Method and apparatus for mitigating oscillation between repeaters

Information

  • Patent Grant
  • 8559379
  • Patent Number
    8,559,379
  • Date Filed
    Friday, September 21, 2007
    17 years ago
  • Date Issued
    Tuesday, October 15, 2013
    11 years ago
Abstract
A first repeater operating within a wireless network including a second repeater capable of communicating with the first repeater, and first and second wireless station devices capable of communicating with at least one of the first repeater and the second repeater, includes a reception device for receiving a wireless signal at a reception frequency; a detector for detecting if a predetermined portion of the received wireless signal includes a modified portion to thereby determine that the received signal is from the second repeater; and a transmission device for transmitting the wireless signal to one of the first and second wireless station devices at a transmission frequency to thereby repeat the wireless signal.
Description
TECHNICAL FIELD

The technical field relates generally to a repeater for a wireless communication network, and, more particularly, to a repeater configuration for reducing oscillations among two or more repeaters or repeater sections.


BACKGROUND

Conventionally, the coverage area of a wireless communication network such as, for example, a Time Division Duplex (TDD), Frequency Division Duplex (FDD) Wireless-Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (Wi-max), Cellular, Global System for Mobile communications (GSM), Code Division Multiple Access (CDMA), or 3G based wireless network can be increased by a repeater. Exemplary repeaters include, for example, frequency translating repeaters or same frequency repeaters which operate in the physical layer or data link layer as defined by the Open Systems Interconnection Basic Reference Model (OSI Model).


Repeaters are also used to satisfy the increasing need to extend the range of nodes such as access points associated with wireless networks, including but not limited to wireless local area networks (WLANs) and wireless metropolitan area networks (WMANs) described and specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11, 802.16 and 802.20 standards due to the increasing popularity of unrestrained access to broadband services by, for example, portable computing devices. The effective proliferation of wireless networks depends heavily on sustaining and increasing performance levels as user demands increase.


However, when multiple repeaters occupy the same radio frequency environment, problems, such as, oscillation between repeaters can arise. Oscillations can lead to a host of problems such as distortion, saturation, loss of synchronization, and data or information loss.


Further, the problem of “scalability” of many closely located repeaters must be addressed. For instance, when repeaters are deployed in close proximity in a multi-tenant dwelling, an effective coverage area may become so large as to cause a “flooding” of packets. While the coverage area has been greatly enhanced, there may be inefficiency due to limited capacity for a large number of users.


Therefore, there is a need for low cost and low risk solutions to such oscillation problems. Preferably, the solution will be extendible to allow for more capability than simply preventing multi-repeater oscillation.


SUMMARY

In view of the above problems, a repeater operating in a wireless network according to various embodiments mitigates oscillation so that it will substantially not repeat a signal from another repeater in the wireless network in an oscillating state. The wireless network can include a second repeater capable of communicating with the first repeater, and first and second wireless station devices such as an access point and a wireless computing device capable of communicating with at least one of the first repeater and the second repeater.


According to various embodiments, the repeater includes a reception device for receiving a wireless signal at a reception frequency; a detector for detecting if a predetermined portion of the received wireless signal includes a modified portion to thereby determine that the received signal is from the second repeater; and a transmission device for transmitting the wireless signal to one of the first and second wireless station devices at a transmission frequency to thereby repeat the wireless signal.


If the predetermined portion of the received wireless signal includes the modified portion, the transmission device can be configured to not repeat a substantial portion of the wireless signal, to transmit the wireless signal at a frequency different from the transmission frequency, or transmit the wireless signal at a power level different from an original transmission power level.


The repeater can further include a signal modification device for modifying the wireless signal. The signal modification device can be, for example, a notch processor configured to insert a notch pattern on the wireless signal to be transmitted and to detect a notch pattern inserted on a wireless signal as the modified portion.


The signal modification device can also be, for example, a bi-phase modulation device configured to modulate a phase of the predetermined portion of the wireless signal. The bi-phase modulator can modulate the predetermined portion of the wireless signal to have a unique signature recognizable by the second repeater upon receiving the modified wireless signal. A surface acoustic wave (SAW) filter can be coupled to the output of the bi-phase modulator to remove spectral splattering from the modified wireless signal. A timing circuit can also be coupled to the bi-phase modulator for controlling an amount of time during which the bi-phase modulator modulates the phase of the predetermined portion of the wireless signal.


The bi-phase modulator can includes a transfer switch coupled to an input of a linear oscillator (LO), the transfer switch switching positive and negative inputs of the LO at a predetermined frequency to modulate the phase of the predetermined portion of the wireless signal.


The repeater can further include a de-modification device such as a demodulation device for removing the modified portion from the predetermined portion of the wireless signal.


The transmission device is configured to transmit or not transmit the wireless signal if the predetermined portion of the received wireless signal includes the modified portion.


The predetermined portion of the received wireless signal can be a preamble of the wireless signal and the modified portion can be a predetermined phase variation.


The detector can further be configured to detect if the wireless signal was transmitted from one of the first and second wireless station devices by performing a qualifying detection process on the received wireless signal. The qualifying detection process can include correlating a preamble of the received wireless signal to a predetermined signal pattern or demodulating one of a predetermined information sequence, a pilot channel and a pilot carrier.


The repeater can be one of a frequency translating repeater in which the reception frequency and transmission frequency are different, and a same frequency repeater in which the reception frequency and transmission frequency are same.


The repeater can also include a processor and a memory coupled to the processor. A power adjustment routine for configuring the CPU can be stored in the memory. The processor can be configured to: generate probe packets to be transmitted to the second repeater at the transmission frequency; measure a received signal strength indication (RSSI) of a packet received in response to the probe packets; determine if a path loss defined by a difference between a power level at which the probe packets were transmitted and the measured RSSI is less than a predetermined value; and mark the transmission frequency as unavailable for use if the path loss is less than the predetermined value.


The processor can further be configured to: generate a group of packets to be transmitted to the second repeater at the transmission frequency if the path loss is not less than approximately 80 dB; determine an average RSSI for the group of packets; and if the average RSSI is less than a predetermined level, mark a current transmission power as acceptable.


The processor can further be configured to: adjust the current transmission power downward by a predetermined decibel level if the average RSSI is less not than the predetermined level; regenerate the group of packets to be transmitted to the second repeater at the transmission frequency; determine an average RSSI for the group of packets; and if the average RSSI is less than a predetermined level, mark a current transmission power as acceptable.


Additional detection capability included in the repeaters can enable detection of the preamble with the phase modulated sequence and additional communications. For instance, it may be desired that packets from some repeaters may be re-repeated, while those from other repeaters are not repeated. Another example would be that only packets with a specific signature are allowed to be repeated and all others are filtered off. Other actions may include placing packets with a unique signature on a unique repeated frequency, and as such the signature may act as an addressing function, a quality of service code, or a priority code.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages in accordance with the present invention.



FIGS. 1A-1B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater direct sequence spread spectrum (DSSS) configuration with no phase modulation and WLAN only enabled.



FIGS. 2A-2B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater DSSS configuration with phase modulation and WLAN only enabled.



FIGS. 3A-3B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater DSSS configuration with phase modulation and WLAN only disenabled.



FIGS. 4A-4B are an illustration of a test configuration and a screen capture further illustrating the test results associated with an exemplary repeater DSSS configuration of FIG. 3 with phase modulation and WLAN only disenabled.



FIGS. 5A-5B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater orthogonal frequency division multiplexed (OFDM) configuration with no phase modulation and WLAN only enabled.



FIGS. 6A-6B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater OFDM configuration with phase modulation and WLAN only enabled.



FIGS. 7A-7B are an illustration of a test configuration and a screen capture illustrating test results associated with an exemplary repeater OFDM configuration with phase modulation and WLAN only disenabled.



FIGS. 8A-8B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator output with no phase modulation.



FIGS. 9A-9B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator OFDM output with phase modulation.



FIGS. 10A-10B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator OFDM output with phase modulation and low loss surface acoustic wave (SAW) filter.



FIGS. 11A-11B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator OFDM output with phase modulation and low loss SAW filter and high reject SAW filter.



FIGS. 12A-12B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator DSSS output with no phase modulation.



FIGS. 13A-13B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator DSSS output with phase modulation.



FIGS. 14A-14B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator DSSS output with phase modulation and a low loss SAW filter.



FIGS. 15A-15B are an illustration of a test configuration and a spectrum analyzer capture illustrating a signal generator DSSS output with phase modulation, a low loss SAW filter and a high reject SAW filter.



FIG. 16 is a block diagram illustrating an exemplary wireless network environment including two exemplary repeaters.



FIG. 17 is a connection diagram illustrating potential connections which may be established between exemplary repeaters, an AP and mobile communication station in a WLAN.



FIG. 18A is a schematic drawing illustrating an exemplary repeater in accordance with an exemplary embodiment.



FIG. 18B is a schematic drawing illustrating an exemplary repeater in accordance with another exemplary embodiment.



FIG. 19 is an exemplary circuit diagram of a timing circuit.



FIG. 20 is an exemplary circuit diagram of a bi-phase modulator.



FIG. 21 is a block diagram of an exemplary notch processor.



FIG. 22 is an illustration of exemplary notch insertion parameters.



FIG. 23 is a flow diagram illustrating an exemplary notch detection signal processing.



FIG. 24 is a flow diagram illustrating an exemplary power adjustment routine for mitigating oscillation.





DETAILED DESCRIPTION

In overview, the present disclosure concerns a repeater configuration for mitigating oscillation. The instant disclosure is provided to further explain in an enabling fashion the best modes of performing one or more embodiments of the present invention. The use of relational terms such as first and second, and the like, if any, are used solely to distinguish one from another entity, item, or action without necessarily requiring or implying any actual such relationship or order between such entities, items or actions. It is noted that some embodiments may include a plurality of processes or steps, which can be performed in any order, unless expressly and necessarily limited to a particular order; i.e., processes or steps that are not so limited may be performed in any order.


Much of the inventive functionality and many of the inventive principles when implemented, are best supported with or in computer instructions (software) or integrated circuits (ICs), and/or application specific ICs. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions or ICs with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts according to the present invention, further discussion of such software and ICs, if any, will be limited to the essentials with respect to the principles and concepts used by the exemplary embodiments.


Referring now to FIG. 16, a wide area connection 101, which could be, for example, an Ethernet connection, a T1 line, a wideband wireless connection or any other electrical connection providing a data communications path, may be connected to a wireless gateway, or access point (AP) 100. The wireless gateway 100 sends RF signals, such as, for example, IEEE 802.11 packets or signals based upon Bluetooth, Hyperlan, or other wireless communication protocols, to client units 104, 105, which may be personal computers, personal digital assistants, or any other devices capable of communicating with other like devices through one of the above mentioned wireless protocols. A wireless gateway, AP, or client device will be referred to here as a wireless station. Respective propagation, or RF, paths to each of the client units 104, 105 are shown as 102, 103.


While the signal carried over RF path 102 is of sufficient strength to maintain high-speed data packet communications between the client unit 104 and the wireless gateway 100, the signals carried over the RF path 103 and intended for the client unit 105 would be attenuated when passing through a structural barrier such as walls 106 or 107 to a point where few, if any, data packets are received in either direction if not for wireless repeaters 200, 204.


To enhance the coverage and/or communication data rate to the client unit 105, wireless repeaters 200, 204 receive packets transmitted on an initial frequency channel 201 from the wireless gateway 100, access point or another repeater. The wireless repeater 200 detects the presence of a packet on the first frequency channel 201 and receives the packet and re-transmits the packet with more power on a second frequency channel 202. Similarly, the wireless repeater 204 detects the presence of the packet on the second frequency channel 202, receives the packet and re-transmits the packet with more power on a third frequency channel 203. Unlike conventional WLAN operating protocols, the client unit 105 operates on the third frequency channel, even though the wireless gateway 100 operates on the first frequency channel 203. To perform the return packet operation, the wireless repeater 204 detects the presence of a transmitted packet on the third frequency channel 203 from the client unit 105, receives the packet on the third frequency channel 203, and re-transmits the packet on the second frequency channel 202. The wireless repeater 200 detects the presence of a transmitted packet on the second frequency channel 202 from wireless repeater 204, receives the packet on the second frequency channel 202, and re-transmits the packet on the first frequency channel 201. The wireless gateway 100 then receives the packet on the first frequency channel 201. In this way, the wireless repeaters 200, 204 are capable of simultaneously receiving and transmitting signals as well as extending the coverage and performance of the wireless gateway 100 to the client unit 105. When many units are isolated from one another, the repeaters 200, 204 can further act as a wireless bridge allowing two different groups of units to communicate where optimum RF propagation and coverage or, in many cases, any RF propagation and coverage was not previously possible.


However, as described herein above, repeater systems using frequency translation may encounter problems, for example, when beacon signals are used. Accordingly, range extension may be realized in such systems using repeaters for wireless local area networks and may be particularly advantageous when specific protocols are used, such as, for example, the 802.11 series of protocols by modifying the beacon signal to reflect the frequency translation. As noted however problems arise when adjacent nodes using or re-using translated frequencies within range of each other may establish false connections which lead to problems from node to node in terms of data traffic integrity. False connections may also lead to repeater to repeater oscillations when both repeaters are using the same frequency pairs and may further lead to system problems causing a general failure in the WLAN environment. The problems also arise on same frequency repeaters.


Wireless repeaters 200, 204 convert packets from an initial frequency channel to a different frequency channel, where it may be received by one or more clients, such as station devices (STA) or client units 104 or 105, or a different repeater. Client units 104 or 105 preferably receive a beacon identifying an 802.11b channel as being the appropriate channel for communication, and would receive information packets translated by the repeater 200, 204 from a first channel to a second channel.


A problematic repeater condition may arise however, in exemplary scenario 300, as illustrated FIG. 17, wherein two repeaters R1320 and R2330 are configured to service one AP 310 which is within the transmit range of both repeaters via, for example, wireless connections 301 and 303. Repeaters R1320 and R2330 may further be capable of listening to each other's respective transmissions via a connection established over, for example, link 302. In exemplary scenario 300, the only connection established to communication unit or station device or STA 340 is connection 304 which as will be appreciated is a wireless or RF link. Problems arise when repeaters R1320 and R2330 are operating on the same pair of channels, such as AP and repeater channels. When AP 310 transmits, both R1320 and R2330 detect the transmission on, for example, a first frequency F1 and retransmit on a second frequency F2, such as the repeater channel. The primary problems arise when an isolated client station STA 340 transmits on F2 which, as describe above, is the repeater channel. R2330 then repeats the transmission on F1 to AP 310. R1320 detects the transmissions from R2330 on F1 and tries to retransmit the detected transmissions. If R1320 happens to select F2 as the transmit frequency, a loop will be established between R1320 and R2330. With sufficient gain, the RF loop may oscillate, via, for example, positive feedback causing any signals destined for STA 340 over connection 304 to be jammed. It should be noted that the above RF loop does not occur if both repeaters detect the signal on the F1 because once they detect a signal on F1 they disable their receivers on F2 and then start repeating on F2.


Referring to FIG. 18A, a repeater 1800 for mitigating the above-described oscillation according to a first embodiment will be described. The repeater may be, for example, a frequency translating repeater as discussed above or a same-frequency repeater. The repeater 1800 includes first and second antennas (ANTA, ANT B) serving as reception and transmission devices for receiving and transmitting signals on first and second channels. A signal received via one of the first antenna ANTA or second antenna ANTB is processed by processing elements such as a low noise amplifier (LNA), image reject filter (IRF), field effect transistor (FET) mixer, surface acoustic wave (SAW) filters, amplifier, is split and propagated on two different signals paths by, for example, splitter 1816. One of the split signal paths from the splitter 1816 is preferably coupled to a logarithmic amplifier 1820 via an amplifier and the other split signal path is preferably coupled to an adjustable gain control (AGC) element 1822 for adjusting the gain of the signal. A first output of the logarithmic amplifier 1820, which is preferably a signal representative of the amplitude envelope of the received signal strength indication (RSSI), is fed to a control portion of the AGC element 1822 for adjusting the gain control, to a processor 1825 and to a comparator 1823 for comparing the RSSI level of the signal with a predetermined RSSI threshold received from the processor 1825. A second output of logarithmic amplifier 1820 is fed to a digital demodulator 1824 via various digital elements for performing direct-sequence spread spectrum (DSSS) or orthogonal frequency-division multiplexing (OFDM) detection and demodulation, and internal packet generation. The digital demodulator 1824 can perform such detection by, for example, analyzing preamble information specific to DSSS and OFDM WLAN packets generally located in the first few symbols of a packet, such as an 802.11 packet. The digital demodulator 1824 or the repeater entirely can be placed in a WLAN only configuration by, for example, the processor 1825.


The output of the comparator 1823 is fed to a sequencer 1826 (CMP_A_EN terminal). The comparator 1823 can output a signal indicative of a detected signal when the RSSI is greater than the predetermined threshold, thus indicative of a signal to be repeated. In response to the signal from the comparator 1823, as well as other indications, the sequencer 1826 will output an enable signal (not shown) to the demodulator 1824 to begin demodulating the signal as well as various control outputs that will begin the physical repeating of the signal. Subsequently, the sequencer 1826 will also output a signal to an AND gate 1828. The AND gate 1828 also receives a microprocessor enable signal from the processor 1825, and outputs an enable signal to timing circuitry 1830 if the enable signals are received from both the sequencer 1826 and the processor 1825. The timing circuitry 1830 controls a bi-phase modulator (signal modification device) 1832, which receives the output signal from the AGC element 1822 via an amplifier 1834 and additional circuitry. An exemplary circuit for the timing circuitry 1830 is shown in FIG. 19. PA_EN represents the enable signal from the sequencer 1826, and BPSK_EN represents the enable signal from the processor 1825. 11 MHz is the clock for the timing circuitry 1830.


The bi-phase modulator 1832 modifies the signal by adding an amount of phase variation to modulate, for example, the first few symbols of a packet to be repeated. The bi-phase modulator 1832 can include, for example, transfer switches for switching the differential signal received from the amplifier 1834 to thereby add the phase variation. An exemplary circuit for the bi-phase modulator 1832 is shown in FIG. 20. The length of time for applying the phase modulation to the repeated signal can be adjusted by the timing circuitry 1830 connected to the comparator output (see signals MOD_P and MOD_N which are from the timing circuitry 1830). The timing circuitry 1830 can be triggered by a hit on the comparator 1823. Once the timing circuitry 1830 stops, the switching of the positive and negative inputs can be stopped and normal operation can be commenced.


The output of the bi-phase modulator 1832 is fed to a SAW filter 1836 for removing any spectral splattering created by the phase modulation performed by the bi-phase modulator 1832. The signal can then be transmitted by one of the first or second antennas ANTA, ANTB via the mixer 1838 and additional analog elements to an access point, wireless station or client device (wireless station).


Referring to FIG. 18B, in a modification to the first embodiment, the bi-phase modulator 1832 can be coupled to, for example, a 1056 MHz linear oscillator 1840 and an active mixer 1842. The length of time for applying the phase modulation to the repeated signal is still adjusted by the timing circuitry 1830. The positive and negative inputs of the 1056 MHz linear oscillator 1840 going to the active mixer 1842 can be switched back and forth at, for example, a 5.5 MHz rate. Switching the positive and negative inputs will impart the phase modulation onto the repeated signal. Once the timing circuitry 1830 stops, the switching of the positive and negative inputs can be stopped and normal operation can be commenced.


During repeater operation, when the repeater 1800 is placed in the standard operating mode of WLAN only, the digital demodulator 1824 (DSSS/OFDM detector) will not recognize packets having symbols phase modulated by another repeater as valid WLAN packets, thereby stopping the repeating process because the existing phase relationships are disrupted by the signal modification. Therefore, when the repeater 1800 receives a repeated signal from a similar repeater 1800, it will not re-repeat the signal. As a result, the problem related to oscillation as discussed above can be mitigated.


Further, the phase variation added to the signal by the bi-phase modulator 1832 is transparent to wireless stations receiving the modified signal because carrier recovery is not performed until, for example, the fifth or sixth symbol of an incoming stream.


In an alternative embodiment, an external phase modulator can advantageously be placed after the amplifier 1834. In addition, a simple timer to control the 5.5 MHz clock can be generated by dividing down an existing clock such as an 11 MHz processor clock. Further, the signal modification can be performed at the output of the mixer 1838 rather than the amplifier. However, the output of amplifier 1834 is preferably used because of the difficulty accessing the data stream coming out of the modulator in order to add the phase at base-band for signals coming out of the modulator. Accordingly, the phase modulator 1832 is triggered by either a comparator hit or anytime a modulated signal is generated. It should be noted that the signal modified may be a self-generated signal or a received signal.


Returning to the exemplary scenario 300 illustrated in FIG. 17, advantages achieved by the repeater implemented according to the various embodiments above will be discussed. Here, assuming that the repeaters R1320 and R2330 both include the digital demodulator 1824 and phase modulator 1832, and are both placed in a WLAN only configuration, if the repeaters R1320 and R2330 are operating on the same pair of channels, such as AP and repeater channels, when AP 310 transmits, both R1320 and R2330 detect the transmission on, for example, the first frequency F1 and retransmit on the second frequency F2. However, before transmission, the phase modulator 1832 of the repeater modifies the first few symbols of packets in the transmitted signal. When an isolated client station STA 340 transmits on F2, R2330 then repeats the transmission on F1 to AP 310. R1320 detects the transmissions from R2330 on F1; however, R1320 cannot demodulate the repeated signal because the first few symbols include the phase variation. Thus, the repeater R2330 does not retransmit the detected transmissions back onto F2302. Even if R1320 happens to select F2 as the transmit frequency, a loop will not be established between R1320 and R2330.


A further advantage of the repeater according to the various embodiments is that limited or no additional analog, digital or I/O circuitry is needed for phase detection because such phase detection is performed by the existing circuitry for the OFDM/DSSS digital modulator. The circuitry for generating the phase modulation is extremely simple.


Accordingly, if an amount of phase variation is deliberately modulated onto the first few symbols of a repeated packet and the standard operating mode of “WLAN only” is enabled, the existing DSSS and OFDM detector will not recognize the packets associated with the phase modulated symbols as valid WLAN packets and will stop the repeating process.


The biphase modulator 1832 can be modified to perform the phase modulation of the preamble so that each packet has a unique signature. This signature may be a unique phase modulating “square wave” with a unique frequency of a set of frequencies or one of a set of orthogonal codes such as Walsh codes or the like. While it is not required that the code be orthogonal, orthogonal orientation between the codes is considered to allow for a higher performance of the detection of the one out of the set of codes with more certainty. Examples of non-orthogonal code would be ones with low cross correlations such as PN codes, Gold codes, or Barker sequences. Use of such codes as the modulation sequence by the repeater onto the preamble of the repeated packet will allow for (as previously mentioned) preventing the “wireless LAN only” detection of the signal to be prevented in a similar manner to the tests discussed below.


Further, the unique signature can be configured so that operation of a repeater receiving the modified signal is adjusted in accordance with the unique signature. For example, rather than the repeater not repeating the signal when it includes the phase modulated preamble, the repeater can be configured to take alternative actions such as transmitting the wireless signal at a frequency different from an original transmission frequency, or transmitting the wireless signal at a power level different from the original transmission power level in order to avoid oscillation. Also, the repeater could be configured to remove the unique signature from the signal. The repeater can be configured to perform such actions in accordance with the processor 1825 executing instructions stored in an associated memory.


Further, the repeater can use the phase modulation in the signal to perform a qualifying detection process to determine if the received wireless signal is from another repeater or one of the wireless stations. Particularly, the phase modulation can be correlated to predetermined signal pattern stored in the memory. If the correlation is determined to be high, then the repeater can determine that the wireless signal is from another repeater and take appropriate action to prevent oscillation. Alternatively, the qualifying detection process can include demodulating one of a predetermined information sequence, a pilot channel and a pilot carrier.


Various tests were performed on an exemplary repeater which validated the conclusions discussed above. In the tests, the search time for WLAN detection in an exemplary repeater was programmable from 4 μs to 16 μs. A digital signal was generated using a Vector Signal Generator (VSG) having phase modulation on the first 4 μs for both an OFDM signal and a DSSS signal. As discussed below, cessation of repeating was achieved 100% of the time for a programmed search time of 4 μs.


Next, the operating mode of the exemplary repeater was changed to “WLAN only” OFF. The signal successfully transited the repeater 100% of the time and a Vector Signal Analyzer (VSA) successfully demodulated the repeated signal including the phase modulation. As a control, the signal was input with the phase modulation imposed directly from the VSG and, when output to the VSA, the signal with the direct modulation was again successfully demodulated.


TIME DOMAIN OPERATION: Referring to FIGS. 1A-4B, test conditions and associated results for DSSS signals will be discussed.


In “Test #1_DSSS,” a 1 Mbps DSSS signal was injected without any phase modulation into the exemplary repeater while WLAN Only was enabled and the output was measured. As shown in FIGS. 1A-1B, the exemplary repeater fully repeated the signal and the VSA demodulator detected the Start Frame Delimiter (SFD) and Header.


In “Test #2_DSSS,” a 1 Mbps DSSS signal with Bi-Phase Modulation added to the first 4 μs of the signal was injected into the exemplary repeater while WLAN Only was enabled and the output was measured. The repeater in WLAN Only mode is set to search 4 μs for an 802.11g DSSS or OFDM packet. As shown in FIGS. 2A-2B, the exemplary repeater repeated only 4 μs (partial packet) and then stopped the transmission.


In “Test #3_DSSS,” a 1 Mbps DSSS signal with Bi-Phase Modulation added to the first 4 μs of the signal was injected into the exemplary repeater while WLAN Only disabled and the output was measured. As shown in FIGS. 3A-3B, since the WLAN Only mode is disabled, the exemplary repeater repeated the entire packet since it was not searching for DSSS or OFDM preambles, and the VSA detected and demodulated the packet.


In “Test #3_DSSS Zoom” a zoomed version of Test #3_DSSS was performed in which the phase was added across the first 4 μs. As shown in FIG. 4B, the time domain signal appeared differently for the first 4 us compared to after 4 μs.


Referring to FIGS. 5A-7B, test conditions and associated results for OFDM signals will be discussed.


In “Test #1_OFDM,” a 6 Mbps OFDM signal without any phase modulation was injected into the exemplary repeater with WLAN Only enabled and the output was measured. As shown in FIGS. 5A-5B, the exemplary repeater fully repeated the signal and the VSA demodulator detected and properly demodulated the signal.


In “Test #2_OFDM,” a 6 Mbps OFDM signal with Bi-Phase Modulation added to the first 4 us of the signal was injected into the exemplary repeater with WLAN Only enabled and the output was measured. Exemplary repeater WLAN Only was set to search 4 μs for an 802.11g DSSS or OFDM. As shown in FIGS. 6A-6B, the exemplary repeater repeated only 4 μs (partial packet) and then stopped the transmission.


In “Test #3_OFDM,” a 6 Mbps OFDM signal with Bi-Phase Modulation added to the first 4 μs of the signal was injected into the exemplary repeater with WLAN Only disabled and the output was measured. As shown in FIGS. 7A-7B, since WLAN Only is disabled the exemplary repeater repeated the entire packet since it was not searching for DSSS or OFDM preambles, and the VSA detected and demodulated the packet.


Frequency Domain Operation: Referring to FIGS. 8A-15B, spectral implications of adding the phase modulation to the signal for OFDM and DSSS and the appearance of the spectrum after being transmitted through the IF SAWs will be discussed. The test was performed at 594 MHz in order to determine if the signal could pass or be very close to the mask defined by the 802.11 standard.


Referring to FIGS. 8A-11B, test conditions and associated results for OFDM signals will be discussed.


In “Test #1_OFDM” a 6 Mbps OFDM signal was injected into the spectrum analyzer without any phase modulation. As shown in FIG. 8B, the signal generated passed the 802.11g spectral masks.


In “Test #2_OFDM” a 6 Mbps OFDM signal was injected into the spectrum analyzer with phase modulation added to the first 4 μs of the waveform. As shown in FIG. 9B, the signal generated did not pass the 802.11g spectral masks due to the phase modulation.


In “Test #3_OFDM” a 6 Mbps OFDM signal was injected into the 594 MHz SAW filter and then into the spectrum analyzer with phase modulation added to the first 4 μs of the waveform. As shown in FIG. 10B, although the signal was very close due to the phase modulation, it passed the 802.11g spectral masks. It should be noted that when the bi-phase modulator is implemented externally, the signal will only go through the low loss SAW filter because the bi-phase modulator would have to be added after the amplifier so that the phase modulation could also be added to the internal modulator.


In “Test #4_OFDM” a 6 Mbps OFDM signal was injected into 594 MHz low loss and high rejection SAWs and then into the spectrum analyzer with phase modulation added to the first 4 μs of the waveform. As shown in FIG. 11B, although the signal was very close due to the phase modulation, the signal passed the 802.11g spectral masks. It should be noted that when the bi-phase modulator is implemented internally to the repeater, the signal would go through both the low loss and high rejection SAWs because the bi-phase modulation would be added to the active inter-stage mixer.


Referring to FIGS. 12A-15B, test conditions and associated results for DSSS signals will be discussed. In “Test #1_DSSS,” a 1 Mbps DSSS signal was injected into the spectrum analyzer without any phase modulation. As shown in FIG. 12B, the signal generated passed the 802.11b spectral masks.


In “Test #2_DSSS,” a 1 Mbps DSSS signal was injected into the spectrum analyzer with phase modulation added to the first 4 μs of the waveform. As shown in FIG. 13B, the signal no longer passed or was close to failing the 802.11b spectral masks due to the phase modulation.


In “Test #3_DSSS,” a 1 Mbps DSSS signal was injected into the 594 MHz low loss SAW and then into the spectrum analyzer with phase modulation added to the first 4 us of the waveform. As shown in FIG. 14B, although the signal was very close due to the phase modulation, the signal passed the 802.11b spectral masks.


In “Test #4_DSSS,” a 1 Mbps DSSS signal was injected into the 594 MHz low loss and high rejection SAWs and then into the spectrum analyzer with phase modulation added to the first 4 μs of the waveform. As shown in FIG. 15B, although the signal was very close due to the phase modulation, it passed the 802.11b spectral masks. It should be noted that when the phase modulation is performed internally the signal would go through both the low loss and high rejection SAWs because the bi-phase modulation would be added to the active inter-stage mixer.


Therefore, a repeater including the bi-phase modulation device 1832 can fully repeat a signal and not repeat a signal if a predetermined portion of the signal includes phase modulation and is in a WLAN only mode. Further, the modulated signal generated can pass through the 802.11 spectral masks when the modulated signal passes through one or more SAW filters. Here, the bi-phase modulator 1832 constitutes a signal modification device.


Referring to FIG. 21, a repeater according to a second embodiment can include a notch processor 2100 configured to insert a notch pattern on a wireless signal to be repeated and detect if a notch pattern is present on a received wireless signal. The notch processor 2100 can be included in the repeater 1800 shown in FIGS. 18A-18B as an additional signal modification device and detection device or in place of the bi-phase modulator 1832. As shown in FIG. 22, the notch pattern is generally one or more notches starting at a specific time TSTART and separated by a gap duration TDURATION. The start time, gap duration, and notch duration are programmable for both insertion and detection. The detection notch pattern is specified by setting the coefficients of the received notch matched filter. Further, the notch patterns can be different for transmission and reception. Returning to FIG. 21, the notch processor 2100 includes a notch insertion portion 2102 for sending a signal representative of the notch pattern (TX_NOTCH) to the sequencer 2104, a notch detection portion 2106 for sending signals representative of an indication of a detected notch (RX_NOTCH_DET) and the particular channel on which the notch was detected (RX_NOTCH_CHAN) to the sequencer 2104, a comparator portion 2108 that receives input signals (CMP_OUT_A, CMP_OUT_B) from the comparators via an internal RF interface 2110, and clock and reset signals, and control registers 2112 for sending signal representative of a notch insertion start time TX_NOTCH_START, notch insertion gap control TX_NOTCH_GAP, and duration TX_NOTCH_DUR to the notch insertion portion 2102. The comparator portion 2108 receives signals representative of the RSSI voltages for the two channels and a clock signal from an RSSI analog to digital converter (ADC) interface 2113, and outputs signals (RX_HYST_A, RX_HYST_B, and RX_ADC_SEL) to an optional debugging header portion 2114 for facilitating parameter adjustment.


The notch processor 2100 further includes control and status registers 2116 for outputting various signals representative of: matched filter peak windows (RX_NOTCH_MFPW1, RX_NOTCH_MFPW2); notch detection hysteresis control (RX_NOTCH_HYST); notch detection parameter control (RX_NOTCH_PAR1, RX_NOTCH_PAR2, RX_NOTCH_PAR3); and notch detection matched filter coefficient control (RX_NOTCH_MFC0-MFC19) to the notch detection section 2106. The notch detection section 2106 also outputs a signal representative of notch detection status (RX_NOTCH_STATUS) to the control and status registers 2116.


Returning to FIG. 22, during operation, the notch processor 2100 can insert one or two short notches in the signal to be repeated after the rising edge of CMP_OUT_A or CMP_OUT_B. The sequencer 2104 applies the notch to the repeated signal whenever TX_NOTCH is 1. Exemplary notch processor operations for detecting a notch in a signal will be discussed with reference to the flow diagram shown in FIG. 23.


At 2305, programmable hysteresis is performed to generate the hysteresis-filtered comparator outputs HYST_A, HYST_B, and the ADC channel selection signal ADC_SEL based upon the analog comparator outputs CMP_OUT_A, CMP_OUT_B. The signal RXND_HYST_CR is a signal from a control register indicative of the hysteresis span for CMP_OUT_A, CMP_OUT_B.


At 2310, RSSI channel selection is performed based upon signals HYST_A, HYST_B, and a signal ADC_SEL representative of the selective channel is generated. At 2315, HYST_A, HYST_B, and ADC_SEL are used to control the signals from the timer MFPW_TMR for controlling the detection window timing. The timer control is performed based upon the number of clock cycles elapsed since the packet's start. MFPW_TMR continues counting during temporary signal dropouts shorter than RXND_DROPOUT_CR clock cycles. Such dropouts frequently occur during the notch pattern at low received signal strengths.


At 2320, ADC_SEL is used to convert the two-channel interleaved RSSI output ADC_OUT into a single-channel de-multiplexed signal ADC_DATA. At 2325, ADC_DATA is processed through a non-linear “maximum of 3” operation to generate ADC_MAX. RXND_MAX_DISABLE_CR is for disabling the use of the 3-sample maximum.


At 2330, ADC_MAX is processed through a linear first-order programmable lowpass filter, which yields a slowly-varying value RSSI_AVG that closely tracks the received signal envelope peak excursions. At 2335, a slightly delayed copy of ADC_DATA, referred to as RSSI_VAL is subtracted from RSSI_AVG to yield the (signed) difference signal DIFF, which exhibits a strong positive excursion when a notch is encountered.


At 2340, DIFF is the input to a 20-tap programmable matched filter, whose unsigned output MF_SUM is clipped to the range 0 to 255. Signal RXND_MFC[0-19]_ENA is representative of a match filter tap status, RXND_MFC[0-19]_SIGN is representative of a matched filter tap coefficient sign, and signal RXND_MFC[0-19]_SHIFT is representative of a matched filter tap coefficient magnitude.


At 2345, RSSI_AVG is used to compute a variable matched filter threshold MF_THRESH based on the values of parameter control registers RXND_MFT_CONST_CR, RXND_MFT_SLOPE_CR, and RXND_MFT_MAX_CR.


At 2350, the notch detection section sets RX_NOTCH_DET to 1 and sets RX_NOTCH_CHAN equal to ADC_SEL, whenever MF_SUM equals or exceeds MF_THRESH during a narrow time window specified by control registers RXND_NOM_MFPW_CR and RXND_HWIN_MFPW_CR. The signals RX_NOTCH_DET and RX_NOTCH_CHAN are sent to the sequencer 2104.


Thus, a repeater including the notch processor 2100 according to the second embodiment can add a notch pattern to a repeated signal and detect a notch pattern in a received signal to mitigate the oscillation problem discussed above. Here, the notch processor 2100 constitutes a signal modification device.


According to a third embodiment, a repeater such as the repeater 1800 shown in FIGS. 18A-18B executes a power adjustment routine to stop or prevent oscillation with one or more other repeaters. The routine can begin when the repeater 1800 enters a discovery mode upon determining that another repeater within the wireless network is operating in the same frequency channel as disclosed in, for example, U.S. Patent Publication No. 2006-0041680. The repeater 1800 can be configured to execute the routine by the processor 1825 executing instructions stored in the memory 1827.


Referring to the flow diagram of FIG. 24, the power adjustment routine will be discussed more fully. At 2405, the repeater transmits a predetermined number of XOS_PROBE_REQUEST packets, and at 2410 measures the XOS_PROBE_RESPONSE RSSI. The packets can be generated by, for example, the digital demodulator 1824 under the control of the processor 1825. The XOS_PROBE_REQUEST packet contains the power at which the repeater is transmitting. The difference between the transmit power and measured RSSI is the one-way path loss. At 2415, the repeater determines if this path loss is less than a predetermined value such as, for example, 80 dB. If the path loss is less than 80 dB (YES at 2415), then at 2420 the repeater will mark this channel and all channels within a 5 channel separation as unavailable for use, and the routine ends.


If the path loss is less than 80 dB (NO at 2415), then at 2425 the repeater transmits a number of XOS packets of a maximum length (64 bytes). At 2430, the RSSI from each successfully received packet is measured and averaged across all packets. A packet which has not been successfully received will be considered to have an RSSI of −80 dBm. At 2435, the repeater determines if the average RSSI is less than a predetermined dBm. If the average RSSI is less than the predetermined dBm (YES at 2435), then the routine ends. That is, the discovering repeater will assume that the current transmit power is acceptable and begin normal operation.


If the average RSSI is not less than the predetermined dBm (NO at 2435), then at 2440 the repeater adjusts the transmission power down by 1 dB and at 2445 retransmits the number of XOS packets. At 2450, the repeater determines if the average RSSI is less than the predetermined dBm. If the average RSSI is less than the predetermined dBm (YES at 2450), then the repeater begins normal operation.


If the average RSSI is not less than the predetermined dBm (NO at 2450), then at 2455 the repeater requests that the other repeater(s) on the same channel reduce the transmit power by 1 dB. At 2460 the repeater transmits the number of XOS packets. At 2465, the RSSI from each successfully received packet is measured and averaged across all packets. At 2470, the repeater determines if the average RSSI is less than the predetermined dBm. If the average RSSI is less than the predetermined dBm (YES at 2470), then the repeater begins normal operation.


If the average RSSI is still not less than the predetermined dBm (NO at 2470), then the repeater once again request that the other repeater(s) on its same channel reduce the transmit power by another 1 dB. This will continue with each repeater's power being dropped by 1 dBm, in turn, until the XOS packet test passes. However, if the non-discovering repeater would have to reduce it's transmit power to less than a predetermined amount such as, for example, 9 dB, the discovering repeater will request that the other repeater return to its original transmit power and the discovering repeater can choose a different channel to repeat onto. The current channel and all channels within a 5 channel separation will be marked as unavailable.


While the repeater is operating on the same channels as another repeater, the repeater which was enabled last will enable a monitor that checks for oscillations to occur. When an oscillation is detected, the repeater will perform the same power routine discussed above (2405-2420).


In addition, for every predetermined time period (e.g., 20 seconds) the monitoring repeater will attempt to increase it's transmit power by 1 dB until it has reached it's normal maximum transmit power. Each time the power on either repeater is incremented, an XOS test (2405-2420) will be performed to see if the increase is warranted. It will ratchet each side up in the same manner as the powers were dropped. Once a repeater has been requested to change the transmit power by another repeater, it can monitor the channel for a XOS_OSCMIT_HEARTBEAT messages from the controlling repeater. If a predetermined time period such as, for example, 20 seconds passes without receiving a heartbeat message from the controlling repeater, the slave unit will assume that the controlling repeater is no longer operating and will revert the power to the normal maximum transmit power for channel spacing configuration.


The above routine can also be applied when more than one other repeater is repeating to the same channels. However, in such as case a monitoring repeater may choose not to increase the power if it has determined within the certain time period (e.g., 10 seconds) that an oscillation would occur by doing so.


Thus, the repeater 1800 according to the third embodiment can execute the power adjustment routine to mitigate oscillation with one or more other receivers on a same channel within a wireless network.


This disclosure is intended to explain how to fashion and use various embodiments in accordance with the invention rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. For example, the repeater may be modified to identify packets previously repeated, and perform an action in response. The action may be to terminate transmission for oscillation mitigation, or to allow repeating depending on the specifics of the detection.


Further, a repeater can incorporate any number of the three embodiments discussed above. That is, the repeater is not limited to only one of the above-discussed embodiments. Further, the circuits discussed above are only exemplary manner for implementing the above described signal modification device. That is, the bi-phase modulation device 1832 and the notch processor 2100 can be implemented in a different manner, as long as a predetermined portion of the signal is modified so that a repeater receiving the modified signal takes an action different from its normal repeating action.


The embodiment(s) was chosen and described to provide the best illustration of the principles of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention. The various circuits described above can be implemented in discrete circuits or integrated circuits, as desired by implementation. Further, portions of the invention may be implemented in software or the like as will be appreciated by one of skill in the art and can be embodied as methods associated with the content described herein.

Claims
  • 1. A first repeater operating within a wireless network, the wireless network including a second repeater capable of communicating with the first repeater, and first and second wireless station devices capable of communicating with at least one of the first repeater and the second repeater, the first repeater comprising: a reception device for receiving a wireless signal at a reception frequency;a detector for detecting if a predetermined portion of the received wireless signal includes a modified portion to thereby determine that the received signal is from the second repeater; anda transmission device for transmitting the wireless signal to one of the first and second wireless station devices at a transmission frequency to thereby repeat the wireless signal, wherein the repeater further comprises:a processor; anda memory coupled to the processor, the memory for storing a power adjustment routine for configuring the processor;wherein the processor is configured to:generate probe packets to be transmitted to the second repeater at the transmission frequency;measure a received signal strength indication (RSSI) of a packet received in response to the probe packets;determine if a path loss defined by a difference between a power level at which the probe packets were transmitted and the measured RSSI is less than a predetermined value; andmark the transmission frequency as unavailable for use if the path loss is less than the predetermined value.
  • 2. The first repeater of claim 1, wherein the processor is further configured to: generate a group of packets to be transmitted to the second repeater at the transmission frequency if the path loss is not less than approximately the predetermined value;determine an average RSSI for the group of packets;if the average RSSI is less than a predetermined level, mark a current transmission power as acceptable.
  • 3. The first repeater of claim 2, wherein the processor is further configured to: adjust the current transmission power downward by a predetermined decibel level if the average RSSI is less not than the predetermined level;regenerate the group of packets to be transmitted to the second repeater at the transmission frequency;determine an average RSSI for the group of packets; andif the average RSSI is less than a predetermined level, mark a current transmission power as acceptable.
  • 4. A first repeater operating within a wireless network, the wireless network including a second repeater capable of communicating with the first repeater, and first and second wireless stations capable of communicating with at least one of the first repeater and the second repeater, the first repeater comprising: a reception device receiving a wireless signal from one of the second repeater, first wireless station, and second wireless station;a detection device coupled to the reception device, the detection device detecting if a received signal strength indication (RSSI) of the wireless signal is greater than a predetermined RSSI threshold;a digital demodulator coupled to the reception device, the digital demodulator configured to demodulate the wireless signal if the detected RSSI is greater than the predetermined RSSI threshold;a signal modification device coupled to the reception device, the signal modification device configured to modify a predetermined portion of the wireless signal; anda transmission device coupled to the signal modification device for transmitting the modified wireless signal to one of the second repeater, first wireless station, and second wireless station;wherein the signal modification device includes a bi-phase modulation device configured to modulate a phase of the predetermined portion of the wireless signal, andwherein the bi-phase modulator includes a transfer switch coupled to a linear oscillator (LO), the transfer switch switching positive and negative terminals of the LO at a predetermined frequency to modulate the phase of the predetermined portion of the wireless signal.
  • 5. A first repeater operating within a wireless network, the wireless network including a second repeater capable of communicating with the first repeater, and first and second wireless stations capable of communicating with at least one of the first repeater and the second repeater, the first repeater comprising: a reception device receiving a wireless signal including one or more packets at a reception frequency;a signal modification and detection device coupled to the reception device, the signal modification and detection device configured to modify a predetermined portion of the packet to thereby generate a modified wireless signal and to detect if a predetermined portion of the packet includes a modified signal pattern;a transmission device coupled to the signal modification and detection device for transmitting the modified wireless signal to one of the second repeater, first wireless station, and second wireless station at a predetermined power level and a transmission frequency;a processor controlling the reception device and the transmission device; anda memory coupled to the processor, the memory for storing a power adjustment routine for configuring the processor to:generate probe packets to be transmitted to the second repeater at the transmission frequency;measure a received signal strength indication (RSSI) of a packet received in response to the probe packets; andadjust one of the power level or the transmission frequency in accordance with the measured RSSI.
  • 6. The first repeater of claim 5, wherein the signal modification and detection device coupled to the reception device comprises a notch processor configured to insert a notch pattern on the wireless signal to be transmitted and detect a notch pattern inserted on a wireless signal received from the second repeater.
  • 7. The first repeater of claim 5, wherein the signal modification and detection device coupled to the reception device comprises: a bi-phase modulation device configured to modulate a phase of the predetermined portion of the wireless signal; anda digital demodulator coupled to the reception device, the digital demodulator configured to determine if the wireless signal includes a modulated phase pattern as the modified portion.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to and claims priority from pending U.S. Provisional Application No. 60/846,073 filed Sep. 21, 2006, and is further related to: U.S. Patent Publication No. 2006-0041680 (U.S. application Ser. No. 10/530,546) to Proctor et al., which is entitled “REDUCING LOOP EFFECTS IN A WIRELESS LOCAL AREA NETWORK REPEATER; and U.S. Patent Publication No. 2005-0286448 to Proctor (U.S. application Ser. No. 10/516,327 or International Application No. PCT/US03/16208) to Proctor et al., which is entitled “WIRELESS LOCAL AREA NETWORK REPEATER” the contents all of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/020485 9/21/2007 WO 00 4/21/2009
Publishing Document Publishing Date Country Kind
WO2008/036401 3/27/2008 WO A
US Referenced Citations (269)
Number Name Date Kind
3363250 Jacobson Jan 1968 A
4000467 Lentz Dec 1976 A
4001691 Gruenberg Jan 1977 A
4061970 Magneron Dec 1977 A
4081752 Sumi Mar 1978 A
4124825 Webb et al. Nov 1978 A
4204016 Chavannes May 1980 A
4334323 Moore Jun 1982 A
4368541 Evans Jan 1983 A
4509206 Carpe et al. Apr 1985 A
4679243 McGeehan et al. Jul 1987 A
4701935 Namiki Oct 1987 A
4723302 Fulmer et al. Feb 1988 A
4777653 Bonnerot et al. Oct 1988 A
4783843 Leff et al. Nov 1988 A
4820568 Harpell et al. Apr 1989 A
4922259 Hall et al. May 1990 A
5023930 Leslie Jun 1991 A
5095528 Leslie et al. Mar 1992 A
5214788 Delaperriere et al. May 1993 A
5220562 Takada et al. Jun 1993 A
5280480 Pitt et al. Jan 1994 A
5333175 Ariyavisitakul et al. Jul 1994 A
5341364 Marra et al. Aug 1994 A
5349463 Hirohashi et al. Sep 1994 A
5368897 Kurihara et al. Nov 1994 A
5371734 Fischer Dec 1994 A
5373503 Chen Dec 1994 A
5383144 Kato Jan 1995 A
5408197 Miyake Apr 1995 A
5408618 Aho et al. Apr 1995 A
5430726 Moorwood et al. Jul 1995 A
5446770 Urabe et al. Aug 1995 A
5465251 Judd et al. Nov 1995 A
5471642 Palmer Nov 1995 A
5485486 Gilhousen et al. Jan 1996 A
5509028 Marque-Pucheu Apr 1996 A
5515376 Murthy et al. May 1996 A
5519619 Seda May 1996 A
5608755 Rakib Mar 1997 A
5610916 Kostreski et al. Mar 1997 A
5648984 Kroninger et al. Jul 1997 A
5654979 Levin et al. Aug 1997 A
5659879 Dupuy Aug 1997 A
5678177 Beasley Oct 1997 A
5678198 Lemson Oct 1997 A
5684801 Amitay et al. Nov 1997 A
5697052 Treatch Dec 1997 A
5726980 Rickard Mar 1998 A
5732334 Miyake Mar 1998 A
5745846 Myer et al. Apr 1998 A
5754540 Liu et al. May 1998 A
5764636 Edsall Jun 1998 A
5767788 Ness Jun 1998 A
5771174 Spinner et al. Jun 1998 A
5784683 Sistanizadeh et al. Jul 1998 A
5794145 Milam Aug 1998 A
5812933 Niki Sep 1998 A
5815795 Iwai Sep 1998 A
5825809 Sim Oct 1998 A
5852629 Iwamatsu Dec 1998 A
5857144 Mangum et al. Jan 1999 A
5862207 Aoshima Jan 1999 A
5875179 Tikalsky Feb 1999 A
5883884 Atkinson Mar 1999 A
5884181 Arnold et al. Mar 1999 A
5890055 Chu et al. Mar 1999 A
5903553 Sakamoto et al. May 1999 A
5907794 Lehmusto et al. May 1999 A
5963846 Kurby Oct 1999 A
5963847 Ito et al. Oct 1999 A
5987304 Latt Nov 1999 A
6005855 Zehavi et al. Dec 1999 A
6005884 Cook et al. Dec 1999 A
6014380 Hendel et al. Jan 2000 A
6032194 Gai et al. Feb 2000 A
6061548 Reudink May 2000 A
6088570 Komara et al. Jul 2000 A
6101400 Ogaz et al. Aug 2000 A
6108364 Weaver, Jr. et al. Aug 2000 A
6128512 Trompower et al. Oct 2000 A
6128729 Kimball et al. Oct 2000 A
6141335 Kuwahara et al. Oct 2000 A
6163276 Irving et al. Dec 2000 A
6188694 Fine et al. Feb 2001 B1
6188719 Collomby Feb 2001 B1
6195051 McCoy et al. Feb 2001 B1
6202114 Dutt et al. Mar 2001 B1
6215982 Trompower Apr 2001 B1
6219739 Dutt et al. Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6272351 Langston et al. Aug 2001 B1
6285863 Zhang Sep 2001 B1
6298061 Chin et al. Oct 2001 B1
6304563 Blessent et al. Oct 2001 B1
6304575 Carroll et al. Oct 2001 B1
6331792 Tonietto Dec 2001 B1
6339694 Komara et al. Jan 2002 B1
6342777 Takahashi Jan 2002 B1
6363068 Kinoshita Mar 2002 B1
6370185 Schmutz et al. Apr 2002 B1
6370369 Kraiem et al. Apr 2002 B1
6377612 Baker Apr 2002 B1
6377640 Trans Apr 2002 B2
6384765 Sjostrand et al. May 2002 B1
6385181 Tsutsui et al. May 2002 B1
6388995 Gai et al. May 2002 B1
6393299 Mizumoto et al. May 2002 B1
6404775 Leslie et al. Jun 2002 B1
6441781 Rog et al. Aug 2002 B1
6473131 Neugebauer et al. Oct 2002 B1
6480481 Park et al. Nov 2002 B1
6498804 Ide et al. Dec 2002 B1
6501955 Durrant et al. Dec 2002 B1
6516438 Wilcoxson et al. Feb 2003 B1
6535732 McIntosh et al. Mar 2003 B1
6539028 Soh et al. Mar 2003 B1
6539204 Marsh et al. Mar 2003 B1
6549542 Dong et al. Apr 2003 B1
6549567 Fullerton Apr 2003 B1
6563468 Hill et al. May 2003 B2
6574198 Petersson Jun 2003 B1
6628624 Mahajan et al. Sep 2003 B1
6664932 Sabet et al. Dec 2003 B2
6671502 Ogawa Dec 2003 B1
6684058 Karacaoglu et al. Jan 2004 B1
6690657 Lau et al. Feb 2004 B1
6694125 White et al. Feb 2004 B2
6718160 Schmutz Apr 2004 B2
6728541 Ohkura et al. Apr 2004 B2
6766113 Al-Salameh et al. Jul 2004 B1
6781544 Saliga et al. Aug 2004 B2
6788256 Hollister Sep 2004 B2
6880103 Kim et al. Apr 2005 B2
6888809 Foschini et al. May 2005 B1
6888881 Nagano May 2005 B1
6904266 Jin et al. Jun 2005 B1
6906669 Sabet et al. Jun 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934555 Silva et al. Aug 2005 B2
6944139 Campanella Sep 2005 B1
6957042 Williams Oct 2005 B2
6965568 Larsen Nov 2005 B1
6983162 Garani et al. Jan 2006 B2
6985516 Easton et al. Jan 2006 B1
6990313 Yarkosky Jan 2006 B1
7027418 Gan et al. Apr 2006 B2
7027770 Judd et al. Apr 2006 B2
7043203 Miquel et al. May 2006 B2
7050442 Proctor May 2006 B1
7050452 Sugar et al. May 2006 B2
7058071 Myles et al. Jun 2006 B1
7058368 Nicholls et al. Jun 2006 B2
7065036 Ryan Jun 2006 B1
7088734 Newberg et al. Aug 2006 B2
7103344 Menard Sep 2006 B2
7120930 Maufer et al. Oct 2006 B2
7123670 Gilbert et al. Oct 2006 B2
7123676 Gebara et al. Oct 2006 B2
7132988 Yegin et al. Nov 2006 B2
7133391 Belcea Nov 2006 B2
7133460 Bae et al. Nov 2006 B2
7139527 Tamaki et al. Nov 2006 B2
7167526 Liang et al. Jan 2007 B2
7187904 Gainey et al. Mar 2007 B2
7193975 Tsutsumi et al. Mar 2007 B2
7194275 Bolin et al. Mar 2007 B2
7200134 Proctor, Jr. et al. Apr 2007 B2
7215964 Miyake May 2007 B2
7230935 Proctor, Jr. et al. Jun 2007 B2
7233771 Proctor, Jr. et al. Jun 2007 B2
7248645 Vialle et al. Jul 2007 B2
7254132 Takao et al. Aug 2007 B2
7299005 Yarkosky et al. Nov 2007 B1
7315573 Lusky et al. Jan 2008 B2
7319714 Sakata et al. Jan 2008 B2
7321787 Kim Jan 2008 B2
7339926 Stanwood et al. Mar 2008 B2
7352696 Stephens et al. Apr 2008 B2
7406060 Periyalwar et al. Jul 2008 B2
7409186 Van Buren et al. Aug 2008 B2
7430397 Suda et al. Sep 2008 B2
7450936 Kim Nov 2008 B2
7457587 Chung Nov 2008 B2
7463200 Gainey et al. Dec 2008 B2
7486929 Van Buren et al. Feb 2009 B2
7577398 Judd et al. Aug 2009 B2
7590145 Futch et al. Sep 2009 B2
7623826 Pergal Nov 2009 B2
7676194 Rappaport Mar 2010 B2
7729669 Van Buren et al. Jun 2010 B2
8023885 Proctor, Jr. et al. Sep 2011 B2
8027642 Proctor, Jr. et al. Sep 2011 B2
8059727 Proctor, Jr. et al. Nov 2011 B2
8078100 Proctor, Jr. et al. Dec 2011 B2
20010028638 Walton et al. Oct 2001 A1
20010040699 Osawa et al. Nov 2001 A1
20010050580 O'Toole et al. Dec 2001 A1
20010050906 Odenwalder et al. Dec 2001 A1
20010054060 Fillebrown et al. Dec 2001 A1
20020004924 Kim et al. Jan 2002 A1
20020018479 Kikkawa et al. Feb 2002 A1
20020018487 Chen et al. Feb 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020045461 Bongfeldt Apr 2002 A1
20020072853 Sullivan Jun 2002 A1
20020101843 Sheng et al. Aug 2002 A1
20020109585 Sanderson Aug 2002 A1
20020115409 Khayrallah Aug 2002 A1
20020119783 Bourlas et al. Aug 2002 A1
20020146026 Unitt et al. Oct 2002 A1
20020155838 Durrant et al. Oct 2002 A1
20020159506 Alamouti et al. Oct 2002 A1
20030008669 Stein et al. Jan 2003 A1
20030026363 Stoter et al. Feb 2003 A1
20030063583 Padovani et al. Apr 2003 A1
20030124976 Tamaki et al. Jul 2003 A1
20030148736 Wright et al. Aug 2003 A1
20030185163 Bertonis et al. Oct 2003 A1
20030211828 Dalgleish et al. Nov 2003 A1
20030235170 Trainin Dec 2003 A1
20040001464 Adkins et al. Jan 2004 A1
20040029537 Pugel et al. Feb 2004 A1
20040047333 Han et al. Mar 2004 A1
20040047335 Proctor, Jr. et al. Mar 2004 A1
20040056802 Hollister Mar 2004 A1
20040121648 Voros Jun 2004 A1
20040131025 Dohler et al. Jul 2004 A1
20040146013 Song et al. Jul 2004 A1
20040157551 Gainey et al. Aug 2004 A1
20040166802 McKay, Sr. et al. Aug 2004 A1
20040176050 Steer et al. Sep 2004 A1
20040208258 Lozano et al. Oct 2004 A1
20040218683 Batra et al. Nov 2004 A1
20040229563 Fitton et al. Nov 2004 A1
20040235417 Dean Nov 2004 A1
20040240426 Wu et al. Dec 2004 A1
20040248581 Seki et al. Dec 2004 A1
20050014464 Larsson Jan 2005 A1
20050190822 Fujii et al. Sep 2005 A1
20050201315 Lakkis Sep 2005 A1
20050286448 Proctor, Jr. et al. Dec 2005 A1
20060028388 Schantz Feb 2006 A1
20060035643 Vook et al. Feb 2006 A1
20060041680 Proctor, Jr. et al. Feb 2006 A1
20060045193 Stolpman et al. Mar 2006 A1
20060052066 Cleveland et al. Mar 2006 A1
20060056352 Proctor et al. Mar 2006 A1
20060063484 Proctor, Jr. et al. Mar 2006 A1
20060063485 Gainey et al. Mar 2006 A1
20060067277 Thomas et al. Mar 2006 A1
20060072682 Kent et al. Apr 2006 A1
20060098592 Proctor, Jr. et al. May 2006 A1
20060203757 Young et al. Sep 2006 A1
20060262026 Gainey et al. Nov 2006 A1
20070025349 Bajic Feb 2007 A1
20070025486 Gainey et al. Feb 2007 A1
20070032192 Gainey et al. Feb 2007 A1
20070121546 Zuckerman et al. May 2007 A1
20070237181 Cho et al. Oct 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070286110 Proctor, Jr. et al. Dec 2007 A1
20080057862 Smith Mar 2008 A1
20080232438 Dai et al. Sep 2008 A1
20080267156 Gubeskys et al. Oct 2008 A1
20090135745 Gainey et al. May 2009 A1
20090190684 She et al. Jul 2009 A1
20090323582 Proctor, Jr. et al. Dec 2009 A1
20100002620 Proctor, Jr. et al. Jan 2010 A1
Foreign Referenced Citations (119)
Number Date Country
2051283 Mar 1992 CA
1137335 Dec 1996 CN
1186401 Jul 1998 CN
1256032 Jun 2000 CN
1663149 Aug 2005 CN
1706117 Dec 2005 CN
0523687 Jan 1993 EP
0709973 May 1996 EP
0715423 Jun 1996 EP
0847146 Jun 1998 EP
0853393 Jul 1998 EP
0860953 Aug 1998 EP
1548526 Jun 2005 EP
1615354 Jan 2006 EP
2272599 May 1994 GB
2351420 Dec 2000 GB
62040895 Feb 1987 JP
63160442 Jul 1988 JP
64011428 Jan 1989 JP
02100358 Apr 1990 JP
03021884 Jan 1991 JP
0563623 Mar 1993 JP
05102907 Apr 1993 JP
06013947 Jan 1994 JP
06334577 Dec 1994 JP
07030473 Jan 1995 JP
07079187 Mar 1995 JP
07079205 Mar 1995 JP
07131401 May 1995 JP
08097762 Apr 1996 JP
8274683 Oct 1996 JP
08274706 Oct 1996 JP
09018484 Jan 1997 JP
09130322 May 1997 JP
09162801 Jun 1997 JP
9162903 Jun 1997 JP
09182155 Jul 1997 JP
09214418 Aug 1997 JP
10032557 Feb 1998 JP
10107727 Apr 1998 JP
10135892 May 1998 JP
10242932 Sep 1998 JP
11055713 Feb 1999 JP
11127104 May 1999 JP
11298421 Oct 1999 JP
2000031877 Jan 2000 JP
2000502218 Feb 2000 JP
2000082983 Mar 2000 JP
2000509536 Jul 2000 JP
2000236290 Aug 2000 JP
2000269873 Sep 2000 JP
2001016152 Jan 2001 JP
2001111575 Apr 2001 JP
2001136115 May 2001 JP
2001217896 Aug 2001 JP
2001244864 Sep 2001 JP
2001357480 Dec 2001 JP
2002033691 Jan 2002 JP
2002111571 Apr 2002 JP
2002223188 Aug 2002 JP
2002271255 Sep 2002 JP
2002281042 Sep 2002 JP
2003174394 Jun 2003 JP
2003198442 Jul 2003 JP
2003244050 Aug 2003 JP
2004056210 Feb 2004 JP
2004328666 Nov 2004 JP
2004538682 Dec 2004 JP
2005072646 Mar 2005 JP
2005110150 Apr 2005 JP
2005191691 Jul 2005 JP
2005236626 Sep 2005 JP
2005252692 Sep 2005 JP
2005295499 Oct 2005 JP
2005531202 Oct 2005 JP
2005531265 Oct 2005 JP
2006503481 Jan 2006 JP
2006505146 Feb 2006 JP
2006197488 Jul 2006 JP
2007528147 Oct 2007 JP
19980063664 Oct 1998 KR
1020040004261 Jan 2004 KR
100610929 Aug 2006 KR
2120702 Oct 1998 RU
2233045 Jul 2004 RU
2242086 Dec 2004 RU
2249916 Apr 2005 RU
2264036 Nov 2005 RU
WO9214339 Aug 1992 WO
9505037 Feb 1995 WO
WO9622636 Jul 1996 WO
WO9715991 May 1997 WO
WO9734434 Sep 1997 WO
WO9852365 Nov 1998 WO
WO9858461 Dec 1998 WO
WO9923844 May 1999 WO
WO9959264 Nov 1999 WO
WO0050971 Aug 2000 WO
WO0152447 Jul 2001 WO
WO0176098 Oct 2001 WO
WO0182512 Nov 2001 WO
WO0199308 Dec 2001 WO
WO0208857 Jan 2002 WO
WO0217572 Feb 2002 WO
WO03013005 Feb 2003 WO
WO2004001892 Dec 2003 WO
WO2004001986 Dec 2003 WO
WO2004002014 Dec 2003 WO
WO2004004365 Jan 2004 WO
WO2004032362 Apr 2004 WO
WO2004036789 Apr 2004 WO
WO2004038958 May 2004 WO
04047308 Jun 2004 WO
WO2004062305 Jul 2004 WO
WO2004107693 Dec 2004 WO
2005050918 Jun 2005 WO
2005069249 Jul 2005 WO
WO2005069656 Jul 2005 WO
WO2005115022 Dec 2005 WO
Non-Patent Literature Citations (36)
Entry
International Search Report and Written Opinion—PCT/US2007/020485, International Search Authority—European Patent Office—Mar. 19, 2008.
Andrisano, et al., On the Spectral Efficiency of CPM Systems over Real Channel in the Presence of Adjacent Channel and CoChannel Interference: A Comparison between Partial and Full Response Systems, IEEE Transactions on Vehicular Technology, vol. 39, No. 2, May 1990.
Anonymous: Extract from IEEE P802.16e/D7, Apr. 2005 “Draft IEEE Standard for local and metropolitan area networks; Part 16: Air interface for fixed and mobile broadband wireless access systems; Amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands,” IEEE [Apr. 8, 2005] pp. 194-196, XP002545971.
Code of Federal Regulations, Title 47 Telecommunication; “Federal Communications Commission code part 15.407,” Federal Communications Commission vol. 1, chapter I, part 15.407.
First Office Action issued from the Chinese Patent Office in connection with corresponding Chinese application No. 200380101286.2 (Jan. 19, 2007).
Dohler, M. et al., “Distributed PHY-Layer Mesh Networks,” 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, 2003. PIMRC 2003. The United States of America, IEEE, vol. 3, pp. 2543 to 2547, Sep. 7, 2003, doi: 10.1109/PIMRC.2003.1259184.
First Report issued by IP Australia on Jul. 31, 2007 in connection with the corresponding Australian application No. 2003239577.
Fujil, T. et al., “Ad-hoc Cognitive Radio Cooperated with MAC Layer,” IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), Japan, Institute of Electronics, Information and Communication Engineers (IEIC), May 4, 2005, vol. 105 (36), pp. 59 to 66.
IEEE 802.16e/D12, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems—Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE, Oct. 2005.
IEEE Computer Society and the IEEE Microwave Theory and Techniques Society: “Draft IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE P802.16e/D12, New York, USA, Oct. 14, 2005.
IEEE, “Corrigendum to IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Draft Standard, Sep. 12, 2005, 288 pages, P802.16/2004/Cor1/D5, New York, New York.
IEEE Std 802.11-1999 (Reaff 2003), “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” LAN MAN Standards Committee of the IEEE Computer Society; Paragraphs 7.2.3.1 and 7.2.3.9; Paragraph 7.3.2.4; Paragraphs 15.4.6.2 and 18.4.6.2.
IEEE Std 802.11b-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band,” IEEE-SA Standards Board, Supplement to ANSI/IEEE Std. 802.11, 1999 Edition, Approved Sep. 16, 1999.
IEEE Std 802.11g-2003, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band,” IEEE Computer Society, Published by the Institute of Electrical and Electronics Engineers, Inc., Jun. 27, 2003.
IEEE Std 802.16-2001; “Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Computer Society and the IEEE Microwave Theory and Techniques Society, Published by the Institute of Electrical and Electronics Engineers, Inc., Apr. 8, 2002.
Kannangara, et al., “Analysis of an Adaptive Wideband Duplexer with Double-Loop Cancellation,” IEEE Transactions on Vehicular Technology, vol. 56, No. 4, Jul. 2007, pp. 1971-1982.
Kutlu, et al., “Performance Analysis of MAC Protocols for Wireless Control Area Network,” 1996 IEEE, pp. 494-499.
Mexican Office communication dated Jul. 2, 2007 issued from Mexican Patent Office for application PA/a/2004/011588 with partial translation thereof.
Notification of the First Office Action from Chinese Patent Office dates Sep. 8, 2006 for the corresponding Chinese patent application No. 200380105267.7.
Office Action English translation dated Jul. 4, 2008 issued from Chinese Patent Office for Application No. 03814391.7.
Office Action English translation dated Jun. 29, 2009 issued from Japanese Patent Office for Application No. 2004-541532.
Office Action issued from the Mexican Patent Office dated Feb. 22, 2008 in connection with the corresponding Mexican Patent Application No. PA/a/2004/011588.
Office communication dated Jan. 12, 2007 issued from the European Patent Office for counterpart application No. 03734139.9-1246.
Office communication dated Oct. 19, 2006 issued from the Mexican Patent Office for counterpart application No. PA/a/2004/011588.
Official communication issued from the European Patent Office dated Aug. 7, 2007 for the corresponding European patent application No. 03759271.4-2412.
Official communication issued from the European Patent Office dated Dec. 19, 2006 for the corresponding European patent application No. 03759271.4-2412.
Second Office Action issued from the Chinese Patent Office on Jul. 20, 2007 in connection with corresponding Chinese application No. 200380101286.2.
Specifications for2.3 GHz Band Portable Internet Service—Physical & Medium Access Control Layer, TTAS.KO-06.0082/R1, Dec. 2005.
Third Office Action issued from the Patent Office of People's Republic of China dated Jan. 4, 2008 in corresponding Chinese Patent Application No. 200380101286.2.
U.S. PTO Office Action mailed on Apr. 17, 2007 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Jan. 24, 2007 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Nov. 21, 2006 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Nov. 6, 2006 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
Zimmermann, E. et al., “On the Performance of Cooperative Diversity Protocols in Practical Wireless Systems,” IEEE 58th Vehicular Technology Conference, 2003, The United States of America, IEEE, Oct. 6, 2003, vol. 4, pp. 2212 to 2216.
Supplementary European Search Report—EP07838644—Search Authority—The Hague—Nov. 4, 2011.
Nov. 11, 2004 (080607EP).
Related Publications (1)
Number Date Country
20090290526 A1 Nov 2009 US
Provisional Applications (1)
Number Date Country
60846073 Sep 2006 US