None.
Generally, methods and apparatus for mixing fluid flow in a wellbore tubular using a static mixer is presented. More particularly, methods and apparatus are presented for mixing two or more fluids flowing through a downhole tubular positioned in a wellbore, utilizing static mixing elements, and while without blocking a passageway sized to allow passage of downhole tools.
It is common in hydrocarbon well operations to have two or more fluids flowing through a downhole tubular positioned in a wellbore extending through a subterranean zone. For example, during production, the fluids in the wellbore tend to separate into zones of gas, water, and oil flow. Such flow phase separation can create unwanted flow instabilities and oscillations. Also, if the gas separates from the oil, the oil is no longer lightened by the gas and can collect in the bottom of the well which would reduce oil production. During injection of steam, mist flow conditions can arise where liquid water sheets down the wall of the injection tubing while the gaseous steam flows down the middle of the tubing. During multi-zonal injection, such as with Halliburton Energy Services, Inc.'s commercially available ZoneMaster (trade name) tool, separation of gaseous and liquid water often results in unequal gaseous and liquid injection distribution across the wellbore; that is, a relatively greater amount of steam is injected into the upper zones and a relatively greater amount of water is injected into the lower zones. During hydrajet fracturing, a distribution of cutting particles is created in the cross-section of flow. The result is more particles in the center of the tubing and fewer particles towards the tubing wall. This particle distribution tends to result in fewer particles being injected into the upper zones and more particles being injected into the lower zones. Similarly, it is believed this effect may be significant in hydraulic fracturing with regard to proppant distribution in the tubing and proppant concentration depending on exit port locations along the work string.
Downhole mixers are used to mix and homogenize the fluid flow. Dynamic and powered mixer devices may require power sources, effectively block tool passage through the tubing string in the wellbore, or create significant pressure drops across the mixer device. Similarly, downhole static mixer devices often block tool passage, create unwanted pressure drops, or fail to provide desired homogenization. Therefore, a need exists for a downhole static mixer for mixing and homogenizing constituent parts of the downhole fluid flow without blocking tool passage through the tubing string.
In a preferred embodiment, a method is presented for mixing a fluid flowing through a wellbore extending through a subterranean formation. A static mixer assembly is positioned in a tubing string along the wellbore, the tubing string defining an interior passageway which extends through the static mixer assembly. The static mixer has a plurality of static mixer vanes extending radially into the interior passageway. Fluid is flowed through a fluid passageway defined through the static mixer assembly, the vanes mixing at least two components of the fluid using the static mixer assembly. A downhole tool is then moved through the interior passageway and through the static mixer assembly. The plurality of static mixer vanes are preferably circumferentially spaced apart and longitudinally spaced apart. The vanes can extend from an interior wall surface of the assembly or from a sleeve inserted into the mixer assembly.
In one embodiment, the static mixer vanes define an unobstructed passageway radially inward from the vanes. A downhole tool is then moved through the unobstructed passageway. In a further embodiment, the plurality of vanes are positioned in an annular space defined by a radially enlarged bore section in the static mixer assembly. The plurality of vanes extend only into the annular space in a preferred embodiment. Alternately, the vanes are made of a flexible and elastic material, at least partially, and extend into the tool passageway. The tool flexes the vanes during its passage. The vanes return substantially to their original position after passage of the tool. Hence, the flexible and elastic vanes allow unhindered passage of downhole tools through the mixer assembly. In embodiments wherein the vanes do not contact the tool during passage, such as when the vanes extend only through an annular area defined around the tool passageway, the vanes allow unobstructed passage of the downhole tools.
The radial positioning of the downhole tool during movement through the mixer can be maintained by a plurality of centralizer rods extending between the plurality of static mixer vanes. The vanes can take various shapes and positioning along the mixer assembly, as desired. The vanes can extend substantially perpendicular to fluid flow through the assembly or passageways therein. Further, the vanes can be positioned on an insertable or removable sleeve. Apparatus are presented designed for use in the methods described above.
It should be understood by those skilled in the art that the use of directional terms such as above, below, upper, lower, upward, downward and the like are used in relation to the illustrative embodiments as they are depicted in the figures, the upward direction being toward the top of the corresponding figure and the downward direction being toward the bottom of the corresponding figure. Where this is not the case and a term is being used to indicate a required orientation, the specification will state or make such clear. For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, a practitioner of the art will appreciate that the present invention provides applicable inventive concepts which can be embodied in a variety of specific contexts. The specific embodiments discussed herein are illustrative of specific ways to make and use the invention and do not limit the scope of the present invention. The invention can be used in vertical, horizontal, or deviated wellbores.
The interior wall 44 at the radially expanded portion 36 defines an annular space 46 about the tool passageway. A plurality of relatively flat, static, circumferentially spaced and longitudinally spaced mixing vanes 50 extend radially from the interior wall 44 into the annular space 46. In the embodiment having static vanes which do not move out of the way of downhole tools passing through the static mixer, the annular space 46 can be thought of as defined between a relatively smaller diameter (d) cylinder positioned interior to the vanes, and a relatively larger diameter (D) cylinder coincident with the inner surface of the tubular wall. Similarly, the fluid flow passage may be defined by the surface of the tubular wall. The tool passageway can be defined by the relatively smaller diameter cylinder described above.
The vanes are shown extending substantially perpendicular to fluid flow through the interior flow passageway of the tubular. Alternate arrangements of vanes are possible, including staggered vanes, circumferential vanes, etc. As used herein, “vane,” indicates a generally flat, thin projection extending into, and designed to substantially disrupt and mix, the fluid flow. Exemplary vanes extend laterally to the direction of flow to maximize disruption of separated flow phases.
In a preferred embodiment, the plurality of static vanes 50 are arranged in rows 52 spaced longitudinally along the tubular body 34 and positioned in the annular space 46. In a preferred embodiment, the vanes 50 are rigid and inflexible. The vanes can be made of metal, plastic or other suitable material. The vanes can be welded or otherwise attached to the wall of the tubular. More or fewer vanes and rows can be employed than shown in the Figures.
The assembly defines a tool passageway 70 allowing the unobstructed passage of downhole tools through the assembly. The tool passageway can be coincident with or smaller than and positioned within the flow passageway. The flow passageway is typically defined by the interior wall surface, as the fluid is free to flow in the entire open area of the passageway. The tool passageway, in a preferred embodiment, is defined by a cylinder coincident with the most radially inward portion of the vanes or centralizers, explained below. Where the vanes are flexible and elastic, as explained elsewhere, the vanes may extend radially into the tool passageway, but their flexibility allows unhindered passage of tools.
The vanes create turbulent flow which serves to redistribute separated phases. The result is a system that mixes the flow while not restricting tool passage. Another feature of the invention is that the projections result in minimal pressure drop. The goal is to mix the flow while avoiding undue pressure drop across the projections. The vanes are designed to maximize mixing while minimizing pressure drop.
In use, the flexible vanes 200 extend into the tool passageway 204. The vanes 200 bend out of the tool passageway 204 when a tool passes therethrough. The flexible vanes 200 can be made of any suitable material, such as elastically deforming plastic, rubber, memory materials, etc. Further, each vane can be made of more than one material. For example, the vane base can be rigid while the vane tip is flexible.
An exemplary downhole tool 210 is shown being moved into the static mixer assembly in
The inventive apparatus described herein can be employed in inventive processes and methods. It is common in hydrocarbon well operations to have two or more fluids flowing through a downhole tubular positioned in a wellbore extending through a subterranean zone. For example, during production, the fluids in the wellbore tend to separate into zones of gas, water, and oil flow. Such flow phase separation can create unwanted flow instabilities and oscillations. Also, if the gas separates from the oil, the oil is no longer lightened by the gas and can collect in the bottom of the well which would reduce oil production. During injection of steam, mist flow conditions can arise where liquid water sheets down the wall of the injection tubing while the gaseous steam flows down the middle of the tubing. During multi-zonal injection, such as with Halliburton Energy Services, Inc.'s commercially available ZoneMaster (trade name) tool, separation of gaseous and liquid water often results in unequal gaseous and liquid injection distribution across the wellbore; that is, a relatively greater amount of steam is injected into the upper zones and a relatively greater amount of water is injected into the lower zones. During hydrajet fracturing, a distribution of cutting particles is created in the cross-section of flow. The result is more particles in the center of the tubing and fewer particles towards the tubing wall. This particle distribution tends to result in fewer particles being injected into the upper zones and more particles being injected into the lower zones. Similarly, it is believed this effect may be significant in hydraulic fracturing with regard to proppant distribution in the tubing and proppant concentration depending on exit port locations along the work string.
In preferred embodiments, the following exemplary methods are disclosed. A method for mixing a fluid flowing through a wellbore extending through a subterranean formation, the method comprising the steps of: positioning a static mixer assembly in a tubing string along the wellbore, the tubing string defining an interior passageway which extends through the static mixer assembly, the static mixer having a plurality of static mixer vanes extending radially into the interior passageway; flowing a fluid through a fluid passageway defined through the static mixer assembly; mixing at least two components of the fluid using the static mixer assembly; and moving a downhole tool through the interior passageway and through the static mixer assembly. Additional steps and structure can include, without limitation and in combination, wherein the plurality of static mixer vanes are circumferentially spaced apart and longitudinally spaced apart; wherein the static mixer assembly has a substantially tubular wall having an interior surface, and the plurality of vanes extending from the interior surface; wherein the static mixer vanes define an unobstructed passageway, and wherein the step of moving a downhole tool further comprises the step of moving the downhole tool through the unobstructed passageway; the static mixer having a bore extending therethrough, and wherein the plurality of static mixer vanes are positioned in an annular space defined by a radially enlarged bore section in the static mixer assembly; wherein the step of mixing further includes mixing the fluid components in an annular space defined adjacent to and radially outward from the interior passageway; wherein the step of moving a downhole tool further comprises maintaining the radial positioning of the tool during movement using a plurality of centralizer rods extending between the plurality of static mixer vanes; wherein the step of moving the downhole tool further comprises the step of temporarily moving at least a portion of each static mixer vane using the downhole tool; further comprising the step of removing from or inserting into the static mixer assembly a sleeve, the plurality of vanes extending from the sleeve; wherein the static mixer vanes are at least partially made of a flexible and elastic material; wherein the static mixer vanes allow unhindered passage of a downhole tool through the static mixer assembly; wherein the step of mixing further comprises the step of mixing components in different phases; wherein the static mixer vanes extend substantially perpendicular to the path of fluid flow through the tubing string.
In a preferred embodiment, a method is presented for mixing a fluid flowing through a wellbore extending through a subterranean formation. A static mixer assembly is positioned in a tubing string along the wellbore, the tubing string defining an interior passageway which extends through the static mixer assembly. The static mixer has a plurality of static mixer vanes extending radially into the interior passageway. Fluid is flowed through a fluid passageway defined through the static mixer assembly, the vanes mixing at least two components of the fluid using the static mixer assembly. A downhole tool is then moved through the interior passageway and through the static mixer assembly. The plurality of static mixer vanes are preferably circumferentially spaced apart and longitudinally spaced apart. The vanes can extend from an interior wall surface of the assembly or from a sleeve inserted into the mixer assembly.
In one embodiment, the static mixer vanes define an unobstructed passageway radially inward from the vanes. A downhole tool is then moved through the unobstructed passageway. In a further embodiment, the plurality of vanes are positioned in an annular space defined by a radially enlarged bore section in the static mixer assembly. The plurality of vanes extend only into the annular space in a preferred embodiment. Alternately, the vanes are made of a flexible and elastic material, at least partially, and extend into the tool passageway. The tool flexes the vanes during its passage. The vanes return substantially to their original position after passage of the tool. Hence, the flexible and elastic vanes allow unhindered passage of downhole tools through the mixer assembly. In embodiments wherein the vanes do not contact the tool during passage, such as when the vanes extend only through an annular area defined around the tool passageway, the vanes allow unobstructed passage of the downhole tools.
The radial positioning of the downhole tool during movement through the mixer can be maintained by a plurality of centralizer rods extending between the plurality of static mixer vanes. The vanes can take various shapes and positioning along the mixer assembly, as desired. The vanes can extend substantially perpendicular to fluid flow through the assembly or passageways therein. Further, the vanes can be positioned on an insertable or removable sleeve. Apparatus are presented designed for use in the methods described above.
Exemplary methods of use of the invention are described, with the understanding that the invention is determined and limited only by the claims. Those of skill in the art will recognize additional steps, different order of steps, and that not all steps need be performed to practice the inventive methods described. Persons of skill in the art will recognize various combinations and orders of the above described steps and details of the methods presented herein. While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/059719 | 10/11/2012 | WO | 00 | 5/7/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/058428 | 4/17/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4981368 | Smith | Jan 1991 | A |
7581593 | Pankratz et al. | Sep 2009 | B2 |
8147124 | Glanville | Apr 2012 | B1 |
20020031046 | Schneider et al. | Mar 2002 | A1 |
20090071646 | Pankratz et al. | Mar 2009 | A1 |
20090071647 | Vinegar et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
09-187634 | Jul 1997 | JP |
Entry |
---|
International Search Report dated Apr. 8, 2013 for PCT Application No. PCT/US2012/059719. |
Written Opinion dated Apr. 8, 2013 for PCT Application No. PCT/US2012/059719. |
Number | Date | Country | |
---|---|---|---|
20140102706 A1 | Apr 2014 | US |