The present invention relates to a method and apparatus for measuring a force applied to a fastening bolt. The invention is especially useful in measuring the force applied to a fastening bolt for fastening a seat to the frame in a motor vehicle, and is therefore described below with respect to such application, but it will be appreciated that the invention is capable of being used in many other applications as well.
One example of a force sometimes requiring precise measurement is the weight of an occupant of a vehicle seat, particularly in controlling the actuation of an airbag. For example, if a vehicle seat is not occupied, there is no reason to actuate the airbag even should there be a sudden impact. Moreover, if the seat is occupied by a small child, it may be desirable to disable actuation of the airbag in order to avoid injuring the child, or otherwise to control the force applied by the airbag to the seat occupant. A force sensor used in such an application should not only be capable of convenient introduction into existing motor vehicles, but should also be highly sensitive and reliable in operation.
An object of the present invention is to provide a method, and also apparatus, for measuring the force applied to a fastening bolt having advantages in one or more of the above respects particularly when used in the above-mentioned application in a motor vehicle.
According to one broad aspect of the present invention, there is provided a method of measuring the force applied to a fastening bolt which fastens a first member coupled to a second member, comprising: transmitting a cyclically-repeating energy wave through the fastening bolt from a first location thereon to a second location thereon; measuring the transit time of the cyclically-repeating energy wave from the first location to the second location; and utilizing the measured transit time to produce a measurement of the force.
In some embodiments of the invention described below, the connecting member is a fastening plate which fastens the first member to the second member, and which is strained by the force applied to the first member such that the measured transit time of the cyclically-repeating energy wave represents a measurement of the strain, and thereby a measurement of the force applied to the first member.
As described more particularly below, such a fastening bolt which fastens the first member to the second member, is strained by the applied force such that the measured transit time of the cyclically-repeating energy wave represents a measurement of the strain, and thereby a measurement of the force applied to the first member.
According to another aspect of the invention, there is provided apparatus for measuring the force applied to a fastening bolt in accordance with the above method.
As will be described more particularly below, the method and apparatus including the foregoing features enable such measurements to be made with high precision. In addition, the method may be implemented in apparatus which is of a relatively simple, compact construction, and which is capable of convenient introduction into existing vehicles and of withstanding the harsh environmental conditions therein.
Preferably, and as described more particularly below, the measurement of the deformation in the fastening bolt is effected according to the technique described in U.S. Pat. No. 6,621,278, of Sep. 16, 2003, assigned to the assignee of the present application.
Further features and advantages of the invention will be apparent from the description below.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
It is to be understood that the foregoing drawings, and the description below, are provided primarily for purposes of facilitating understanding the conceptual aspects of the invention and various possible embodiments thereof, including what is presently considered to be a preferred embodiment. In the interest of clarity and brevity, no attempt is made to provide more details than necessary to enable one skilled in the art, using routine skill and design, to understand and practice the described invention. It is to be further understood that the embodiments described are for purposes of example only, and that the invention is capable of being embodied in other forms and applications than described herein.
As indicated above, the present invention measures the strain or deformations of a fastening bolt fastening two members together in order to provide a measurement of the force applied to the fastening bolt. Such deformations are measured in accordance with the present invention by the electrical measuring system described in the above-cited U.S. Pat. No. 6,621,278, which permits extremely high accuracy to be achieved even with relative small deformations.
In the embodiment of the invention illustrated in
The axial strain or deformation of fastening bolt 100 is detected and measured by a sonic transmitter 107 at the outer end of bolt 100, and a sonic receiver 108 at the inner end of the bolt. Thus, the portion of the bolt between the transmitter and receiver serves as an acoustical channel for the transmitted sonic waves, having a transit length (and thereby a transit time) varying with the strain (contractions and elongations) of the bolt caused by the axial force applied to the bolt. The contractions and elongations of the acoustical channel are measured by the electrical measuring system illustrated in
Thus, as shown in
As shown in
The output of comparator 56 is fed to an amplifier 57 which is triggered to produce an output wave or signal for each fiducial point (“0” cross-over point) in the signals received by the receiver 108. The signals from amplifier 57 are fed via an OR-gate 58 to the transmitter 107. OR-gate 58 also receives the output from oscillator 55 when switch SW is closed.
Switch SW is opened when transmitter 107 receives a continuous stream of signals from amplifier 57 via OR-gate 58. When switch SW is opened, transmitter 107 will thus transmit at a frequency determined by the fiducial point in the signals received by the receiver 108 and detected by comparator 56 to control amplifier 57. Accordingly, the frequency of transmission by transmitter 107 will be such that the number of waves of the cyclically-repeating energy wave transmitted from transmitter 107 and received by receiver 108 will be a whole integer.
It will thus be seen that while the frequency of the transmitter 107 will change with a change in the distance between it and the receiver 108, as caused by the elongation or contraction of bolt 100, the number of wavelengths in the signal transmitted from transmitter 107 will remain a whole integer. This is because, as explained above, the transmitter 107 transmissions are controlled by the fiducial points (“0” cross-over point) of the signals received by the receiver 108. This change in frequency by the transmitter 107, while maintaining the number of waves between the transmitter and receiver as a whole integer, enables a precise determination to be made of the distance between the transmitter and receiver. Thus, as known:
F=C/λ
where F and C are the frequency and velocity, respectively, of the cyclically-repeating energy wave in the respective medium; and λ is the wavelength.
The “0” cross-over points detected in comparator 56, which are used for controlling the frequency of the transmitter 107, are also fed to a counter 60 to be counted “N” times, and the output is fed to another counter 61 controlled by a clock 62. Counter 61 produces an output to a microprocessor 63 which performs the computations of the force applied to bolt 100 according to the elongations and contractions measured. The output of the microprocessor is applied to a control, display, and/or alarm device 64.
Further particulars as to the measuring system illustrated in
Such a sensor, particularly when using the electrical measuring system described above with respect to
While the invention has been described with respect to preferred embodiments, it will be appreciated that these are set forth merely for purposes of example, and that many other variations, modifications and applications of the invention may be made.
Number | Date | Country | Kind |
---|---|---|---|
160364 | Feb 2004 | IL | national |