1. Field of the Invention
The invention relates to a method and apparatus for determining whether or not the flow rate through one or more orifices in a workpiece are within permissible tolerance when compared to the flow rate through one or more matching orifices in a master part. This determination is based upon characteristics of fluid flow passing through the orifices in the workpiece and in the master part. Additionally, the subject invention is directed to a method and apparatus for machining the one or more orifices in a workpiece so that the geometry better conforms to the geometry of the matching one or more orifices of the master part. Finally, the invention relates to a method of determining the flow rate through the one or more orifices of the workpiece.
2. Description of Related Art
Components such as fuel injectors and orifice plates typically include small orifices with flow rates that must be precisely controlled to very small tolerances. Manufacturers of such components generally make use of a measurement device, such as a flow bench, which forces a calibration fluid through the component orifices at a precise pressure and then measures the flow rate through the component orifices. This flow measurement may be made by a flow meter based on a wide range of technologies, including Coriolis meters, positive displacement meters such as gear and piston pumps, turbine meters, and vortex shedding flow meters.
However, methods using flow meters often create bottlenecks in the overall manufacturing process due to lengthy measurement times. Since the usual measurement method is to measure the flow rate through a part at a given pressure, then depending on the means of supplying pressurized calibration fluid to the part, it may take several seconds to achieve a desired pressure and then to stabilize the fluid flow at that pressure, at which time flow measurements may be taken. Moreover, the flow measurement devices often require long measurement times to deliver a stable measurement. As a result, using conventional techniques, measurement times of 25 to 60 seconds or more are often required to determine whether or not a part is within a prescribed flow tolerance range.
Use of a conventional flow bench gives the operator an absolute value for the flow rate, whether it be mass flow rate or volume flow rate, through a part at the measurement pressure. If the flow rate is within tolerance, the part passes. If the flow rate is below the target, the part may be sent back for rework. If rework is not possible, the part would be scrapped. If the flow rate through the part is too high, the part is usually treated as scrap.
There is a need to produce a gauge similar to a go/no-go gauge used for thread, hole and other machining operations for use in checking the flow rate through an orifice. Such a gauge would simply indicate whether a part was in tolerance or, if out of tolerance, indicate the direction in which the discrepancy occurred. Such a determination would be possible without having to produce a numerical value of the flow rate. Because an actual value of the flow rate is not required, it would be possible to employ faster techniques.
In one embodiment, the invention is directed to a method of comparing the flow rate through one or more orifices in a workpiece, wherein each workpiece orifice is formed to resemble an orifice in a master part and wherein the flow rate through the one or more workpiece orifices is compared against the flow rate through the one or more orifices in the master part to determine whether or not the flow rate through the one or more workpiece orifices is within tolerance relative to the flow rate through the one or more master orifices. The method is comprised of the steps of: (a) forcing calibration fluid from a reservoir under pressure through the one or more orifices in a master part; (b) forcing calibration fluid from the same reservoir under the same pressure through the one or more orifices in the workpiece; (c) controlling the flow of fluid to provide an equal flow rate through the one or more orifices in the workpiece and the one or more orifices in the master part; and (d) comparing the fluid pressure downstream of each the workpiece and the master part to determine whether or not the pressure differential is within a predetermined range indicating whether or not the flow rate through the one or more orifices in the workpiece are within tolerance. This method may also be adapted to compare the one or more orifices of each of a multiple of workpieces.
In another embodiment, the invention is directed to a similar method, however, the pressure downstream of the workpieces is kept uniform, and the calibration fluid pressure is compared upstream of each of the workpiece and the master part to determine whether or not the pressure differential is within a predetermined range.
In another embodiment, the invention is directed to a method of comparing the flow rate through one or more orifices in a workpiece, wherein the one or more workpiece orifices are formed to resemble one or more orifices in a master part wherein the flow rate through the workpiece is compared with the flow rate through the master part to determine whether or not the flow rate through the one or more workpiece orifices is within tolerance relative to the flow rate through the one or more master part orifices and machining the one or more workpiece orifices using abrasive flow media comprising the steps of: (a) extruding flowable abrasive media from a reservoir under pressure through the one or more orifices in the master part, wherein the master part material is impervious to and unaffected by the abrasive flow media; (b) extruding flowable abrasive media from a reservoir under pressure through the one or more orifices in the workpiece; wherein prior to the extrusion the one or more workpiece orifices restrict flow more than the one or more master part orifices; (c) controlling the flow of media to provide an equal flow rate through each of the one or more workpiece orifices and through the one or more master part orifices; (d) comparing the media pressure downstream of the workpiece and the master part; and (e) stopping the extrusion through the one or more workpiece orifices when the pressure differential of the media exiting the one or more workpiece orifices and the media exiting the one or more master orifices is between predetermined limits. This method may also be adapted to compare the flow rate through a number of different workpieces and control the extrusion process to modify the one or more orifices associated with each workpiece.
In another embodiment, the invention is directed to a similar method, however, the pressure downstream of the workpieces is kept uniform, and the flowable abrasive media pressure is compared upstream of each of the workpiece and the master part to determine whether or not the pressure differential is within a predetermined range.
In another embodiment, the invention is directed to a method of determining the flow rate through a workpiece having one or more orifices formed to resemble one or more orifices in a master part comprising the steps of: a) forcing calibration fluid from a reservoir under pressure through the one or more orifices in the master part; b) forcing calibration fluid from the same reservoir under the same pressure through the one or more orifices in the workpiece; c) controlling the flow of fluid to provide an equal flow rate through each of the workpiece and the master part; d) comparing the fluid pressure downstream of the master part and the workpiece to determine a pressure difference; and e) calculating the flow rate through the workpiece using predetermined flow rate data about the master part, the difference in downstream pressure between the workpiece and the master part, and the mathematical relationship between the orifices in the master part and the orifices in the workpiece.
In another embodiment, the invention is directed to a similar method, however, the flow rate is calculated through the workpiece using predetermined flow rate data about the master part, the difference in upstream pressure between the workpiece and the master part while the downstream pressures are kept uniform, and the mathematical relationship between the orifices in the master part and the orifices in the workpiece.
In yet another embodiment, the invention is directed to an apparatus for comparing the flow rate through one or more orifices in a workpiece with the flow rate through one or more orifices in a master part, wherein the one or more workpiece orifices are formed to resemble one or more orifices in the master part, wherein the flow rate is compared to determine whether or not the flow rate through the one or more orifices in the workpiece are within tolerance relative to the flow rate through the one or more orifices in the master part, wherein the apparatus is comprised of: (a) a reservoir for supplying calibration fluid under pressure to the one or more orifices in the master part and to the one or more orifices of the workpiece; (b) a flow controller associated with the workpiece and the master part such that the flow of fluid from the reservoir through the one or more orifices in each of the workpiece and the master part is equal; and (c) a measurement device for comparing the pressure downstream of the master orifice and the pressure downstream of the workpiece, wherein when the pressure differential downstream of the workpiece and downstream of the master part is within a predetermined limit, the orifices in that workpiece are deemed to be within tolerance.
In another embodiment, the invention is directed to a similar apparatus, however the downstream pressures are kept uniform, and the measurement device compares the pressure upstream of the master orifice and the pressure upstream of the workpiece.
The flow rate through an orifice is a function of the pressure drop across the orifice, the geometry of the orifice, and the properties of the fluid flowing through the orifice. In general, a fluid under uniform pressure will pass through two orifices that have identical geometries at the same flow rate, whether mass flow rate or volumetric flow rate. In the same way, if fluid under uniform upstream pressure passes through each of these two identical orifices, the pressure drop past the orifices will be identical.
A typical workpiece may be a nozzle having a plurality of radially oriented orifices to disperse fluid travelling therethrough. A typical workpiece may also be a nozzle having a single orifice. A typical workpiece may also be an orifice plate made up of a simple flat plate having a single orifice extending therethrough. For purposes of discussion herein, the workpiece and the associated master part will have a single orifice with the understanding that each the workpiece and the master part may have one or more orifices. In each case, however, there will be a direct one-to-one correlation between the orifices in the workpiece and the orifices in the master part.
In accordance with the subject invention a uniform upstream pressure is introduced through an orifice in a master part and through an orifice in a workpiece such that if the flow rate is the same through each the master part and the workpiece, then the geometry of the workpiece orifices in the workpiece is assumed to be within tolerance of the geometry of the orifice in the master part if the downstream pressures are equal. The pressurized fluid is provided from a common source, and therefore it can be assumed that the viscosity and temperature are equal. As a result, when the differential pressure of fluid downstream of the master part and downstream of the workpiece is equal to zero, then the downstream pressures are equal and the geometries of the orifices in each the workpiece and the master part are assumed to be equivalent.
As will be illustrated, the subject invention may be used to quickly compare the orifice in a workpiece to a known orifice in a master part to determine if the workpiece orifice is within specification limits of the orifice manufacturer. If the pressure downstream of the master part is greater than the pressure downstream of the workpiece, this indicates that the orifice in the workpiece presents a greater flow obstruction than the orifice of the master part. If the pressure downstream of the master part is less than the pressure downstream of the workpiece, then the workpiece orifice presents a lesser flow obstruction.
As will be illustrated, the subject invention has a number of advantages over the prior art method of flow measurement which, as mentioned, is typically performed on a flow stand that measures one part at a time in 25 seconds or more. The measurement performed in accordance with the subject invention is one of pressure, and pressure can be measured very quickly compared to flow rate. As a result, the apparatus in accordance with the subject invention can check a part in 10 seconds or less. Furthermore, the capability of the apparatus in accordance with the subject invention can be expanded by simply adding multiple receiving cylinders to check multiple parts simultaneously.
Because the pressurized fluid comes from a common source, there is self-compensation for the effects of the fluid properties and the temperatures since the characteristics of the fluid entering the master part orifice and the workpiece orifice are identical. Moreover, when fluid to each orifice is provided from a common reservoir, the upstream pressure does not have to be tightly controlled for a simple “go/no-go” comparative result.
Under the assumption that the actual flow rate through the master orifice will be known, and with knowledge of the differential pressure measurement, it is possible to calibrate the subject apparatus to provide true flow measurements within a certain range between the orifice of a master part and the orifice of one or more workpieces.
While a typical workpiece 10 is comprised of a passageway 15 with orifices 20, it should be appreciated that pressure drop for fluid travelling through the workpiece 10 will be caused by flow through the passageway 15 and flow through the orifices 20. However, the passageway 15 typically has a much larger diameter relative to the orifices 20 and as a result the passageway 15 is only a minor source of pressure drop relative to the pressure drop through the orifices 20. For that reason the following discussion will be directed to the pressure drop through the orifices 20 and will not further address the pressure drop through the passageway 15.
For simplicity, while
Because the fluid in the reservoir supplies both of the orifices and only the pressure at the outlet of each of the orifices provides the critical measurement, then the fluid properties and the temperature of the fluid at the orifice inlets may vary, since the same variation will be experienced by both of the orifices. However, it is critical that the flow rate through each of the orifices is identical.
With reference to
Directing attention to
In the same fashion, the workpiece 120 is removably secured within the receiving cylinder 150b. The receiving cylinder 150b is in direct communication with the reservoir 140. Fluid 142 enters the receiving cylinder 150b at an upstream chamber 152b and passes through the orifice 115 into a downstream chamber 154b. The fluid is not permitted to exit to the atmosphere, but instead a retracting piston 155b determines the flow with which the fluid passes through the orifice 115. In particular, the fluid 142 may pass through the orifice 115 at a rate determined solely by the retraction rate of the piston 155b. The retraction rate of the piston 155b will be designed to accommodate the fluid 142 flow and is not intended to create cavitation within the downstream chamber 154b.
Since the flow rate of the fluid 142 through the master orifice 115 and the workpiece 125 should be identical, and since each of the retracting pistons 155a, 155b determine the fluid flow rate through each of the orifices 115, 125, then it is important that the retraction of each of the retraction pistons 155a, 155b, be such that this fluid flow is equal. Inasmuch as the dimensions of the receiving cylinder 150a and receiving cylinder 150b are identical, then the rate of retraction for each of the retracting pistons 155a, 155b, must be identical. This goal is possible by mechanically coupling each retracting piston 155a, 155b with the other using, for example, a flow controller 160 which may be comprised of, for example, a motor coupled with a ball screw or similar device for translating the rotary motion of a motor to the linear motion of the retracting piston 155a, 155b. This constant flow rate may be easily achieved by simply rigidly connecting each of the retracting pistons 155a, 155b together. For example, each piston rod 157a, 157b, associated with the retracting pistons 155a, 155b, may be attached to a common platen 162, which in turn is driven by the described motor/ball screw arrangement.
A measurement device 180 compares the pressure downstream at the outlet of the master orifice 115 and the pressure downstream at the outlet of the workpiece orifice 125 to determine the pressure differential downstream of each of these orifices. If the pressure is within predetermined limits, then the workpiece 125 is deemed to be within tolerance of the master orifice 115.
The workpiece orifice 125 is originally formed to resemble as closely as possible, using existing mass production facilities, the master orifice 115.
Although not illustrated in
In order to determine the pressure difference within the receiving cylinders downstream of each orifice, the measurement device 180 may be a pressure gauge whereby the values disclosed within the pressure gauge are compared to determine the pressure differential. On the other hand, the measurement device 180 may be comprised of a pressure comparator fluidly connected to the downstream chamber 154a of the receiving cylinder 150a and the downstream chamber 154b of the receiving cylinder 150b.
For the sole determination of whether or not the workpiece orifice 125 is within tolerance of the master orifice 115, the fluid may be a flowable, non-abrasive media such as a low viscosity calibration fluid. However, in the event the workpiece orifice 125 is not within tolerance of the master orifice 115, but may be with additional metal removal by polishing, it is possible to substitute the flowable, non-abrasive media with a flowable, abrasive media, such that motion of the abrasive media across the orifice will remove material from the orifice until the difference between the downstream pressure of the master orifice 115 and workpiece orifice 125 is a predetermined value or less. In the event the fluid is a flowable, abrasive media, then it is imperative that the master part 110 be made of a material that is impervious to, and unaffected by, the abrasive flow media.
Utilizing a flowable, abrasive media, it is possible to monitor the pressure difference in the downstream chambers 154a, 154b, and if the pressure difference is between predetermined limits, to terminate the flow of the abrasive media to the workpiece orifice 125. In the event, however, it is determined that the pressure drop through the workpiece orifice 125 is more than the pressure drop through the master orifice 115 such that additional material removal within the workpiece orifice 125 is desirable, then the flow of abrasive media may continue through the workpiece orifice 125 and the pressure difference monitored until such time as the downstream pressure between the master orifice 115 and the workpiece orifice 125 is between the predetermined limits.
What has been described so far is an apparatus for comparing the flow rate through at least one orifice of at least one workpiece formed to resemble a master orifice and a master part against the flow rate through the master orifice, to determine whether or not the workpiece flow rate is within tolerance relative to the master orifice.
A method for utilizing such an apparatus is comprised of the steps of forcing fluid 142 from the reservoir 140 under pressure through the master orifice 115. Additionally, the same fluid 142 is forced from the same reservoir 140 under the same pressure through the at least one workpiece orifice 125. The flow of fluid 142 is controlled to provide an equal volumetric or mass flow rate through each of the at least one workpiece orifices 125, and the master orifice 115. The fluid pressure downstream of the orifices is compared to determine whether or not the pressure differential is between predetermined limits indicating whether or not the flow rate of the at least one workpiece orifice is within tolerance. Inasmuch as this method is utilized only to determine whether or not the workpiece orifice is within tolerance of the master orifice, then the fluid may be non-abrasive. However, the fluid 142 may be a flowable abrasive media, wherein the material of the master part 110 is impervious to and unaffected by the flowable abrasive media, and wherein the step of forcing fluid 142 through the at least one workpiece orifice 125 includes the step of machining with fluid 142 comprised of flowable, abrasive media the at least one workpiece orifice 125 to polish the orifice 125, thereby reducing the pressure drop past the orifice 125. Under these circumstances, the flow of fluid 142 past that workpiece orifice 125 is terminated when the difference between the pressure downstream of the workpiece orifice 125 and downstream of the master orifice 115 is within predetermined limits.
As a general guideline, the step of stopping the extrusion may occur when the pressure differential between the pressure downstream of the master orifice 115 and of the workpiece orifice 125 is 35-40 psig or less. An appropriate pressure differential may be determined based upon the desired tolerance.
In the same fashion, the workpiece 120 having a workpiece orifice 125 is removably secured within the receiving cylinder 150b. The receiving cylinder 150b is in direct communication with a reservoir (not shown). Fluid 142 enters the receiving cylinder 150b at the upstream chamber 152b and passes through the orifice 115 into a downstream chamber 154b. A retracting piston 155b determines the flow with which the fluid passes through the orifice 115. The retracting pistons 155a, 155b may be mechanically coupled with each other using, for example, a flow controller (not shown) which as previously mentioned may be comprised of a motor coupled with a ball screw or similar device for translating the rotary motion of a motor to the linear motion of the retracting pistons 155a, 155b. Each piston rod 157a, 157b associated with the retracting pistons 155a, 155b may be attached to a common platen (not shown) which in turn is driven by the described motor/ball screw arrangement.
A measurement device 180 compares the pressure downstream of the master orifice 115 and the pressure downstream of the workpiece orifice 125 to determine the pressure differential downstream of each of these orifices. If the pressure is between predetermined limits, then the workpiece 125 is deemed to be within tolerance of the master orifice 115. It should be noted that the length and diameter of the passageways 165a, 165b from the reservoir (not shown) to the receiving cylinder 150a, 150b are identical so that the properties of the fluid 142 entering each of the upstream chambers 152a, 152b are identical.
So far described are a method and apparatus in a first embodiment for comparing the pressure downstream of a workpiece orifice 125 with the pressure downstream of a master orifice 115 and, in a second embodiment, machining with an abrasive fluid, the workpiece orifice 125 until it is within tolerance of the master orifice 115.
It is also possible to simultaneously test a plurality of workpiece orifices utilizing a single master orifice to determine whether or not each of these orifices is within tolerance.
Directing attention to
In the event the pressure difference of the fluid in the downstream chamber 154a, and of the fluid in the downstream chamber 154c indicates that a workpiece orifice 125, 225 is restricted, then in an alternate embodiment of the invention, the non-abrasive fluid 142 may be substituted with abrasive fluid such as a flowable abrasive media. Under these circumstances, as previously mentioned, the master part 110 must be impervious to the flowable abrasive media, and the flowable abrasive media may pass through the workpiece orifices 125, 225 until the restriction is removed and the pressure difference downstream of the orifices 115, 225 as measured by the measurement device 280 is within predetermined limits.
Under circumstances whereby a plurality of workpieces are mounted within the apparatus 200, and one or more of the workpieces have orifices with restrictions that indicate they are out of tolerance with the master orifice 115, then the flow controller may selectively control the motion of one or more of the retracting pistons 155b, c, such that there is flow at the same rate as flow through the master orifice or there is no flow. As an example, if both the workpiece orifice 125 and the workpiece orifice 225 have restrictions smaller than the master orifice 110 restriction which cause them to be out of tolerance with the master orifice 115, then abrasive fluid 142 may be passed through each of these orifices 125, 225 and the pressure difference with the downstream pressure of the master orifice 115 monitored. In the event the pressure downstream of the orifice 125 is within a predetermined range of the pressure downstream of the master orifice 115, then the retraction of the retracting piston 155a may cease and the retraction of the retracting piston 155c may continue while the orifice 225 is further machined. Such a process may continue until the difference between the downstream pressure at the workpiece orifice 225 and the downstream pressure of the master orifice 115 are within a predetermined range.
The device as it has so far been described is a comparator which gives the relative pressure difference for flow through the orifices of two or more tested parts. The device does not, on its own, quantify the flow rate through the workpiece orifice. There is no need to quantify the flow rate when it is only necessary to know if a workpiece orifice is within tolerance relative to a master orifice. However, when the workpiece orifice is out of tolerance, then it is helpful to know the flow rate through the one or more orifices of the workpiece under given conditions to make a determination of whether or not the workpiece may be reworked or must be scrapped. Additionally, there are some occasions when the true flow rate value is required, such as during process setup or special testing.
Since the apparatus in accordance with the subject invention will determine how much the flow through the one or more orifices of a workpiece differs relative to the flow through the one or more matching orifices of a master part, it is only necessary to know the flow rate of the master part, and the flow rate through the workpiece can be determined.
In particular, equations for the theoretical flow rate of a fluid through an orifice are well established and may be found in textbooks on the subject of fluid mechanics. If one considers the same flow of fluid through two parts subjected to uniform upstream pressure, it is possible to one skilled in the art to derive a theoretical relationship between the (true) flow rate of the unknown part (B in the example below) to the (true) flow rate of the known part (A below), the fluid properties, the flow rate of fluid in the described device, the differential pressure from the device, and the pressure drop at which the true flow rate of A was measured. Such a relationship is described in the following equation.
Where
This formula is based on theoretical flow through an orifice, but the actual flow is typically lower than the theoretical flow due to the effects of entrance geometry, surface roughness, etc. In light of this, the form of the relationship stated in the equation found above remains the same but coefficients must be introduced to accommodate the differences between theoretical and actual values. The coefficients C1, C2, C3, and C4, can be determined experimentally. This equation is applicable whether the pressure upstream of each orifice or downstream of each orifice is measured.
What has so far been discussed is a constant flow rate established upstream and a comparison of the downstream pressure at the workpiece and at the master part. However, it should be appreciated that, while maintaining a uniform downstream pressure, a comparison of the upstream pressure may also be used as an indicator.
With reference to
Directing attention to
In the same fashion, the workpiece 120 is removably secured within the receiving cylinder 450b. Fluid 442 in the receiving cylinder 450b at an upstream chamber 452b passes through the orifice 125 into a downstream chamber 454b. The fluid may be permitted to exit to the atmosphere, or as illustrated in
Since the flow rate of the fluid 442 through the master orifice 115 and the workpiece 125 should be identical, and since each of the advancing pistons 458a, 458b determine the fluid flow rate through each of the orifices 115, 125, then it is important that the advancement of each of the advancing pistons 458a, 458b, be such that this fluid flow through each orifice is equal.
Inasmuch as the dimensions of the receiving cylinder 450a and receiving cylinder 450b are identical, then the rate of advancement for each of the advancing pistons 458a, 458b, must be identical. This goal is possible by mechanically coupling each advancing piston 458a, 458b with the other using, for example, by mechanisms previously discussed relative to controlling the retracting pistons 155a, 155b.
A measurement device 480 compares the pressure upstream at the inlet of the master orifice 115 and the pressure upstream at the inlet of the workpiece orifice 125 to determine the pressure differential upstream of each of these orifices. If the pressure is within predetermined limits, then the workpiece 125 is deemed to be within tolerance of the master orifice 115.
The workpiece orifice 125 is originally formed to resemble as closely as possible, using existing mass production facilities, the master orifice 115.
Although not illustrated in
In order to determine the pressure difference within the receiving cylinders upstream of each orifice, the measurement device 480 may be a pressure gauge whereby the values disclosed within the pressure gauge are compared to determine the pressure differential. On the other hand, the measurement device 480 may be comprised of a pressure comparator fluidly connected to the upstream chamber 452a of the receiving cylinder 450a and the upstream chamber 452b of the receiving cylinder 450b.
Utilizing a flowable, abrasive media, it is possible to monitor the pressure difference in the upstream chambers 452a, 452b, and if the pressure difference is between predetermined limits, to terminate the flow of the abrasive media to the workpiece orifice 125. In the event, however, it is determined that the pressure drop through the workpiece orifice 125 is more than the pressure drop through the master orifice 115 such that additional material removal within the workpiece orifice 125 is desirable, then the flow of abrasive media may continue through the workpiece orifice 125 and the pressure difference monitored until such time as the upstream pressure between the master orifice 115 and the workpiece orifice 125 is between the predetermined limits.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. The presently preferred embodiments described herein are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
This application is a CIP of Ser. No. 10/668,590 filed Sep. 23, 2003 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
5054247 | Rhoades et al. | Oct 1991 | A |
5076027 | Rhoades | Dec 1991 | A |
5807163 | Perry | Sep 1998 | A |
6306011 | Perry et al. | Oct 2001 | B1 |
6500050 | Walsh et al. | Dec 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20050118931 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10668590 | Sep 2003 | US |
Child | 10988176 | US |