The present disclosure relates to cooling systems, and more particularly to a modular air-to-air heat exchanger.
One approach to cooling large spaces, such as data centers, is to utilize extremely large air-to-air heat exchanger units (AHUs) mounted to one or more external building faces or to the roof. Modern AHUs contain extremely large heat exchangers, such as ten feet long, seven feet wide and seven feet high, containing almost 2,000 heat exchanger tubes. Assembly of such a large heat exchanger without modularity is not easy, costly to manufacture and difficult to service. The current AHU heat exchangers require removal of the entire heat exchanger from the unit in order to service or replace. The current EcoBreeze® unit is smaller and semi-modular in that the heat exchanger is divided into bundles, but to service or replace the lower or bottom bundles, all of the bundles need to be removed.
One aspect of the present disclosure is directed to a heat exchanger core assembly comprising a frame assembly and a plurality of core bundles positioned within the frame assembly. Each core bundle includes at least one row of tubing defining at least one end of the core bundle, an edge seal gasket to seal the core bundle from an adjacently placed core bundle as well as sealing against outer core side walls, and an indoor face seal gasket to seal the end with respect to the frame assembly.
Embodiments of the heat exchanger core assembly further may include configuring the frame assembly to have a base frame section and a support frame section extending from the base frame section. The support frame assembly of the frame assembly may include a plurality of vertical posts and horizontal rails that are configured to support the plurality of core bundles, the horizontal rails being configured to define at least one shelf. The plurality of core bundles may be positioned within the support frame section in a manner in which each core bundle extends end-to-end with respect to an orientation of the base frame section. The plurality of core bundles may include ten core bundles. Each core bundle may include four rows of tubing, with 48 tubes per row. Each core bundle may be approximately ten feet long. Each row of tubing may be secured by a tube support. The one row of tubing may define a first end and a second end, each of the first end and the second end having the edge seal gasket and the indoor face seal gasket. The face seal gasket may seal the core bundle in a manner that prevents the leakage of indoor air into the outdoor air space, and the outdoor edge seal gasket may seal the core bundle in a manner that prevents intrusion of outdoor air into the indoor air space. The rows of core bundles may be offset from one another. The heat exchanger core assembly further may include a side wall configured to enclose a side or a portion of a side of the heat exchanger core assembly. The side wall may include a frame, an upper flange provided along a top edge of the rectangular frame, a lower flange provided along a bottom edge of the rectangular frame, and at least one inner panel supported by the frame. The one inner panel may include a horizontally disposed raised panel section and a horizontally disposed recessed panel section to offset sides of adjacent core bundles. The side wall further may include a gasket provided around an edge of the frame. The heat exchanger core assembly further may include a center wall configured to be positioned lengthwise between two adjacently placed core bundles. The center wall may include at least one inner panel supported and at least one hanging bracket provided along a length of the one inner panel. The hanging bracket may be configured to hang on a core of a core bundle to support the center wall. The one inner panel may include a horizontally disposed raised panel section and a horizontally disposed recessed panel section to offset sides of adjacent core bundles.
Another aspect of the present disclosure is directed to a method of replacing a core bundle of a heat exchanger core assembly. In one embodiment, the heat exchanger core assembly includes a frame assembly and a plurality of core bundles positioned within the frame assembly. The plurality of core bundles are positioned within the frame assembly in a manner in which each core bundle extends end-to-end with respect to an orientation of the base frame section, with each core bundle including at least one row of tubing. The method comprises identifying a core bundle requiring replacement, removing the core bundle by accessing the core bundle and sliding the core bundle with respect to the remaining plurality of core bundles from the frame assembly, and inserting a replacement core bundle in a space defined by the removed core bundle.
Embodiments of the method further may include sealing an end of the replacement core bundle from an adjacently placed core bundle with an edge seal gasket, and/or sealing the end of the replacement core bundle with respect to the frame assembly by an indoor face seal gasket. The method further may include securing each row of tubing is secured by at least two tube supports spaced apart from one another along a length of the row of tubing. The one row of tubing may define a first end and a second end, with each of the first end and the second end having the edge seal gasket and the indoor face seal gasket. The edge seal gasket may seal the core bundle in an outside air exhaust direction and the indoor face seal gasket may seal the core bundle in an indoor air direction. The rows of core bundles may be offset from one another. The method further may include providing a side wall configured to enclose a side or a portion of a side of the heat exchanger core assembly. The side wall may include a frame, an upper flange provided along a top edge of the rectangular frame, a lower flange provided along a bottom edge of the rectangular frame, and at least one inner panel supported by the frame. The one inner panel may include a horizontally disposed raised panel section and a horizontally disposed recessed panel section to offset sides of adjacent core bundles. The method further may include sealing the side wall and the frame assembly with a gasket provided around an edge of the frame. The method further may include providing a center wall configured to be positioned lengthwise between two adjacently placed core bundles. The center wall may include at least one inner panel and at least one hanging bracket provided along a length of the one inner panel. The hanging bracket may be configured to hang on a core of a core bundle to support the center wall. The one inner panel may include a horizontally disposed raised panel section and a horizontally disposed recessed panel section to offset sides of adjacent core bundles.
The present disclosure will be more fully understood after a review of the following figures, detailed description and claims.
In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. For a better understanding of the present disclosure, reference is made to the figures which are incorporated herein by reference and in which:
For the purposes of illustration only, and not to limit the generality, the present disclosure will now be described in detail with reference to the accompanying figures. This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or being carried out in various ways. Also the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Referring to
The heat exchanger core 12 of the heat exchanger 10 illustrated in
In one embodiment, the heat exchanger 10 includes a water spray system 20 positioned above the heat exchanger core 12 to spray water over the heat exchanger core. A water collection system (part of the intake air plenum 18) is positioned below the heat exchanger core 12 of the heat exchanger to collect and recycle the water that is sprayed over the heat exchanger core by the water spray system 20. During operation, water is sprayed on the heat exchanger core 12 of the heat exchanger 10 by the water spray system 20 to provide further cooling to the heat exchanger core. The water that is sprayed on the heat exchanger core 12 of the heat exchanger 10 drips into a trough of the water collection system, which is configured to filter water more efficiently prior to being re-circulated or redistributed back the water spray system 20.
Embodiments of the present disclosure are directed to an air-to-air heat exchanger containing modular heat exchanger core elements. The modularity provides the ability to efficiently produce extremely large heat exchangers and make them field serviceable. The ability to replace just a portion of an extremely large heat exchanger instead of replacing the entire heat exchanger or cooling system provides an advantage over presently available heat exchanger cores.
The present disclosure includes modular heat exchanger elements that are assembled into “bundles” or “core bundles,” which are then assembled into a larger cooling unit. In one embodiment, a heat exchanger core includes ten core bundles, which are assembled into a cooling unit, with two columns of five core bundles high each. Each core bundle contains four rows of 48 tubes each totaling 192 tubes in the core bundle, with each tube being approximately ten-foot long. Each core bundle is installed in the cooling unit by placing the core bundle onto one of five shelves, with each shelf holding two core bundles side-by-side. At each end of the core bundle are two seals or gaskets. One seal keeps the indoor air from escaping out of the indoor air space, while the other seal keeps the outside air (OA) and/or water in the outdoor air space. This modularity allows ease of manufacturing while providing a means of replacing or servicing a single core bundle instead of the entire heat exchanger core. In one example, a core bundle from the bottom of the stack can be removed from the unit without first removing a core bundle from above. While some presently available AHUs include large heat exchangers, none offer a modular approach to be able to service a single core bundle in the field without first removing other bundles above.
Referring to
In the shown embodiment, the tubular core bundles 34 of the heat exchanger core assembly 22 are positioned on the base frame section 26 and within the support frame section 28 in a manner in which each tubular core bundle extends end-to-end with respect to the orientation of the base frame section. In the example provided in
Referring to
In one embodiment, a seal or gasket is provided at each end of each core bundle 34, one seal or gasket for the indoor air ends of the heat exchanger core assembly 22 and another seal or gasket for the OA and water side of the heat exchanger core assembly. The core bundles 34 of the heat exchanger core assembly 22 include a shelf system that allows for the placement of each core bundle into the support frame section 28 of the frame assembly 24 such that the core bundle can be removed as needed without the removal of the core bundles positioned above the selected core bundle to be replaced or repaired. Specifically, the shelf system allows for the indoor seals to seal against the face of the shelf while locating the core bundles 24 such that the OA seals seal against the OA seal of its neighboring core bundle or the walls of the heat exchanger core assembly 22. The heat exchanger core assembly 22 further includes side walls (see
Referring to
In one embodiment, the indoor face seal gasket 38 is omega-shaped and includes a flat surface for applying the gasket against an outer edge of the core bundles 34 with a suitable adhesive. In one embodiment, the OA edge seal gasket 40 is shaped similarly to the shape of the indoor face seal gasket 38. In another embodiment, the OA edge seal gasket 40 is semi-circular in shape and includes a prong for securing the gasket to the indoor face of the core bundle 34. The size and shape of the seals can be varied, with the gaskets being co-extruded onto a gasket frame. The corners of the gaskets 38, 40 are spliced at 45° angles to enable continuity of the gasket around the edge of the core bundle 34. In certain embodiments, the gaskets 38, 40 are each fabricated from ethylene propylene diene monomer (EPDM) rubber or some other similar material. The gaskets 38, 40 provide a mechanical seal that fills the space between the mating surfaces.
As shown, the inner panels 50 of the side wall are configured to offset sides of the rows of the core bundle 34. Specifically, each inner panel includes a horizontally disposed raised panel section 52 and a horizontally disposed recessed panel section 54. The purpose of offsetting the sides of the rows of the core bundle is to cause the air to spend more time on the tube surfaces of the core bundle to enhance the amount of heat exchange. By having the side wall and center wall panels offset match the row offsets, the OA remains close to the heat exchanger tubes. As shown, a gasket 56 is provided around a bottom edge of the frame 44 to provide a seal with the base frame section 26 of the frame assembly 24 for the bottom side wall and to seal against the flange 46 of each side wall below. The arrangement is such that the side wall 42, when combined with all other side walls, creates a sealed barrier at the front and rear of the core assembly.
Referring to
Referring to
Referring to
In one embodiment, a method of replacing a core bundle of the heat exchanger core assembly includes identifying a core bundle requiring replacement, exposing a side of the core assembly by removing the outer panels 74, if provided, removing the intermediate posts 30a, removing the side walls 42 of the same bundle row as the bundle needing replacement, and then removing the core bundle by accessing sliding the core bundle with respect to the remaining plurality of core bundles, and inserting a replacement core bundle in a space defined by the removed core bundle. The method further includes sealing an end of the replacement core bundle from an adjacently placed core bundle with an edge seal gasket and sealing the end of the replacement core bundle with respect to the frame assembly by an indoor face seal gasket.
It should be observed that the heat exchanger core assembly includes core bundles that can be configured in a modular fashion, containing a variable number of tubes in a varying number of “bricks.” The “brick modules” can be produced in differing number of tubes per brick. This allows for a maximum amount of design flexibility to size the heat exchanger in the “width” dimension. The brick modules can also be produced in varying length, which allows for a maximum amount of design flexibility to size the heat exchanger in the “length” dimension. The quantity of brick module rows per core bundle can be varied to allow for maximum flexibility in the “height” dimension of the heat exchanger.
Having thus described at least one embodiment of the present disclosure, various alternations, modifications and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements are intended to be within the scope and spirit of the disclosure. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The disclosure's limit is defined only in the following claims and equivalents thereto.