for measuring a neural response to a stimulus, the method comprising:
settling measurement circuitry prior to a stimulus, by connecting a sense electrode to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state;
recovering charge on stimulus electrodes by short circuiting the stimulus electrodes to each other;
applying an electrical stimulus from the stimulus electrodes to neural tissue, while keeping the sense electrode disconnected from the measurement circuitry;
imposing a delay during which the stimulus electrodes are open circuited and the sense electrode is disconnected from the measurement circuitry and from the stimulus electrodes; and
after the delay, measuring a neural response signal present at the sense electrode by connecting the sense electrode to the measurement circuitry.
According to a second aspect the present invention provides an implantable device for measuring a neural response to a stimulus, the device comprising:
a plurality of electrodes including one or more nominal stimulus electrodes and one or more nominal sense electrodes;
a stimulus source for providing a stimulus to be delivered from the one or more stimulus electrodes to neural tissue;
measurement circuitry for amplifying a neural signal sensed at the one or more sense electrodes; and
a control unit configured to control application of a stimulus to the neural tissue and measurement of an evoked neural response, the control unit configured to settle the measurement circuitry prior to a stimulus by connecting the or each sense electrode to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state, the control unit further configured to recover charge on the stimulus electrodes by short circuiting the stimulus electrodes to each other, the control unit further configured to cause the stimulus source to apply an electrical stimulus from the stimulus electrodes to neural tissue while keeping the or each sense electrode disconnected from the measurement circuitry, the control unit further configured to impose a delay during which the stimulus electrodes are open circuited and the sense electrode is disconnected from the measurement circuitry and from the stimulus electrodes, and the control unit further configured to measure a neural response signal present at the sense electrode by connecting the or each sense electrode to the measurement circuitry after the delay.
It is to be understood herein that open circuiting of an electrode involves ensuring that the electrode is disconnected from other electrodes, the stimulus source, the measurement circuitry and from voltage rails. Ensuring that the sense electrode is disconnected from the stimulus electrodes during the delay period avoids charge transfer onto the sense electrode(s) and associated artifact. The present invention recognizes that connecting the sense electrodes to the stimulus electrodes during a post-stimulus delay period can undesirably give rise to such charge transfer and associated artifact, particularly if the delay is short relative to the time constant of the stimulus electrodes, the latter typically being around 100 μs. The sense electrode is preferably open circuited during the post-stimulus delay so as to be disconnected from all other electrodes of the array, to prevent such charge transfer to the sense electrode from other non-stimulus electrodes. With particular regard to the case of spinal cord response measurement, the present invention recognizes that in the spinal cord, the stimulation electrodes may never reach equilibrium at the stimulation rates used for chronic pain, so that connecting them to the stimulating electrodes at any time would increase artifact. This lack of equilibrium is due to the nature of the Helmholtz layer which causes fractional pole variation in the electrode impedance with frequency, with time constants as long as tens of milliseconds.
The present invention recognizes that it is beneficial to provide for pre-stimulus settling of the measurement circuitry towards a bio-electrically defined steady state. This ensures that charge recovery occurs in the settling stage prior to the stimulus and not during or immediately after the stimulus and thus does not give rise to artifact during or immediately after the stimulus. Thus, the present invention captures the bio-electrically defined steady state as reference point voltage at the end of the measurement cycle, when the system is in its most stable state. The system then amplifies the difference between the captured voltage and the reference point voltage. Where repeated measurement cycles are undertaken, the present invention further permits the measurement amplifier to accumulate a bias point over multiple cycles rather than re-setting the bias point each cycle. The settle period is preferably sufficiently long to permit the electrodes and circuitry to reach an equilibrium, and for example the settle period may be around 1 ms or greater, as permitted by a stimulus rate. For example if therapeutic stimuli are applied to a dorsal column at about 100 Hz and do not give rise to a slow neural response, then after the approximately 2 ms duration of an evoked fast response up to about 8 ms would be available for the settling period. However, this is generally longer than required and the settling period may be substantially less than 8 ms.
The delay may be in the range of substantially zero to 1 ms, and for example may be about 0.3 ms. Such embodiments permit onset of the neural response to be observed, this typically occurring about 0.3 ms after the stimulus for an electrode 3 cm away from the stimulus site. In embodiments in which an amplifier of the measurement circuitry has a very high dynamic range, and/or if using a measurement electrode closer to the stimulus electrode, the delay may be set to a smaller value for example in the range of 50-200 μs. The delay is preferably set to a value which ensures the measurement amplifier is not saturated and therefore performs linearly at all times when connected without experiencing clipping, and for example a feedback loop may be implemented to determine a suitable delay which avoids amplifier saturation for a given stimulus.
In preferred embodiments of the invention, the signal from the or each sense electrode is passed to a sample-and-hold circuit at the input of a measurement amplifier. In such embodiments measurements of a single evoked response may be obtained from a plurality of sense electrodes, even if the measurement circuitry of each electrode is connected to the control unit only by a two wire bus or the like, as is commonly required in implanted electrode arrays.
Additionally or alternatively, a buffer or follower amplifier is preferably provided in some embodiments, between the sense electrode and the measurement amplifier. The buffer is preferably connected to the sense electrode without interposed switches, so that the high reverse impedance of the buffer effectively prevents switching transients from being conveyed to the sense electrode, thereby avoiding artifact which may arise upon the sense electrode if subjected to such transients. The buffer amplifier is also preferably configured to give current gain to drive a storage capacitor of a sample and hold circuit. A series capacitor may be interposed between the sense electrode and the buffer to avoid DC transfer with the tissue in the event where the amplifier malfunctions. This capacitor also allows the bias voltage of the amplifier to equilibrate as the electrode voltage can drift over time periods of several tens of seconds.
In preferred embodiments of the invention, the stimulus and sense electrodes are selected from an implanted electrode array. The electrode array may for example comprise a linear array of electrodes arranged in a single column along the array. Alternatively the electrode array may comprise a two dimensional array having two or more columns of electrodes arranged along the array. Preferably, each electrode of the electrode array is provided with an associated measurement amplifier, to avoid the need to switch the sense electrode(s) to a shared measurement amplifier, as such switching can add to measurement artifact. Providing a dedicated measurement amplifier for each sense electrode is further advantageous in permitting recordings to be obtained from multiple sense electrodes simultaneously.
The measurement may be a single-ended measurement obtained by passing a signal from a single sense electrode to a single-ended amplifier. Alternatively, the measurement may be a differential measurement obtained by passing signals from two sense electrodes to a differential amplifier.
While recovering charge by short circuiting the stimulus electrodes together, it may in some embodiments be advantageous to disconnect the sense electrode from the measurement circuitry, for example by setting a sample-and-hold circuit to “hold”.
Embodiments of the invention may prove beneficial in obtaining a CAP measurement which has lower dynamic range and simpler morphology as compared to systems more susceptible to artifact. Such embodiments of the present invention may thus reduce the dynamic range requirements of implanted amplifiers, and may avoid or reduce the complexity of signal processing systems for feature extraction, simplifying and miniaturizing an implanted integrated circuit. Such embodiments may thus be particularly applicable for an automated implanted evoked response feedback system for stimulus control. Thus, in a further aspect, the present invention provides a method for feedback control of a neural stimulus, the method comprising an implanted control unit obtaining a CAP measurement in accordance with the method of the first aspect, and the implanted control unit using the obtained CAP measurement to control the delivery of subsequent neural stimuli by the implant.
In some embodiments of the invention, an averaged CAP measurement may be obtained by (i) delivering a first biphasic stimulus which starts with a pulse of a first polarity and then delivers a pulse of a second polarity opposite to the first polarity, and obtaining a first measurement of a CAP evoked by the first stimulus; (ii) delivering a second biphasic stimulus which starts with a pulse of the second polarity and then delivers a pulse of the first polarity, and obtaining a second measurement of a CAP evoked by the second stimulus; and (iii) taking an average of the first measurement and the second measurement to obtain an averaged measurement. Such embodiments exploit the observation that artifact polarity usually reflects the stimulus polarity, whereas the CAP polarity is independent of the stimulus polarity and is instead determined by the anatomy and physiology of the spinal cord membrane, so that averaging the first and second measurements will tend to selectively cancel out artifact. Further noting that for some electrode polarity configurations, such as monopolar, an “anodic first” biphasic stimulus usually has a lower stimulus threshold for neural recruitment than a “cathodic first” biphasic stimulus, the averaged measurement may have a morphology of either (i) a typical CAP of half amplitude if only the anodic-first stimulus exceeds the stimulus threshold; (ii) the average of two CAPs of different amplitude if both stimuli exceed the stimulus threshold but the cathodic first stimulus does not cause saturation recruitment; or (iii) a typical CAP if both stimuli exceed saturation recruitment. Some embodiments may therefore obtain a curve of the averaged measurement vs. stimulus amplitude in order to obtain information regarding the recruitment effected by each stimulus, and such information may be used for feedback control by the implant.
In some embodiments, the method of the present invention may be applied contemporaneously with administration of a drug, in order to gauge efficacy of drug delivery. For example, the implant may comprise or be operatively connected to a drug reservoir and drug delivery pump, with the pump being controlled by feedback based on CAP measurements.
According to another aspect the present invention provides a computer program product comprising computer program code means to make an implanted processor execute a procedure for measuring a neural response to a stimulus, the computer program product comprising computer program code means for carrying out the method of the first aspect.
The present invention recognizes that when considering spinal cord stimulation, obtaining information about the activity within the spinal segment where stimulation is occurring is highly desirable. Observing the activity and extent of propagation both above (rostrally of) and below (caudally of) the level of stimulation is also highly desirable. The present invention recognizes that in order to record the evoked activity within the same spinal segment as the stimulus requires an evoked potential recording system which is capable of recording an SCP within approximately 3 cm of its source, i.e. within approximately 0.3 ms of the stimulus, and further recognizes that in order to record the evoked activity using the same electrode array as applied the stimulus requires an evoked potential recording system which is capable of recording an SCP within approximately 7 cm of its source, i.e. within approximately 0.7 ms of the stimulus.
In preferred embodiments the stimulus comprises a bi-phasic pulse, and the stimulus electrodes have no capacitors. In contrast to a monophasic pulse and capacitor arrangement, such embodiments permit the stimulus electrode current to be interrupted, or forced to zero, at those times where it would interfere with measurement. Omitting capacitors is also desirable in order to minimize the size of the implanted device.
An example of the invention will now be described with reference to the accompanying drawings, in which:
The stimulus 102 induces a voltage on adjacent electrodes, referred to as stimulus crosstalk 104. Where the stimuli 102 are SCP stimuli they typically induce a voltage 104 in the range of about 1-5 V on a SCP sense electrode.
The stimulus 102 also induces electrode artifact, which is a residual voltage on an electrode resulting from uneven charge distribution on its surface. The electrode artifact is indicated in the voltage waveform 104 after cessation of stimulus crosstalk. The stimulus 102 disturbs the galvanic interface between the sense electrode and the tissue, so that after stimulus crosstalk in voltage 104 concludes, a voltage known as the electrode artifact continues on the electrode, as indicated in waveform 104 in
An appropriate stimulus 102 will also induce nerves to fire, and thereby produces an evoked neural response 106. In the spinal cord, the neural response 106 has two major components: a fast response lasting ˜2 ms and a slow response lasting ˜15 ms. The slow response only appears at stimulation amplitudes which are larger than the minimum stimulus required to elicit a fast response. The amplitude of the evoked response seen by epidural electrodes is typically no more than hundreds of microvolts, but in some clinical situations can be only tens of microvolts.
In practical implementation a measurement amplifier used to measure the evoked response does not have infinite bandwidth, and will normally have infinite impulse response filter poles, and so the stimulus crosstalk 104 will produce an output 108 during the evoked response 106, this output being referred to as electrical artifact.
Electrical artifact can be in the hundreds of millivolts as compared to a SCP of interest in the tens of microvolts. Electrical artifact can however be reduced by suitable choice of a high-pass filter pole frequency.
The measurement amplifier output 110 will therefore contain the sum of these various contributions 102-108. Separating the evoked response of interest (106) from the artefacts 104 and 108 is a major technical challenge. For example, to resolve a 10 μV SCP with 1 μV resolution, and have at the input a 5V stimulus, requires an amplifier with a dynamic range of 134 dB. As the response can overlap the stimulus this represents a difficult challenge of amplifier design.
The stimulus and measurement circuitry 200 operates to obtain a SC measurement using five phases. The first phase shown in
In the second phase shown in
In the third phase shown in
The fourth phase shown in
Finally, in the fifth phase shown in
When performing repeated measurement cycles in this fashion, it is noted that the switch positions are the same in the phase 1 “settling” and the phase 5 “measuring” states. Thus, the state of phase 5 is maintained, by virtue of a subsequent phase 1, until the electrodes and circuitry are in equilibrium, even after the time that useful SCP data is no longer present or being captured. Such embodiments thus provide a greater length of the “settle” state.
An advantage of this circuit is that in the phase 2 equilibration, the circuitry around amplifier 210 is a low-pass filter, and is therefore relatively immune to noise and input transients. This also allows the amplifier 210 to accumulate its bias point over successive measurement cycles, as it does not need to be reset for each cycle. Moreover, because of the buffer 206 before the sample/hold 208, the input-referred effect (i.e. the effect upon sense electrode 202) of the charge injection into the sample/hold 208 is lower.
In the embodiment of
The waveforms of
Moreover, it is notable that in this case of a 40 μs pulse width the measurement system is settled and ready to record prior to onset of the evoked CAP. The sense electrode was less than 50 mm from the stimulus electrode, and a post-stimulus delay of 50 μs was observed before the measurement amplifier was switched in to obtain the recordings shown in
In the embodiments of either
In another embodiment of the invention shown in
In contrast, the positive and negative phase stimuli 702, 704 produce SCPs of differing amplitudes, but approximately similar shape and importantly of similar polarity, as this is determined by the anatomy and physiology of the spinal cord nerve fibre membranes. Thus, when the voltages 706, 708 resulting from the positive and negative phase stimuli 702, 704 are recorded, and averaged, the opposite phase stimulation artefacts substantially cancel, leaving the SCP or a combination of the two SCPs 710. Note that in practical situations, the artifact can have much higher amplitude than the SCP, making it much harder to detect the SCP than is apparent from
The response of the spinal cord to these two polarities of stimulation are referred to as the “anodic” and “cathodic” SCP responses, as referred to the electrode considered to be that closest to the recording electrode. I.e. anodic tripolar stimulation makes the central stimulating electrode anodic in the first phase of stimulus. Usually cathodic stimulation has a lower threshold for neural activation than is the case for anodic stimulation. Nevertheless, the SCP polarity is independent of whether the stimulus is anodic 702 or cathodic 704.
This embodiment of the invention further recognizes that the averaged waveform of
When the stimulus amplitude is in the range 902 such that only the cathodic stimulus produces an SCP, then the averaged SCP waveform would have a normal SCP morphology but would be half the amplitude compared to a true cathodic SCP due to the averaging. In the region 904 where both the anodic and cathodic responses contribute to the averaged SCP, the resultant averaged SCP waveform will have morphology in between the two measurements. It would not directly represent an SCP, but rather the average of two different SCPs. Nevertheless, this waveform could still be valuable for example in implementing an automatic control loop for stimulation adjustment, as it gives a value proportional to neural recruitment.
It is further to be noted that the principle portrayed by
Some embodiments of the invention, such as the embodiment of
Differential amplifiers are often used because they provide a means to reduce electrode artifact, when other means have been insufficient. However,
With the measurement sequence of the present invention, the artifact is reduced so that some embodiments may instead use a single-ended amplifier, even in situations where previously they would have suffered from too much electrode artifact. Moreover, trials to date show that recording can be initiated with an extremely short time interval from cessation of the stimulus, permitting the same electrode array to be used for recording and stimulation, and even permitting recordings to be made on the electrode immediately adjacent to the stimulus electrode in an electrode array with electrode spacings of less than 10 mm.
Single ended amplifiers have the further advantage that they consist of fewer capacitors and amplifier components than differential amplifiers, so will take up less space on a silicon chip, which is a significant benefit when intended for use in an implanted system with many electrodes and where the silicon area for each amplifier is limited.
Preferred embodiments of the invention may comprise a separate amplifier chain (e.g. 206, 208, 210, see
Further embodiments of the invention may employ divisible electrodes, as discussed below with reference to
A similar effect happens when current flows between two electrodes, as shown in
The model of
The evoked response telemetry of the present invention may in some embodiments be used to monitor the effect of a delivered compound. The administration of compounds (drugs or other chemical therapeutics) to effect a change in the nervous system is common for treatment of a wide number of diseases and disorders. Anaesthetics of various types are administered to the spinal cord for the relief of pain. Perhaps the most common form is administration of anaesthetics in the epidural space for pain relief during child birth.
In such embodiments, a catheter comprising a drug delivery tube may be fitted with electrode elements and configured to obtain neural response measurements in accordance with the present invention in order to monitor drug-induced effects on the neural response. Alternatively an electrode array may be temporarily or permanently implanted and used to apply neural stimuli and monitor the neural response. The neural response measurements may be obtained repeatedly during administration of the drug in order to directly measure the effect of the administered drug and control the dosage delivered.
The plots of
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. For example in the measurements stages of charge recovery (
Number | Date | Country | Kind |
---|---|---|---|
2011901817 | May 2011 | AU | national |
This application is a continuation of U.S. application Ser. No. 14/117,144, filed Nov. 12, 2013, which application is a national stage of Application No. PCT/AU2012/000511, filed May 11, 2012, which application claims the benefit of Australian Provisional Patent Application No. 2011901817, filed May 13, 2011, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3736434 | Darrow | May 1973 | A |
3817254 | Maurer | Jun 1974 | A |
3898472 | Long | Aug 1975 | A |
4158196 | Crawford, Jr. | Jun 1979 | A |
4418695 | Buffet | Dec 1983 | A |
4474186 | Ledley et al. | Oct 1984 | A |
4628934 | Pohndorf et al. | Dec 1986 | A |
4807643 | Rosier | Feb 1989 | A |
4856525 | Van Den et al. | Aug 1989 | A |
5113859 | Funke | May 1992 | A |
5139020 | Koestner et al. | Aug 1992 | A |
5143081 | Young et al. | Sep 1992 | A |
5156154 | Valenta, Jr. et al. | Oct 1992 | A |
5172690 | Nappholz et al. | Dec 1992 | A |
5184615 | Nappholz et al. | Feb 1993 | A |
5188106 | Nappholz et al. | Feb 1993 | A |
5215100 | Spitz | Jun 1993 | A |
5324311 | Acken | Jun 1994 | A |
5417719 | Hull et al. | May 1995 | A |
5431693 | Schroeppel | Jul 1995 | A |
5458623 | Lu et al. | Oct 1995 | A |
5476486 | Lu et al. | Dec 1995 | A |
5497781 | Chen et al. | Mar 1996 | A |
5638825 | Yamazaki et al. | Jun 1997 | A |
5702429 | King et al. | Dec 1997 | A |
5758651 | Nygard | Jun 1998 | A |
5776170 | Macdonald et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5792212 | Weijand et al. | Aug 1998 | A |
5814092 | King | Sep 1998 | A |
5913882 | King | Jun 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
6020857 | Podger | Feb 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6038480 | Hrdlicka et al. | Mar 2000 | A |
6066163 | John | May 2000 | A |
6114164 | Dennis et al. | Sep 2000 | A |
6144881 | Hemming et al. | Nov 2000 | A |
6157861 | Faltys et al. | Dec 2000 | A |
6212431 | Hahn et al. | Apr 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6473649 | Gryzwa et al. | Oct 2002 | B1 |
6473653 | Schallhorn et al. | Oct 2002 | B1 |
6493576 | Dankwart-Eder | Dec 2002 | B1 |
6522932 | Kuzma | Feb 2003 | B1 |
6600955 | Zierhofer et al. | Jul 2003 | B1 |
6658293 | Vonk et al. | Dec 2003 | B2 |
6675046 | Holsheimer | Jan 2004 | B2 |
6782292 | Whitehurst | Aug 2004 | B2 |
6898582 | Lange et al. | May 2005 | B2 |
7089059 | Pless | Aug 2006 | B1 |
7171261 | Litvak et al. | Jan 2007 | B1 |
7231254 | DiLorenzo et al. | Jun 2007 | B2 |
7286876 | Yonce et al. | Oct 2007 | B2 |
7412287 | Yonce et al. | Aug 2008 | B2 |
7450992 | Cameron | Nov 2008 | B1 |
7734340 | De Ridder | Jun 2010 | B2 |
7742810 | Moffitt | Jun 2010 | B2 |
7792584 | Van Oort et al. | Sep 2010 | B2 |
7818052 | Litvak et al. | Oct 2010 | B2 |
7831305 | Gliner | Nov 2010 | B2 |
7835804 | Fridman et al. | Nov 2010 | B2 |
8190251 | Molnar et al. | May 2012 | B2 |
8224459 | Pianca et al. | Jul 2012 | B1 |
8239031 | Fried et al. | Aug 2012 | B2 |
8359102 | Thacker et al. | Jan 2013 | B2 |
8494645 | Spitzer et al. | Jul 2013 | B2 |
8588929 | Davis et al. | Nov 2013 | B2 |
8670830 | Carlson et al. | Mar 2014 | B2 |
8886323 | Wu et al. | Nov 2014 | B2 |
9155892 | Parker et al. | Oct 2015 | B2 |
9302112 | Bornzin et al. | Apr 2016 | B2 |
9381356 | Parker et al. | Jul 2016 | B2 |
9386934 | Parker et al. | Jul 2016 | B2 |
9872990 | Parker et al. | Jan 2018 | B2 |
9974455 | Parker et al. | May 2018 | B2 |
20020055688 | Katims | May 2002 | A1 |
20020099419 | Ayal et al. | Jul 2002 | A1 |
20020193670 | Garfield et al. | Dec 2002 | A1 |
20030032889 | Wells | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030139781 | Bradley et al. | Jul 2003 | A1 |
20030195580 | Bradley et al. | Oct 2003 | A1 |
20040088017 | Sharma et al. | May 2004 | A1 |
20040122482 | Tung et al. | Jun 2004 | A1 |
20040158298 | Gliner | Aug 2004 | A1 |
20040225211 | Gozani et al. | Nov 2004 | A1 |
20040254494 | Spokoyny et al. | Dec 2004 | A1 |
20050010265 | Baru Fassio | Jan 2005 | A1 |
20050017190 | Eversmann et al. | Jan 2005 | A1 |
20050021104 | DiLorenzo | Jan 2005 | A1 |
20050065427 | Magill | Mar 2005 | A1 |
20050070982 | Heruth et al. | Mar 2005 | A1 |
20050075683 | Miesel et al. | Apr 2005 | A1 |
20050101878 | Daly | May 2005 | A1 |
20050113877 | Giardiello et al. | May 2005 | A1 |
20050137670 | Christopherson et al. | Jun 2005 | A1 |
20050149154 | Cohen | Jul 2005 | A1 |
20050192567 | Katims | Sep 2005 | A1 |
20050203600 | Wallace | Sep 2005 | A1 |
20050209655 | Bradley et al. | Sep 2005 | A1 |
20050282149 | Kovacs et al. | Dec 2005 | A1 |
20060009820 | Royle et al. | Jan 2006 | A1 |
20060020291 | Gozani | Jan 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060195159 | Bradley et al. | Aug 2006 | A1 |
20060212089 | Tass | Sep 2006 | A1 |
20060217782 | Boveja et al. | Sep 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060287609 | Litvak et al. | Dec 2006 | A1 |
20070021800 | Bradley et al. | Jan 2007 | A1 |
20070073354 | Knudson et al. | Mar 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070178579 | Ross et al. | Aug 2007 | A1 |
20070185409 | Wu et al. | Aug 2007 | A1 |
20070208394 | King et al. | Sep 2007 | A1 |
20070225767 | Daly et al. | Sep 2007 | A1 |
20070244410 | Fridman et al. | Oct 2007 | A1 |
20070250120 | Flach et al. | Oct 2007 | A1 |
20070255372 | Metzler et al. | Nov 2007 | A1 |
20070282217 | McGinnis et al. | Dec 2007 | A1 |
20070287931 | Dilorenzo | Dec 2007 | A1 |
20080021292 | Stypulkowski | Jan 2008 | A1 |
20080051647 | Wu et al. | Feb 2008 | A1 |
20080064947 | Heruth et al. | Mar 2008 | A1 |
20080077191 | Morrell | Mar 2008 | A1 |
20080097529 | Parramon et al. | Apr 2008 | A1 |
20080147155 | Swoyer | Jun 2008 | A1 |
20080183076 | Witte | Jul 2008 | A1 |
20080208304 | Zdravkovic et al. | Aug 2008 | A1 |
20080234780 | Smith et al. | Sep 2008 | A1 |
20080275527 | Greenberg et al. | Nov 2008 | A1 |
20080294221 | Kilgore | Nov 2008 | A1 |
20080300655 | Cholette | Dec 2008 | A1 |
20090033486 | Costantino et al. | Feb 2009 | A1 |
20090082691 | Denison et al. | Mar 2009 | A1 |
20090157155 | Bradley | Jun 2009 | A1 |
20090270957 | Pianca | Oct 2009 | A1 |
20090287277 | Conn et al. | Nov 2009 | A1 |
20090299214 | Wu et al. | Dec 2009 | A1 |
20090306491 | Haggers | Dec 2009 | A1 |
20100010388 | Panken et al. | Jan 2010 | A1 |
20100058126 | Chang et al. | Mar 2010 | A1 |
20100069835 | Parker | Mar 2010 | A1 |
20100069996 | Strahl | Mar 2010 | A1 |
20100070007 | Parker | Mar 2010 | A1 |
20100070008 | Parker | Mar 2010 | A1 |
20100106231 | Torgerson | Apr 2010 | A1 |
20100114258 | Donofrio et al. | May 2010 | A1 |
20100125313 | Lee et al. | May 2010 | A1 |
20100125314 | Bradley et al. | May 2010 | A1 |
20100145222 | Brunnett et al. | Jun 2010 | A1 |
20100152808 | Boggs, II | Jun 2010 | A1 |
20100179626 | Pilarski | Jul 2010 | A1 |
20100191307 | Fang et al. | Jul 2010 | A1 |
20100204748 | Lozano et al. | Aug 2010 | A1 |
20100222844 | Troosters et al. | Sep 2010 | A1 |
20100222858 | Meloy | Sep 2010 | A1 |
20100249643 | Gozani et al. | Sep 2010 | A1 |
20100249867 | Wanasek | Sep 2010 | A1 |
20100258342 | Parker | Oct 2010 | A1 |
20100262208 | Parker | Oct 2010 | A1 |
20100262214 | Robinson | Oct 2010 | A1 |
20100280570 | Sturm et al. | Nov 2010 | A1 |
20100286748 | Midani et al. | Nov 2010 | A1 |
20100331604 | Okamoto et al. | Dec 2010 | A1 |
20100331926 | Lee et al. | Dec 2010 | A1 |
20110004207 | Wallace et al. | Jan 2011 | A1 |
20110021943 | Lacour et al. | Jan 2011 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110087085 | Tsampazis et al. | Apr 2011 | A1 |
20110093042 | Torgerson et al. | Apr 2011 | A1 |
20110106100 | Bischoff | May 2011 | A1 |
20110184488 | De Ridder et al. | Jul 2011 | A1 |
20110204811 | Pollmann-retsch | Aug 2011 | A1 |
20110224749 | Ben-David et al. | Sep 2011 | A1 |
20110264165 | Molnar et al. | Oct 2011 | A1 |
20110270343 | Buschman et al. | Nov 2011 | A1 |
20110313310 | Tomita | Dec 2011 | A1 |
20110313483 | Hincapie et al. | Dec 2011 | A1 |
20120029377 | Polak | Feb 2012 | A1 |
20120101552 | Lazarewicz et al. | Apr 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120253423 | Youn et al. | Oct 2012 | A1 |
20120277621 | Gerber et al. | Nov 2012 | A1 |
20120277823 | Gerber et al. | Nov 2012 | A1 |
20130053722 | Carlson et al. | Feb 2013 | A1 |
20130060302 | Polefko et al. | Mar 2013 | A1 |
20130172774 | Crowder et al. | Jul 2013 | A1 |
20130289661 | Griffith et al. | Oct 2013 | A1 |
20130289683 | Parker et al. | Oct 2013 | A1 |
20140066803 | Choi | Mar 2014 | A1 |
20140142447 | Takahashi et al. | May 2014 | A1 |
20140194771 | Parker et al. | Jul 2014 | A1 |
20140194772 | Single et al. | Jul 2014 | A1 |
20140236042 | Parker et al. | Aug 2014 | A1 |
20140236257 | Parker et al. | Aug 2014 | A1 |
20140243926 | Carcieri | Aug 2014 | A1 |
20140243931 | Parker et al. | Aug 2014 | A1 |
20140276195 | Papay et al. | Sep 2014 | A1 |
20140277250 | Su et al. | Sep 2014 | A1 |
20140288551 | Bharmi et al. | Sep 2014 | A1 |
20140288577 | Robinson et al. | Sep 2014 | A1 |
20140296737 | Parker et al. | Oct 2014 | A1 |
20140358024 | Nelson et al. | Dec 2014 | A1 |
20150018699 | Zeng et al. | Jan 2015 | A1 |
20150164354 | Parker et al. | Jun 2015 | A1 |
20150174396 | Fisher et al. | Jun 2015 | A1 |
20150238104 | Tass | Aug 2015 | A1 |
20150238304 | Lamraoui | Aug 2015 | A1 |
20150282725 | Single | Oct 2015 | A1 |
20150313487 | Single | Nov 2015 | A1 |
20150360031 | Bornzin et al. | Dec 2015 | A1 |
20150374999 | Parker | Dec 2015 | A1 |
20160166164 | Obradovic et al. | Jun 2016 | A1 |
20160287126 | Parker et al. | Oct 2016 | A1 |
20160287182 | Single | Oct 2016 | A1 |
20170001017 | Parker et al. | Jan 2017 | A9 |
20170049345 | Single | Feb 2017 | A1 |
20170135624 | Parker | May 2017 | A1 |
20170216587 | Parker | Aug 2017 | A1 |
20170361101 | Single | Dec 2017 | A1 |
20180110987 | Parker | Apr 2018 | A1 |
20180117335 | Parker et al. | May 2018 | A1 |
20180132747 | Parker et al. | May 2018 | A1 |
20180132760 | Parker | May 2018 | A1 |
20180133459 | Parker et al. | May 2018 | A1 |
20180228391 | Parker et al. | Aug 2018 | A1 |
20180228547 | Parker | Aug 2018 | A1 |
20180229046 | Parker et al. | Aug 2018 | A1 |
20180256052 | Parker et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
0219084 | Apr 1987 | EP |
0998958 | Aug 2005 | EP |
2019716 | Nov 2007 | EP |
2243510 | Oct 2010 | EP |
2443995 | Apr 2012 | EP |
2707095 | Mar 2014 | EP |
2013527784 | Jul 2013 | JP |
1983003191 | Sep 1983 | WO |
1993001863 | Feb 1993 | WO |
9612383 | Apr 1996 | WO |
2000002623 | Jan 2000 | WO |
2002036003 | Nov 2001 | WO |
2002038031 | May 2002 | WO |
2002049500 | Jun 2002 | WO |
2003028521 | Apr 2003 | WO |
2003043690 | May 2003 | WO |
2003103484 | Dec 2003 | WO |
2004021885 | Mar 2004 | WO |
20040103455 | Dec 2004 | WO |
2005032656 | Apr 2005 | WO |
2005105202 | Nov 2005 | WO |
2006091636 | Aug 2006 | WO |
2007064936 | Jun 2007 | WO |
2007127926 | Nov 2007 | WO |
2007130170 | Nov 2007 | WO |
2008004204 | Jan 2008 | WO |
2008049199 | May 2008 | WO |
2009002072 | Dec 2008 | WO |
2009002579 | Dec 2008 | WO |
2009010870 | Jan 2009 | WO |
2009130515 | Oct 2009 | WO |
2009146427 | Dec 2009 | WO |
2010013170 | Feb 2010 | WO |
2010044989 | Apr 2010 | WO |
2010051392 | May 2010 | WO |
2010057046 | May 2010 | WO |
2010124139 | Oct 2010 | WO |
2010138915 | Dec 2010 | WO |
2011011327 | Jan 2011 | WO |
2011066477 | Jun 2011 | WO |
2011066478 | Jun 2011 | WO |
2011112843 | Sep 2011 | WO |
2011119251 | Sep 2011 | WO |
2011159545 | Dec 2011 | WO |
2012027791 | Mar 2012 | WO |
2012155183 | Nov 2012 | WO |
2012155184 | Nov 2012 | WO |
2012155185 | Nov 2012 | WO |
2012155187 | Nov 2012 | WO |
2012155188 | Nov 2012 | WO |
2012155189 | Nov 2012 | WO |
2012155190 | Nov 2012 | WO |
2013063111 | May 2013 | WO |
2013075171 | May 2013 | WO |
2014071445 | May 2014 | WO |
2014071446 | May 2014 | WO |
2014143577 | Sep 2014 | WO |
2015070281 | May 2015 | WO |
2015074121 | May 2015 | WO |
2015109239 | Jul 2015 | WO |
2015143509 | Oct 2015 | WO |
2015168735 | Nov 2015 | WO |
20160011512 | Jan 2016 | WO |
2016077882 | May 2016 | WO |
2016090420 | Jun 2016 | WO |
2016090436 | Jun 2016 | WO |
2016115596 | Jul 2016 | WO |
2016161484 | Oct 2016 | WO |
2016191807 | Dec 2016 | WO |
2016191808 | Dec 2016 | WO |
2016191815 | Dec 2016 | WO |
2017173493 | Oct 2017 | WO |
2017219096 | Dec 2017 | WO |
Entry |
---|
International Preliminary Report on Patentability for International Application No. PCT/AU2011/001127, Report dated Mar. 5, 2013, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000511, Report dated Nov. 19, 2013, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000512, Report dated Nov. 19, 2013, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000513, Report dated Nov. 19, 2013, 11 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000515, Report dated Nov. 19, 2013, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000516, Report dated Nov. 19, 2013, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000517, Report dated Nov. 19, 2013, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000518, Report dated Nov. 19, 2013, 11 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001279, Report dated May 12, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001280, Report dated May 12, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2014/001049, Report dated May 17, 2016, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2014/050369, Report dated May 24, 2016, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050135, Report dated Oct. 4, 2016, 13 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050215, Report dated Nov. 8, 2016, 4 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050422, Report dated Jan. 31, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050724, Report dated May 23, 2017, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050787, Report dated Jun. 13, 2017, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050019, Report dated Jul. 25, 2017, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050263, Report dated Oct. 10, 2017, 9 pgs. |
International Type Search Report for International Application No. AU 2015902393, Search completed May 16, 2016, dated May 16, 2016, 8 Pgs. |
Extended European Search Report for European Application No. 15768956.3, Search completed Oct. 3, 2017, dated Oct. 10, 2017, 8 Pgs. |
Al-Ani et al., “Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus”, Journal of Neuroscience Methods, vol. 198, Issue 1, 2011, pp. 135-146. |
European Search Report for European Application No. 15861444.6, Search completed Jul. 13, 2018, dated Jul. 23, 2018, 8 pgs. |
Extended European Search Report for European Application No. 16739680.3, Search completed Jun. 1, 2018, dated Jun. 12, 2018, 9 Pgs. |
French et al., “Information transmission at 500 bits/s by action potentials in a mechanosensory neuron of the cockroach”, Neuroscience Letters, vol. 243, No. 1-3, Feb. 1, 1998, pp. 113-116. |
Herreras, “Local Field Potentials: Myths and Misunderstandings”, Frontiers in Neural Circuits, Dec. 15, 2016, vol. 10, Article 1101, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050296, Search completed Jul. 28, 2017, dated Jul. 28, 2017, 10 pgs. |
Partial European Search Report for European Application No. 16775966.1, Search completed Oct. 26, 2018, dated Nov. 6, 2018, 11 Pgs. |
He et al., “Perception threshold and electrode position for spinal cord stimulation”, Pain, 59 (1994) 55-63 pages. |
Holsheimer et al., “Significance of the Spinal Cord Position in Spinal Cord Stimulation”, Acta Neurochir (1995) [Suppl] 64: 119-124 pages. |
Holsheimer et al., “Spinal Geometry and Paresthesia Coverage in Spinal Cord Stimulation”, (1998 paper) 8 pages. |
Olin et al., “Postural Changes in Spinal Cord Stimulation Perceptual Thresholds”, Neuromodulation, vol. 1, No. 4, 1998, pp. 171-175. |
Rattay, “Analysis of Models for External Stimulation of Axons”, IEEE Transactions on Biomedical Engineering, vol. BME-33, No. 10, October 1986, pp. 974-977. |
Ross et al., “Improving Patient Experience with Spinal Cord Stimulation: Implications of Position-Related Changes in Neurostimulation”, Neuromodulation 2011; e-pub ahead of print. DOI: 10.1111/j.1525-1403.2011.00407.x 6 pages. |
Struijk, “The Extracellular Potential of a Myelinated Nerve Fiber in an Unbounded Medium and in Nerve Cuff Models”, Biophysical Journal, vol. 72, Jun. 1997, pp. 2457-2469. |
European Search Report for European Application 12785619.3 Search Completed Oct. 13, 2014, dated Oct. 23, 2014, 7 pgs. |
European Search Report for European Application 12785669.8 Search Completed Sep. 22, 2014, dated Sep. 29, 2014, 5 pgs. |
Extended European Search Report for EP Application 12785483.4 completed Sep 16, 2014, 7 pgs. |
Extended European Search Report for European Application No. 11820923.8, report completed Dec. 9, 2013, report dated Dec. 17, 2013, 6 pgs. |
Extended European Search Report for European Application No. 13852669.4, Search completed Jun. 8, 2016, dated Jun. 22, 2016, 9 pgs. |
Extended European Search Report for European Application No. 14861553.7, Search completed Jun. 8, 2017, dated Jun. 19, 2017, 8 pgs. |
Extended European Search Report for European Application No. 14863597.2, Search completed Jun. 6, 2017, dated Jun. 13, 2017, 9 pgs. |
Extended European Search Report for European Application No. 13853514.1, Search completed Jun. 8, 2016, dated Jun. 15, 2016, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/001441, Report dated May 27, 2014, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2011/001127, date completed Nov. 11, 2011, dated Nov. 15, 2011, 13 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2012/001441, International Filing Date Nov. 23, 2012, Search Completed Feb. 26, 2013, dated Feb. 26, 2013, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2014/001049, Search completed Feb. 10, 2015, dated Feb. 10, 2015, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2014/050369, Search completed Feb. 20, 2015, dated Feb. 20, 2015, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050135, Search completed Jun. 30, 2015, dated Jun. 30, 2015, 26 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050422, Search completed Oct. 14, 2015, dated Oct. 14, 2015, 17 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050724, Search completed May 9, 2016, dated May 9, 2016, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050753, Search completed Feb. 10, 2016, dated Feb. 10, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050787, Search completed Mar. 16, 2016, dated Mar. 16, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050019, Search completed May 4, 2016, dated May 4, 2016, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050215, Search completed Jul. 30, 2015, dated Jul. 30, 2015, 8 pgs. |
International Search Report for Australian Application 2011901829 Search Completed Feb. 6, 2012, dated Feb. 7, 2012, 3 pgs. |
International Search Report for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 4 pgs. |
International Search Report for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 4 pgs. |
International Search Report for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 5 pgs. |
International Search Report for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 5 pgs. |
International Search Report for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs. |
International Search Report for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 3 pgs. |
International Search Report for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 4 pgs. |
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Specification, Printed Jun. 16, 2014, 2 pgs. |
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Summary Printed Jun. 16, 2014, 1 pg. |
Written Opinion for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 5 pgs. |
Written Opinion for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 7 pgs. |
Written Opinion for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 10 pgs. |
Written Opinion for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 4 pgs. |
Written Opinion for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs. |
Written Opinion for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 5 pgs. |
Written Opinion for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 10 pgs. |
Medtronic, RestoreSensor Neurostimulator, Retrieved from: http://web.archive.org/web/20150328092923/http://professional.medtronic.com:80 /pt/neuro/scs/prod/restore-sensor/features-specifications/index.htm, Capture Date Jul. 9, 2012, Printed on May 11, 2017. |
“Advanced Pain Therapy using Neurostimulation for Chronic Pain”, Medtronic RestoreSensor clinical trial paper,Clinical summary, Nov. 2011, pp. 32. |
“Battelle Neurotechnology—Moving Beyond the Limits in Neurotechnology”, Battelle, www.battelle.org, May 2014, pp. 1-2. |
“Haptic technology”, Wikipedia, Retrieved from: http://en.wikipedia.org/wiki/Haptic_technology, Last modified on Sep. 15, 2014, Printed on Sep. 15, 2014, 5 pgs. |
“Implants for surgery, Cardiac pacemakers”, IS-1 standard ISO 5841-03-2000, Oct. 15, 2000. |
International Search Report & Written Opinion for International Application No. PCT/AU2013/001280, Search Completed Jan. 16, 2014, dated Jan. 16, 2014, 8 pgs. |
International Search Report & Written Opinion for International Application PCT/AU2013/001279, Search Completed Jan. 9, 2014, dated Jan. 9, 2014, 9 pgs. |
“Neural Bypass Technology Enables Movement in Paralyzed Patient”, Posted on Jul. 29, 2014, 6 a.m. in Brain chips/computer interface, pp. 1-2. |
“Spinal Cord Stimulation, About Spinal Cord Stimulation”, Medtronic, Retrieved from: http://professional.medtronic.com/pt/neuro/scs/edu/about/index.htm, Printed on Jun. 16, 2014, 2 pgs. |
“Wide bandwidth BioAmplifier”, http://www.psylab.com/html/default_bioamp.htm, Printed Jan. 30, 2014, 1-3 pages. |
Andreassen, S. et al., “Muscle Fibre Conduction Velocity in Motor Units of the Human Anterior Tibial Muscle: a New Size Principle Parameter”, J. Physiol, (1987), 391, pp. 561-571. |
Andy, “Parafascicular-Center Median Nuclei Stimulation for Intractable Pain and Dyskinesia (Painful-Dyskinesia)”, Stereotactic and Functional Neurosurgery, Appl. Neurophysiol., 43, No. 3-5, 1980, pp. 133-144. |
Balzer et al., “Localization of cervical and cervicomedullary stimulation leads for pain treatment using median nerve somatosensay evoked potential collision testing”, Journal of Neurosurgery, Jan. 2011, vol. 114, No. 1 : pp. 200-205. |
Blum, A. R., “An Electronic System for Extracelluar Neural Stimulation and Recording”, Dissertation, Georgia Institute of Technology, Aug. 2007, Retrieved from http://smartech.gatech.edu/handle/1853/16192 on Jan. 30, 2012. |
Borg et al., “Conduction velocity and refractory period of single motor nerve fibres in antecedent poliomyelitis”, Journal of Neurology, Neurosurgery, and Psychiatry, vol. 501987, 443-446. |
Brown et al., “Impact of Deep Brain Stimulation on Upper Limb Askinesia in Parkingson's Disease”, Annals of Neurology, 45, No. 4, 1999, pp. 473-488. |
Budagavi et al., “Modelling of compound nerve action potentials health and disease”, Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE. vol. 6. IEEE, 1992. pp. 2600-2601. |
Coquery et al., “Backward and forward masking in the perception of cutaneous stimuli”, Perception & Psychophysics, 1973, vol. 13.No. 2, pp. 161-163. |
Dawson, G. D., “The relative excitability and conduction velocity of sensory and motor nerve fibres in man”Journal of Physiology, 1956, vol. 131(2), pp. 436-451. |
Devergnas et al., A, “Cortical potentials evoked by deep brain stimulation in the subthalamic area”, Front Syst Neurosci. 2011; 5: 30. May 13, 2011. doi:10.3389/fnsys.2011.00030. |
Dijkstra, E. A., “Ultrasonic Distance Detection for a Closed-Loop Spinal Cord Stimulation System”, Proceedings—19th International Conference—IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL, 4 pgs. |
Dillier, N et al., “Measurement of the electrically evoked compound action potential via a neural response telemetry system” Ann. Otol. Rhinol. Laryngol, vol. 111, No. 5, May 2002, pp. 407-414. |
Doiron et al., “Persistent Na+ Current Modifies Burst Discharge by Regulating Conditional Backpropagation of Dendritic Spikes”, Journal of Neurophysiology 89, No. 1 (Jan. 1, 2003): 324-337, doi:10.1152/jn.00729.2002. |
England et al., “Increased Numbers of Sodium Channels Form Along Demyelinated Axons”, Brain Research 548, No. 1-2 (May 10, 1991): 334-337. |
Fagius, J. et al., “Sympathetic Reflex Latencies and Conduction Velocities in Normal Man”, Journal of Neurological Sciences, 1980. vol. 47, pp. 433-448. |
Falowski et al., “Spinal Cord Stimulation: an update”, Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 5, No. 1, Jan. 2008, pp. 86-99. |
Franke et al., Felix, “An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes”, Journal of Computational Neuroscience, 2010, vol. 29, No. 1-2, pp. 127-148. |
Fuentes et al., “Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson's Disease”, Science, vol. 323, No. 5921, Mar. 20, 2009, pp. 1578-1582. |
George et al., “Vagus nerve stimulation: a new tool for brain research and therapy”, Biological Psychiatry 47, No. 4, Feb. 15, 2000, pp. 287-295. |
Goodall, E. V., “Modeling Study of Activation and Propagation delays During Stimulation of Peripheral Nerve Fibres with a Tripolar Cuff Electrode”, IEEE Transactions on Rehabilitation Engineering, vol. 3, No. 3, Sep. 1995, pp. 272-282. |
Gorman et al., “ECAP Mapping of the Spinal Cord: Influence of Electrode Position on Aβ Recruitment”, (2012), In 16th Annual Meeting. Presented at the North American Neuromodulation Society, Las Vegas, NV. |
Gorman et al., “Neural Recordings for Feedback Control of Spinal Cord Stimulation: Reduction of Paresthesia Variability.”, 2013,In International Neuromodulation Society 11th World Congress. Presented at the International Neuromodulation Society 11th World Congress, Berlin, Germany. |
Hallstrom et al, “Distribution of lumbar spinal evoked potentials and their correlation with stimulation-induced paresthesiae”, (1991), Electroencephalography and clinical neurophysiology 80:126-139. |
Harper, A. A. et al., “Conduction Velocity is Related to Morphological Cell Type in Rat Dorsal Root Ganglion Neurones”, J. Physiol, (1985), 359, pp. 31-46. |
Holsheimer et al., “Optimum Electrode Geometry for Spinal Cord Stimulation: the Narrow Bipole and Tripole”, Medical and Biological Engineering and Computing, 35, No. 5, 1997, pp. 493-497. |
Huff, Terry B. et al., “Real-Time CARS Imaging Reveals a Calpain-Dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation”, PLoS ONE vol. 6, issue 3 (Mar. 3, 2011): e17176, 11 pgs. |
Hui, Ouyang et al., “Compression Induces Acute Demyelination and Potassium Channel Exposure in Spinal Cord”, Journal of Neurotrauma 27, No. 6, Jun. 2010, 1109-1120, doi:10.1089/neu.2010.1271. |
Kent et al., “Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation”, Conf. Proc. IEEE Eng. Med Biol. Sol, Aug. 2012, 10 pgs. |
Kent et al., AR, “Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact”, J Neural Eng. Jun. 2012; 9 (3):036004, Apr. 18, 2012. doi: 10.1088/1741-2560/9/3/036004. |
Kim et al., “A Wavelet-Based Method for Action Potential Detection From Extracellular Neural Signal Recording Wth Low Signal-to-Noise Ratio”, IEEE Transactions on Biomedical Engineering, vol. 50. No. 8, Aug. 2003. |
Kim et al., “Cell Type-specific Changes of the Membrane Properties of Peripherally-axotomized Dorsal Root Ganglion Neurons in a Rat Model of Neuropathic Pain”, Neuroscience 86, No. 1 (May 21, 1998): 301-309, doi:10.1016/S0306-4522(98)00022-0. |
Krames et al., “Neuromodulation”, 1st Edition, Academic Press, 2009, p. 540-541. |
Krarup, Christian, “Compound sensory action potential in normal and pathological human nerves”, Muscle & nerve, vol. 29, No. 4 (2004), pp. 465-483. |
Krishnan et al., “Excitability Differences in Lower-Limb Motor Axons During and After Ischemia”, Muscle & nerve, vol. 31, No. 2 (2005), pp. 205-213. |
Kumar et al., “Deep Brain Stimulation for Intractable Pain: a 15-year Experience”, Neurosurgery, Issue 40, No. 4, Apr. 1997, pp. 736-747. |
Kumar et al., “Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease”, by the American Academy of Neurology, 51, No. 3, Sep. 1, 1998, pp. 850-855. |
Kumar et al., “Globus Pallidus Deep Brain Stimulation for Generalized Dystonia: Clinical and PET Investigation”, Neurology, 53, No. 4, 1999, pp. 871-874. |
Laird et al., “A Model of Evoked Potentials in Spinal Cord Stimulation”, IEEE Engineering in Medicine & Biology Society, 35th Annual Conference. Osaka, Japan: Jul. 3-7, 2013, pp. 6555-6558. |
Lempka, Scott, “The Electrode-Tissue Interface During Recording and Stimulation in the Central Nervous System”, published on May, 2010. |
Levy et al., “Incidence and Avoidance of Neurologic Complications with Paddle Type Spinal Cord Stimulation Leads”, Neuromodulation 14(15), Sep. 2011, pp. 412-422. |
Li et al., S, “Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation”, J Neurophysiol. Dec. 2007; 98(6): 3525-37. First published Oct. 10, 2007. doi:10.1152/jn.00808.2007. |
Ma et al., “Similar Electrophysiological Changes in Axotomized and Neighboring Intact Dorsal Root Ganglion Neurons”, Journal of Neurophysiology 89, No. 3 (Mar. 1, 2003): 1588-1602, doi:10.1152/jn.00855.2002. |
Macefield, “Spontaneous and Evoked Ectopic Discharges Recorded from Single Human Axons”, Muscle & Nerve 21, No. 4, Apr. 1998, pp. 461-468. |
Mahnam, A et al., “Measurement of the current-distance relationship using a novel refractory interaction technique”J. Neural Eng. 6 (2009), pp. 036005 (published May 20, 2009) Abstract, Sec. 2.2 & Figure 2b, 036005. |
Markandey, Vishal, “ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)”, Texas Instruments Application Report Jun. 2010, 35 pgs. |
Massachusetts Institute of Techn, “The Compound Action Potential of the Frog Sciatic Nerve”, Quantitative Physiology: Cells and Tissues. Fall, 1999, Retrieved from http://umech.mit.edu/freeman/6.021J/2001/lab.pdf on May 22, 2012. |
Matzner et al., “Na+ Conductance and the Threshold for Repetitive Neuronal Firing”, Brain Research 597, No. 1 (Nov. 27, 1992): 92-98, doi:10.1016/0006-8993(92)91509-D. |
McGill, Kevin et al., “On the Nature and Elimination of Stimulus Artifact in Nerve Signals Evoked and Recorded Using Surface Electrodes”, IEEE Transactions on Biomedical Engineering, vol. BME-29, No. 2, Feb. 1982, pp. 129-137. |
Melzack et al., “Pain mechanisms: a new theory”, Science, New York, New York, vol. 150, No. 3699, Nov. 19, 1965, pp. 971-979. |
Miles et al., “An Electrode for Prolonged Stimulation of the Brain”, Proc. 8th Meeting World Soc. Stereotactic and Functional Neurosurgery, Part III, Zurich, 1981, Appl. Neurophysiol, 45, 1982, pp. 449-445 1982. |
Misawa et al., “Neuropathic Pain Is Associated with Increased Nodal Persistent Na(+) Currents in Human Diabetic Neuropathy”, Journal of the Peripheral Nervous System: JPNS, 14, No. 4 (Dec. 2009): 279-284. |
Nordin et al., “Ectopic Sensory Discharges and Paresthesiae in Patients with Disorders of Peripheral Nerves, Dorsal Roots and Dorsal Columns”, Pain 20, No. 3 (Nov. 1984): 231-245, doi: 10.1016/0304-3959(84)90013-7. |
Oakley et al., “Spinal Cord Stimulation: Mechanisms of Action”, Spine 27, No. 22, Nov. 15, 2002, pp. 2574-2583. |
Oakley et al., “Transverse Tripolar Spinal Cord Stimulation: Results of an International Multicenter Study”, Neuromodulation, vol. 9, No. 3, 2006, pp. 192-203. |
Obradovic et al., “Effect of pressure on the spinal cord during spinal cord stimulation in an animal model”, Poster, 18th Annual Meeting of the North American Neuromodulation Society, Dec. 11-14, 2014, Las Vegas. |
Oh et al., “Long-term hardware-related complications of deep brain stimulation”, Neurosurgery, vol. 50, No. 6, Jun. 2002, pp. 1268-1274, discussion pp. 1274-1276. |
Opsommer, E. et al., “Determination of Nerve Conduction Velocity of C-fibres in Humans from Thermal Thresholds to Contact Heat (Thermode) and from Evoked Brain Potentials to Radiant Heat (CO2 Laser)”, Neurophysiologie Clinique 1999, vol. 29, pp. 411-422. |
Orstavik, Kristin et al., “Pathological C-fibres in patients with a chronic painful condition”, Brain (2003), 126, 567-578. |
Parker et al., “Closing the Loop in Neuromodulation Therapies: Spinal Cord Evoked Compound Action Potentials During Stimulation for Pain Management (230)”, 2011, In 15th Annual Meeting, North American Neuromodulation Society (p. 48). Presented at the North American Neuromodulation Society, Las Vegas. |
Parker et al., “Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief”, Pain, 2012, vol. 153, pp. 593-601. |
Parker et al., “Electrically Evoked Compound Action Potentials Recorded From the Sheep Spinal Cord”, Neuromodulation, vol. 16, 2013, pp. 295-303. |
Penar et al., “Cortical Evoked Potentials Used for Placement of a Laminotomy Lead Array: A Case Report”, Neuromodulation: Technology at the Neural Interface, accessed Apr. 19, 2011, doi:10.1111/j.1525-1403.2011.00352.x. |
Richter et al., “EMG and SSEP Monitoring During Cervical Spinal Cord Stimulation”, Journal of Neurosurgical Review 2011, Southern Academic Press, 1(S1), 2011, pp. 61-63. |
Ridder et al., “Burst Spinal Cord Stimulation for Limb and Back Pain”, World Neurosurgery, 2013, 9 pgs. |
Ridder et al., “Burst Spinal Cord Stimulation toward Paresthesia-Free Pain Suppression”, May 2010, vol. 66, pp. 986-990. |
Roy, S. H.et al., “Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency Estimates”, J. Appl. Physiol. 61 (4), 1986, pp. 1510-1517. |
Schmidt et al., “Gating of tactile input from the hand”, Exp Brain Res, 1990, 79, pp. 97-102. |
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating all Parkinsonian Symptoms”, Neurosurgery, 35, No. 6, Dec. 1994, pp. 1126-1130. |
Siegfried et al., “Intracerebral Electrode Implantation System”, Journal of Neurosurgery, vol. 59, No. 2, Aug. 1983, pp. 356-3591. |
Srinivasan, S, “Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer”, Fuel Cells, 2006, Chapter 2, 67 Pages. |
Struijk et al, “Paresthesia Thresholds in Spinal Cord Stimulation: A Comparison of Theoretical Results with Clinical Data”, IEEE Transactions on Rehabilitation Engineering, vol. 1, No. 2, Jun. 1993, pp. 101-108. |
Sufka et al., “Gate Control Theory Reconsidered”, Brain and Mind, 3, No. 2, 2002, pp. 277-290. |
Tamura et al., “Increased Nodal Persistent Na+ Currents in Human Neuropathy and Motor Neuron Disease Estimated by Latent Addition”, Clinical Neurophysiology 117, No. 11 (Nov. 2006): 2451-2458, doi:10.1016/j.clinph.2006.07.309. |
Tasker, “Deep Brain Stimulation is Preferable to Thalamotomy for Tremor Suppression”, Surgical Neurology, 49, No. 2, 1998, pp. 145-153. |
Taylor et al., “Spinal Cord Stimulation for Chronic Back and Leg Pain and Failed Back Surgery Syndrome: A Systematic Review and Analysis of Prognostic Factors”, Spine, vol. 30, No. 1, 2004, pp. 152-160. |
Texas Instruments, “Precision, Low Power Instrumentation Amplifiers”, Texas Instruments SBOS051B Oct. 1995, Revised Feb. 2005, 20 pgs. |
Tomas et al., “Dorsal Root Entry Zone (DREZ) Localization Using Direct Spinal Cord Stimulation Can Improve Results of the DREZ Thermocoagulation Procedure for Intractable Pain Relief”, Pain, 2005, vol. 116, pp. 159-163. |
Tscherter et al., “Spatiotemporal Characterization of Rhythmic Activity in Rat Spinal Cord Slice Cultures”, European Journal of Neuroscience 14, No. 2 (2001), pp. 179-190. |
Van Den Berg et al., “Nerve fiber size-related block of action currents by phenytoin in mammalian nerve”, Epilepsia, Nov. 1994, 35(6), pp. 1279-1288. |
Villavicencio, Alan T., “Laminectomy versus Percutaneous Electrode Placement for Spinal Cord Stimulation,” Neurosurgery, vol. 46 (2), Feb. 2000, pp. 399-405. |
Vleggeert et al., LANKAMP, “Electrophysiology and morphometry of the Aalpha- and Abeta-fiber populations in the normal and regenerating rat sciatic nerve”, Experimental Neurology, vol. 187, No. 2, Jun. 1, 2004, Available online Apr. 2, 2004, pp. 337-349. |
Woessner, “Blocking Out the Pain, Electric Nerve Block Treatments for Sciatic Neuritis”, Retrieved from: http://www.practicalpainmanagement.com/pain/spine/radiculopathy/blocking-out-pain, Last updated Jan. 10, 2012. |
Wolter et al., “Effects of sub-perception threshold spinal cord stimulation in neuropathic pain: A randomized controlled double-blind crossover study”, European Federation of International Association for the Study of Pain Chapters, 2012, pp. 648-655. |
Wu et al., “Changes in Aβ Non-nociceptive Primary Sensory Neurons in a Rat Model of Osteoarthritis Pain”, Molecular Pain 6, No. 1 (Jul. 1, 2010): 37, doi: 10.1186/1744-8069-6-37. |
Xie et al., “Functional Changes in Dorsal Root Ganglion Cells after Chronic Nerve Constriction in the Rat”, Journal of Neurophysiology 73, no. 5 (May 1, 1995): 1811-1820. |
Xie et al., “Sinusoidal Time-Frequency Wavelet Family and its Application in Electrograstrographic Signal Analysis”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 3, Oct. 29, 1998, pp. 1450-1453. |
Yearwood, T. L., “Pulse Width Programming in Spinal Cord Stimulation: a Clinical Study”, Pain Physician. 2010. vol. 13, pp. 321-335. |
Yingling et al., “Use of Antidromic Evoked Potentials in Placement of Dorsal Cord Disc Electrodes”, Applied Neurophysiology, 1986, vol. 49, pp. 36-41. |
Yuan, S. et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter”, Europace. Oct. 2000; 2(4):312-319. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050753, Report dated Jun. 13, 2017, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050263, Search completed Nov. 16, 2016, dated Nov 16, 2016, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050430, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050431, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050439, Search completed Jul. 15, 2016, dated Jul. 15, 2016, 8 Pgs. |
Alam et al., “Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats”, Journal of Neuroscience Methods, Mar. 2015, 28 pgs. |
Fisher, “F-Waves—Physiology and Clinical Uses”, The Scientific World Journal, (2007) 7, pp. 144-160. |
Gad et al., “Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats”, Journal of NeuroEngineering and Rehabilitation 2013, 10:2, 18 pgs. |
Sayenko et al., “Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals”, Journal of Neurophysiology, vol. 111, No. 5, 2014, pp. 1088-1099, First published Dec. 11, 2013. |
Struijk et al., “Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: a Theoretical Study”, IEEE Transactions on Biomedical Engineering, Jul. 1993, vol. 40, No. 7, pp. 632-639. |
Yamada et al., “Extraction and Analysis of the Single Motor Unit F-Wave of the Median Nerve”, EMG Methods for Evaluating Muscle and Nerve Function, InTech, 2012, 15 pgs. |
Extended European Search Report for European Application No. 16802238.2, Search completed Oct. 17, 2018, dated Oct. 24, 2018, 8 Pgs. |
International Preliminary Report for International Application No. PCT/AU2017/050647, dated Dec. 25, 2018, 8 pgs. |
Tronnier et al., “Magnetic Resonance Imaging with Implanted Neurostimulators: An in Vitro and in Vivo Study”, Jan. 1999, Neurosurgery, vol. 44(1), pg. 118-125 (Year: 1999). |
Number | Date | Country | |
---|---|---|---|
20170071490 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14117144 | US | |
Child | 15184787 | US |