Field of the Invention
The invention relates to a monitoring system for measuring the operating and efficiency of a refrigerant-cycle system, such as, for example, an air conditioning system or refrigeration system.
Description of the Related Art
One of the major recurring expenses in operating a home or commercial building is the cost of providing electricity to the Heating Ventilation Air Conditioning (HVAC) system. If the HVAC system is not operating at peak efficiency, then the cost of operating the system increases unnecessarily. Each pound of refrigerant circulating in the system must do its share of the work. It must absorb an amount of heat in the evaporator or cooling coil, and it must dissipate this heat—plus some that is added in the compressor—through the condenser, whether air cooled, water cooled, or evaporative cooled. The work done by each pound of the refrigerant as it goes through the evaporator is reflected by the amount of heat it picks up from the refrigeration load, chiefly when the refrigerant undergoes a change of state from a liquid to a vapor.
For a liquid to be able to change to a vapor, heat must be added to or absorbed in it. This is what happens in the cooling coil. The refrigerant enters the metering device as a liquid and passes through the device into the evaporator, where it absorbs heat as it evaporates into a vapor. As a vapor, it makes its way through the suction tube or pipe to the compressor. Here it is compressed from a low temperature, low pressure vapor to a high temperature, high pressure vapor; then it passes through the high pressure or discharge pipe to the condenser, where it undergoes another change of state—from a vapor to a liquid—in which state it flows out into the liquid pipe and again makes its way to the metering device for another trip through the evaporator.
When the refrigerant, as a liquid, leaves the condenser it may go to a receiver until it is needed in the evaporator; or it may go directly into the liquid line to the metering device and then into the evaporator coil. The liquid entering the metering device just ahead of the evaporator coil will have a certain heat content (enthalpy), which is dependent on its temperature when it enters the coil, as shown in Table 2 below and
The difference between these two amounts of heat content is the amount of work being done by each pound of refrigerant as it passes through the evaporator and picks up heat. The amount of heat absorbed by each pound of refrigerant is known as the refrigerating effect of the system, or of the refrigerant within the system.
Situations that can reduce the overall efficiency of the system include, refrigerant overcharge, refrigerant undercharge, restrictions in refrigerant lines, faulty compressor, excessive load, insufficient load, undersized or dirty duct work, clogged air filters, etc.
Unfortunately, modern HVAC systems do not include monitoring systems to monitor the operating of the system. A modern HVAC system is typically installed, charged with refrigerant by a service technician, and then operated for months or years without further maintenance. As long as the system is putting out cold air, the building owner or home owner assumes the system is working properly. This assumption can be expensive, as the owner has no knowledge of how well the system is functioning. If the efficiency of the system deteriorates, the system may still be able to produce the desired amount of cold air, but it will have to work harder, and consume more energy, to do so. In many cases, the system owner does not have the HVAC system inspected or serviced until the efficiency has dropped so low that it can no longer cool the building. This is in part because servicing of an HVAC system requires specialized tools and knowledge that the typical building owner or home owner does not possess. Thus, the building owner or home owner must pay for an expensive service call in order to have the system evaluated. Even if the owner does pay for a service call, many HVAC service technicians do not measure system efficiency. Typically, the HVAC service technicians are trained only to make rudimentary checks of the system (e.g., refrigerant charge, output temperature), but such rudimentary checks may not uncover other factors that can cause poor system efficiency. Thus, the typical building owner, or home owner, operates the HVAC system year after year not knowing that the system may be wasting money by operating at less than peak efficiency. Moreover, inefficient use of electrical power can lead to brownouts and blackouts during heat waves or other periods of high air conditioning usage due to overloading of the electric power system (commonly referred to as the electric power grid).
These and other problems are solved by a real-time monitoring system that monitors various aspects of the operation of a refrigerant system, such as, for example, an HVAC system, a refrigerator, a cooler, a freezer, a water chiller, etc. In one embodiment, the monitoring system is configured as a retrofit system that can be installed in an existing refrigerant system.
In one embodiment, the system includes a processor that measures power provided to the HVAC system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, and a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, a condenser air flow sensor, and an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
The metering device 109 can be any refrigerant metering device as used in the art, such as, for example, a capillary tube, a fixed orifice, a Thermostatic eXpansion Valve (TXV), an electronically controlled valve, a pulsating solenoid valve, a stepper-motor valve, a low side float, a high-side float, an automatic expansion valve, etc. A fixed metering device such as a capillary tube or fixed orifice will allow some adjustment in system capacity as the load changes. As the outdoor condensing temperature increases, more refrigerant is fed through the metering device into the evaporator 110, increasing its capacity slightly. Conversely, as the heat load goes down, the outdoor condensing temperature goes down and less refrigerant is fed into the evaporator 110. For a location where the load does not vary widely, fixed metering devices may float with the load well enough. However, for climates where there is a relatively greater range in temperature variation, an adjustable metering device is typically used.
The system 100 cools the air through the evaporator 110 by using the refrigerating effect of an expanding gas. This refrigerating effect is rated in Btu per pound of refrigerant (Btu/lb). If the total heat load is known (given in Btu/hr), one can find the total number of pounds of refrigerant that must be circulated each hour of operation of the system. This figure can be broken down further to the amount that must be circulated each minute, by dividing the amount circulated per hour by 60.
Because of a small orifice in the metering device 109, when the compressed refrigerant passes from the smaller opening in the metering device 109 to the larger tubing in the evaporator 110, a change in pressure occurs together with a change in temperature. This change in temperature occurs because of the vaporization of a small portion of the refrigerant (about 20%) and, in the process of this vaporization, the heat that is involved is taken from the remainder of the refrigerant.
For example, from the table of saturated R-22 in
The capacity of the compressor 105 should be such that it will remove from the evaporator 110 that amount of refrigerant which has vaporized in the evaporator 110 and in the metering device 109 in order to get the necessary work done. The compressor 105 must be able to remove and send on to the condenser 107 the same weight of refrigerant vapor, so that it can be condensed back into a liquid and so continue in the system 100 to perform additional work.
If the compressor 105 is unable to move this weight, some of the vapor will remain in the evaporator 110. This, in turn, will cause an increase in pressure inside the evaporator 110, accompanied by an increase in temperature and a decrease in the work being done by the refrigerant, and design conditions within the refrigerated space cannot be maintained.
A compressor 105 that is too large will withdraw the refrigerant from the evaporator 110 too rapidly, causing a lowering of the temperature inside the evaporator 110, so that design conditions will not be maintained.
In order for design conditions to be maintained within a refrigeration circuit, a balance between the requirements of the evaporator 110 and the capacity of the compressor 105 is maintained. This capacity is dependent on its displacement and on its volumetric efficiency. Volumetric efficiency depends on the absolute suction and discharge pressures under which the compressor 105 is operating.
In one embodiment, the system 100 controls the speed of the compressor 105 to increase efficiency. In one embodiment, the system 100 controls the metering device 109 to increase efficiency. In one embodiment, the system 100 controls the speed of the fan 123 to increase efficiency. In one embodiment, the system 100 controls the speed of the fan 122 to increase efficiency.
In the system 100, the refrigerant passes from the liquid stage into the vapor stage as it absorbs heat in the evaporator 110 coil. In the compressor 105 stage, the refrigerant vapor is increased in temperature and pressure, then the refrigerant gives off its heat in the condenser 107 to the ambient cooling medium, and the refrigerant vapor condenses back to its liquid state where it is ready for use again in the cycle.
The construction of the diagram 300 illustrates what happens to the refrigerant at the various stages within the refrigeration cycle. If the liquid vapor state and any two properties of a refrigerant are known and this point can be located on the chart, the other properties can be determined from the chart.
If the point is situated anywhere between the saturated liquid line 301 and vapor line 302, the refrigerant will be in the form of a mixture of liquid and vapor. If the location is closer to the saturated liquid line 301, the mixture will be more liquid than vapor, and a point located in the center of the area at a particular pressure would indicate a 50% liquid 50% vapor situation.
The change in state from a vapor to a liquid, the condensing process, occurs as the path of the cycle develops from right to left; whereas the change in state from a liquid to a vapor, the evaporating process, travels from left to right. Absolute pressure is indicated on the vertical axis at the left, and the horizontal axis indicates heat content, or enthalpy, in Btu/lb.
The distance between the two saturated lines 301 and 302 at a given pressure, as indicated on the heat content line, amounts to the latent heat of vaporization of the refrigerant at the given absolute pressure. The distance between the two lines of saturation 301 and 302 is not the same at all pressures, for they do not follow parallel curves. Therefore, there are variations in the latent heat of vaporization of the refrigerant, depending on the absolute pressure. There are also variations in pressure-enthalpy charts of different refrigerants and the variations depend on the various properties of the individual refrigerants.
There is relatively little temperature change of the condensed refrigeration liquid after it leaves the condenser 107 and travels through the liquid line 108 on its way to the expansion or metering device 109, or in the temperature of the refrigerant vapor after it leaves the evaporator 110 and passes through the suction line 111 to the compressor 105.
When the vertical line A-B (the expansion process) is extended downward to the bottom axis, a reading of 39.27 Btu/lb is indicated, which is the heat content of 100° F. liquid. To the left of point B at the saturated liquid line 301 is point Z, which is also at the 40° F. temperature line. Taking a vertical path downward from point Z to the heat content line, a reading of 21.42 Btu/lb is indicated, which is the heat content of 40° F. liquid.
The horizontal line between points B and C indicates the vaporization process in the evaporator 110, where the 40° F. liquid absorbs enough heat to completely vaporize the refrigerant. Point C is at the saturated vapor line, indicating that the refrigerant has completely vaporized and is ready for the compression process. A line drawn vertically downward to where it joins the enthalpy line indicates that the heat content, shown at hc is 108.14 Btu/lb, and the difference between ha and hc is 68.87 Btu/lb, which is the refrigerating effect, as shown in an earlier example.
The difference between points hz and hc on the enthalpy line amounts to 86.72 Btu/lb, which is the latent heat of vaporization of 1 lb of R-22 at 40° F. This amount would also exhibit the refrigerating effect, but some of the refrigerant at 100° F. must evaporate or vaporize in order that the remaining portion of each pound of R-22 can be lowered in temperature from 100° F. to 40° F.
All refrigerants exhibit properties of volume, temperature, pressure, enthalpy or heat content, and entropy when in a gaseous state. Entropy is defined as the degree of disorder of the molecules that make up the refrigerant. In refrigeration, entropy is the ratio of the heat content of the gas to its absolute temperature in degrees Rankin.
The pressure-enthalpy chart plots the line of constant entropy, which stays the same provided that the gas is compressed and no outside heat is added or taken away. When the entropy is constant, the compression process is called adiabatic, which means that the gas changes its condition without the absorption or rejection of heat either from or to an external body or source. It is common practice, in the study of cycles of refrigeration, to plot the compression line either along or parallel to a line of constant entropy.
In
Point D on the absolute pressure line is equivalent to the 100° F. condensing temperature; it is not on the saturated vapor line, it is to the right in the superheat area, at a junction of the 210.61 psia line, the line of constant entropy of 40° F., and the temperature line of approximately 128° F. A line drawn vertically downward from point D intersects the heat content line at 118.68 Btu/lb, which is hd, and the difference between hc and hd is 10.54 Btu/lb—the heat of compression that has been added to the vapor. This amount of heat is the heat energy equivalent of the work done during the refrigeration compression cycle. This is the theoretical discharge temperature, assuming that saturated vapor enters the cycle; in actual operation, the discharge temperature may be 20° to 35° higher than that predicted theoretically. This can be checked in the system 100 by attaching a temperature sensor 1016 to the hot gas line 106.
During the compression process, the vapor is heated by the action of its molecules being pushed or compressed closer together, commonly called heat of compression.
Line D-E denotes the amount of superheat that must be removed from the vapor before it can commence the condensation process. A line drawn vertically downward from point E to point he on the heat content line indicates the distance hd−he, or heat amounting to 6.57 Btu/lb, since the heat content of 100° F. vapor is 112.11 Btu/lb. This superheat is usually removed in the hot gas discharge line or in the upper portion of the condenser 107. During this process the temperature of the vapor is lowered to the condensing temperature.
Line E-A represents the condensation process that takes place in the condenser 107. At point E the refrigerant is a saturated vapor at the condensing temperature of 100° F. and an absolute pressure of 210.61 psia; the same temperature and pressure prevail at point A, but the refrigerant is now in a liquid state. At any other point on line E-A the refrigerant is in the phase of a liquid vapor combination; the closer the point is to A, the greater the amount of the refrigerant that has condensed into its liquid stage. At point A, each pound of refrigerant is ready to go through the refrigerant cycle again as it is needed for heat removal from the load in the evaporator 110.
Two factors that determine the coefficient of performance (COP) of a refrigerant are refrigerating effect and heat of compression. The equation (equation 1) may be written as:
Substituting values, from the pressure-enthalpy diagram of the simple saturated cycle previously presented, the equation would be:
The COP is, therefore, a rate or a measure of the theoretical efficiency of a refrigeration cycle and is the energy that is absorbed in the evaporation process divided by the energy supplied to the gas during the compression process. As can be seen from Equation 1, the less energy expended in the compression process, the larger will be the COP of the refrigeration system.
The pressure-enthalpy diagrams in
For the 20° F. evaporating temperature cycle shown in
Net refrigerating effect(hc′−ha)=67.11Btu/lb
Heat of compression (hd−hc′)=12.30 Btu/lb
Comparing the data above with those of the cycle with the 40° F. evaporating temperature
It follows that the weight of refrigerant to be circulated per ton of cooling, in a cycle with a 20° F. evaporating temperature and a 100° F. condensing temperature, is 2.98 lb/min/ton:
Circulating more refrigerant typically involves either a larger compressor 105, or the same size of compressor 105 operating at a higher rpm.
Again taking the specific data from the heat content or enthalpy line, one now finds for the 120° F. condensing temperature cycle that ha′=45.71, hc=108.14, hd′=122.01, and he′=112.78. Thus, the net refrigerating effect (hc−ha′)=62.43 Btu/lb, the heat of compression (hd′−hc)=13.87 Btu/lb, and the condenser 107 superheat (hd′−he′)=9.23 Btu/lb.
In comparison with the cycle having the 100° F. condensing temperature (
With a 40° F. evaporating temperature and a 120° F. condensing temperature, the weight of refrigerant to be circulated will be 3.2 lb/min/ton. This indicates that approximately 10% more refrigerant must be circulated to do the same amount of work as when the condensing temperature was 100° F.
Both of these examples show that for the best efficiency of a system, the suction temperature should be as high as feasible, and the condensing temperature should be as low as feasible. Of course, there are limitations as to the extremes under which the system 100 may operate satisfactorily, and other means of increasing efficiency must then be considered. Economics of equipment (cost+operating performance) ultimately determine the feasibility range.
Referring to
This subcooling can take place while the liquid is temporarily in storage in the condenser 107 or receiver, or some of the liquid's heat may be dissipated to the ambient temperature as it passes through the liquid pipe on its way to the metering device 109. Subcooling can also take place in a commercial type water cooled system through the use of a liquid subcooler.
Normally, the suction vapor does not arrive at the compressor 105 in a saturated condition. As shown in
In the system 100, the refrigerant pressure is relatively high in the condenser 107 and relatively low in the evaporator 110. A pressure rise occurs across the compressor 105 and a pressure drop occurs across the metering device 109. Thus, the compressor 105 and the metering device 109 maintain the pressure difference between the condenser 107 and the evaporator 110.
Thus, a refrigeration system can be divided into the high side and low side portions. The high side contains the high pressure vapor and liquid refrigerant and is the part of the system that rejects heat. The low side contains the low pressure liquid vapor and refrigerant and is the side that absorbs heat.
Heat is always trying to reach a state of balance by flowing from a warmer object to a cooler object. Heat only flows in one direction, from warmer to cooler. Temperature difference (TD) is what allows heat to flow from one object to another. The greater the temperature difference the more rapid the heat flow. For the high side of a refrigeration unit to reject heat, its temperature must be above the ambient or surrounding temperature. For the evaporator 110 to absorb heat, its temperature must be below the surrounding ambient temperature.
Two factors that affect the quantity of heat transferred between two objects are the temperature difference and the mass of the two objects. The greater the temperature difference between the refrigerant coil (e.g., the condenser 107 or the evaporator 110) and the surrounding air, the more rapid will be the heat transfer. The larger the size of the refrigerant coil, the greater the mass of refrigerant, which also increases the rate of heat transfer. Engineers can either design coils to have high temperature differences or larger areas to increase the heat transfer rate.
To increase energy efficiency, systems are designed with larger coils because it is more efficient to have a lower temperature difference and a larger area to transfer heat. It takes less energy to produce a smaller pressure/temperature difference within a refrigeration system. Manufacturers of new high efficiency air conditioning systems use this principle.
The same principle can be applied to the evaporator 110 coils. The temperature differences between the evaporator input air 124 and the evaporator output air 125 are lower than they were on earlier systems. Older, lower efficiency air conditioning systems may have evaporative coils that operate at 35° F. output temperature, while newer higher efficiency evaporator 110 may operate in the 45° F. output range. Both evaporators 110 can pick up the same amount of heat provided that the higher temperature, higher efficiency coil has greater area and, therefore, more mass of refrigerant being exposed to the air stream to absorb heat. The higher evaporative coil temperature may produce less dehumidification. In humid climates, dehumidification can be an important part of the total air conditioning.
Correct equipment selection is important to ensure system operation and to obtain desired energy efficiencies. Previously, it was a common practice in many locations for installers to select an evaporator 110 of a different tonnage than the condenser unit 101 capacity. While this practice in the past may provide higher efficiencies, for most of today's more technically designed systems proper matching is usually achieved by using the manufacturer's specifications in order to provide proper operation. Mismatching systems can result in poor humidity control and higher operating costs. In addition to poor energy efficiency and lack of proper humidity control, the compressor 105 in a mismatched system may not receive adequate cooling from returning refrigerant vapor. As a result the compressor 105 temperature will be higher, and this can reduce the life of the compressor 105.
As refrigerant vapor leaves the discharge side of the compressor 105, it enters the condenser 107. As this vapor travels through the condenser 107, heat from the refrigerant dissipates to the surrounding air through the piping and fans. As heat is removed, the refrigerant begins to change state from vapor to liquid. As the mixture of liquid and vapor continues to flow through the condenser 107, more heat is removed and eventually all, or virtually all, of the vapor has transformed into liquid. The liquid flows from the outlet of the condenser 107 through the liquid line 108 to the metering device 109.
The high pressure, high temperature liquid refrigerant passes through the metering device 109 where its temperature and pressure change. As the pressure and temperature change, some of the liquid refrigerant boils off forming flash gas. As this mixture of refrigerant, liquid, and vapor flow through the evaporator 110, heat is absorbed, and the remaining liquid refrigerant changes into a vapor. At the outlet of the evaporator 110 the vapor flows back through the suction line 111 to the compressor 105.
The compressor 105 draws in this low pressure, low temperature vapor and converts it to a high temperature, high pressure vapor where the cycle begins again.
An ideally sized and functioning system 100 is one where the last bit of refrigerant vapor changes into a liquid at the end of the condenser 107 and where the last bit of liquid refrigerant changes into a vapor at the end of the evaporator 110. However, because it is impossible to have a system operate at this ideal state, units are designed to have some additional cooling, called subcooling, of the liquid refrigerant to ensure that no vapor leaves the condenser 107. Even a small amount of vapor leaving the condenser 107 can significantly reduce efficiency of the system 100.
On the evaporator 110 side a small amount of additional temperature is added to the refrigerant vapor, called superheat, to ensure that no liquid refrigerant returns to the compressor 105. Returning liquid refrigerant to the compressor 105 can damage the compressor 105.
Systems that must operate under a broad range of temperature conditions will have difficulty maintaining the desired level of subcooling and superheat. There are two components that can be used in these systems to enhance the level of efficiency and safety in operation. They are the receiver and the accumulator. The receiver is placed in the liquid line 108 and holds a little extra refrigerant so the system has enough for high loads on hot days. The accumulator is placed in the suction line 111 and traps any the liquid refrigerant that would flow back to the compressor 105 on cool days with light loads.
A liquid receiver can be located at the end of the condenser 107 outlet to collect liquid refrigerant. The liquid receiver allows the liquid to flow into the receiver and any vapor collected in the receiver to flow back into the condenser 107 to be converted back into a liquid. The line connecting the receiver to the condenser 107 is called the condensate line and must be large enough in diameter to allow liquid to flow into the receiver and vapor to flow back into the condenser 107. The condensate line must also have a slope toward the receiver to allow liquid refrigerant to freely flow from the condenser 107 into the receiver. The outlet side of the receiver is located at the bottom where the trapped liquid can flow out of the receiver into the liquid line.
Receivers should be sized so that all of the refrigerant charge can be stored in the receiver. Some refrigeration condensing units come with receivers built into the base of the condensing unit.
The accumulator is located at the end of the evaporator 110 and allows liquid refrigerant to be collected in the bottom of the accumulator and remain there as the vapor refrigerant is returned to the compressor 105. The inlet side of the accumulator is connected to the evaporator 110 where any liquid refrigerant and vapor flow in. The outlet of the accumulator draws vapor through a U shaped tube or chamber. There is usually a small port at the bottom of the U shaped tube or chamber that allows liquid refrigerant and oil to be drawn into the suction line. Without this small port, refrigerant oil would collect in the accumulator and not return to the compressor 105. The small port does allow some liquid refrigerant to enter the suction line. However, it is such a small amount of liquid refrigerant that it boils off rapidly, so there is little danger of liquid refrigerant flowing into the compressor 105.
Accumulators are often found on heat pumps. During the changeover cycle, liquid refrigerant can flow back out of the outdoor coil. This liquid refrigerant could cause compressor 105 damage if it were not for the accumulator, which blocks its return.
The pressure-heat diagram of
The subcooling increases cycle efficiency and can prevent flash gas due to pressure loss from components, pipe friction, or increase in height.
Many smaller refrigeration systems are designed to have the metering device 109 control the refrigerant flow so the evaporator 110 will heat the vapor beyond saturated conditions and ensure no liquid droplets will enter and possibly damage the compressor 105. It is assumed here for the sake of simplicity there is no pressure drop through the evaporator 110. In reality there are pressure drops which would slightly shift the evaporating and condensing processes from the constant pressure lines shown.
If the evaporator 110 does not have to superheat refrigerant vapor, it can produce more cooling capacity. On smaller systems the difference is relatively small and it is more important to protect the compressor 105. On larger systems, an increase in evaporator performance can be important. A flooded evaporator 110 absorbs heat from points B to C. It can circulate more pounds of refrigerant (more cooling capacity) per square foot of heat transfer surface.
An undersized evaporator with less heat transfer surface will not handle the same heat load at the same temperature difference as a correctly sized evaporator. The new balance point will be reached with a lower suction pressure and temperature. The load will be reduced and the discharge pressure and temperature will also be reduced. An undersized evaporator and a reduced heat load both have similar effects on the refrigerant cycle because they both are removing less heat from the refrigerant.
As the ambient temperature increases, the load on the evaporator 110 increases. When the load on the evaporator 110 increases, the pressures increase. The operating points shift up and to the right on the pressure-heat curve. As the load on the evaporator 110 decreases, the pressures decrease. The operating points on the pressure-heat curve shift down. Thus, knowledge of the ambient temperature is useful in determining whether the system 100 is operating efficiency.
Data can be transmitted from the system 900 to a remote monitoring system 950 by using data transmission over power lines as shown in
In one embodiment, the data interface devices 955-957 are configured as power line modems (e.g., using Broadband over Power Line (BPL), or other power line networking technology). In one embodiment, the data interface devices 955-957 are configured as wireless modems for communication using wireless transmission. In one embodiment, the data interface devices 955-957 are configured as telephone modems, cable modems, Ethernet modems, or the like, to communicate using a wired network.
In one embodiment, the system 900 provides sensor data from the condenser unit sensors 901 and/or the evaporator unit sensors 902 to the remote monitoring system 950. In one embodiment, the system 900 uses data from the condenser unit sensors 901 and/or the evaporator unit sensors 902 to compute an efficiency factor for the refrigerant-cycle system and the system 900 provides the efficiency factor to the remote monitoring system 950. In one embodiment, the system 900 provides power usage data (e.g., amount of power used) by the refrigerant-cycle system and the system 900 provides the efficiency factor to the remote monitoring system 950. In one embodiment, the system 900 provides an identification code (ID) with the data transmitted to the remote monitoring system 950 to identify the system 900.
In one embodiment, the remote monitoring system 950 is provided with data regarding a maximum expected efficiency for the refrigerant-cycle system (e.g., based on the manufacture and design characteristics of the refrigerant-cycle system) such that the remote monitoring system 950 can ascertain the relative efficiency (that is, how the refrigerant-cycle system is operating with respect to its expected operating efficiency). In one embodiment, the remote monitoring system 950 provides efficiency data to the power company or to a government agency so electric rates can be charged according to the system efficiency. In one embodiment, the homeowner (or building owner) is charged a higher electrical rate for electrical power provided to a refrigerant-cycle system that is operating at a relatively low absolute efficiency. In one embodiment, the homeowner (or building owner) is charged a higher electrical rate for electrical power provided to a refrigerant-cycle system that is operating at a relatively low relative efficiency. In one embodiment, the homeowner (or building owner) is charged an electrical rate according to a combination of the relative and absolute efficiency of the refrigerant-cycle system. In one embodiment, the data provided to the remote monitoring system 950 is used to provide notice to the homeowner (or building owner) that the refrigerant-cycle system is operating at a poor efficiency. In one embodiment, the data provided to the remote monitoring system 950 is used to provide notice to the homeowner (or building owner) that the refrigerant-cycle system is operating at a poor efficiency, and that the system must be serviced. In one embodiment, the owner is given a warning that service is needed. If the unit is not serviced (or if efficiency does not improve) after a period of time, the remote monitoring system 950 can remotely shut off the refrigerant-cycle system by sending commands to one or more of the data interface devices 955-957.
In one embodiment, the homeowner (or building owner) is charged a higher electrical rate for electrical power provided to a refrigerant-cycle system that is operating at a relatively low efficiency during a specified period of time, such as, for example, when the power system is highly loaded, during peak afternoon cooling periods, during heat waves, during rolling blackouts, etc. In one embodiment, the homeowner (or building owner) is charged a higher electrical rate (a premium rate) for electrical power provided to a refrigerant-cycle system during a specified period of time, such as, for example, when the power system is highly loaded, during peak afternoon cooling periods, during heat waves, during rolling blackouts, etc. In one embodiment, the homeowner (or building owner) can program the system 900 to receive messages from the power company indicating that premium rates are being charged. In one embodiment, the homeowner (or building owner) can program the system 900 to shut down during premium rate periods. In one embodiment, the homeowner (or building owner) can avoid paying premium rates by allowing the power company to remotely control operation of the refrigerant-cycle system during premium rate times. In one embodiment, the homeowner (or building owner) is only allowed to run the refrigerant-cycle system during premium rate periods if the system is operating above a prescribed efficiency.
In one embodiment, the system 900 monitors the amount of time that the refrigerant-cycle system has been running (e.g., the amount of runtime during the last day, week, etc.). In one embodiment, the remote monitoring system 950 can query the system 900 to obtain data regarding the operating of the refrigerant-cycle system and one or more of the data interface devices 955-957 will receive the query and send the requested data to the remote monitoring system 950. The query data may be, for example, the efficiency rating of the refrigerant-cycle system (e.g., the SEER, EER, etc.), the current operating efficiency of the refrigerant-cycle system, the runtime of the system during a specified time period, etc. The remote monitoring system 950 operator (e.g., the power company or power transmission company) can use the query data to make load balancing decisions. Thus, for example the decision regarding whether to instruct the refrigerant-cycle system to shut down or go into a low power mode can be based on the system efficiency (specified efficiency, absolute efficiency, and/or relative efficiency), the amount of time the system has been running, the home or building owner's willingness to pay premium rates during load shedding periods, etc. Thus, for example a homeowner who has a low-efficiency system that is heavily used, or who has indicated an unwillingness to pay premium rates, would have his/her refrigerant-cycle system shut off by the remote monitoring system 950 before that of a homeowner who has installed a high-efficiency system that is used relatively little, and who had indicated a willingness to pay premium rates. In one embodiment, in making the decision to shut off the system 900, the remote monitoring system 950 would take into account the efficiency of the system 900, the amount the system 900 is being used, and the owner's willingness to pay premium rates. In one embodiment, higher-efficiency systems are preferred over lower-efficiency systems (that is, higher-efficiency systems are less likely to be shut off during a power emergency), and lightly-used systems are preferred over heavily-used systems.
In one embodiment, the system 900 sends data regarding the set temperature of the thermostat 952 to the remote monitoring system 950. In one embodiment, the electricity rate charged to the homeowner (or building owner) is calculated according to a set point of the thermostat 952 such that a lower set point results in a higher rate charge per kilowatt-hour. In one embodiment, the electricity rate charged to the homeowner (or building owner) is calculated according to the set point of the thermostat 952 and the relative efficiency of the refrigerant-cycle system such that a lower set point and/or lower efficiency results in a higher rate charge per kilowatt-hour. In one embodiment, the electricity rate charged to the homeowner (or building owner) is calculated according to the set point of the thermostat 952 and the absolute efficiency of the refrigerant-cycle system such that a lower set point and/or lower efficiency results in a higher rate charge per kilowatt-hour. In one embodiment, the electricity rate charged to the homeowner (or building owner) is calculated according to the set point of the thermostat 952, the relative efficiency of the refrigerant-cycle system, and the absolute efficiency of the refrigerant-cycle system according to a formula whereby a lower set point and/or lower efficiency results in a higher rate charge per kilowatt-hour.
In one embodiment, the remote monitoring system 950 can send instructions to the system 900 to shut down if the refrigerant-cycle system is operating at a low efficiency. In one embodiment, the remote monitoring system 950 can send instructions to the system 900 to change the setting of the thermostat 952 (e.g., raise the set temperature of the thermostat 952) in response to low efficiency of the refrigerant-cycle system and/or to avoid a blackout. In one embodiment the remote monitoring system 950 can send instructions to the condenser unit 101 to switch the compressor 105 to a low-speed mode to conserve power.
In one embodiment, the remote monitoring system 950 knows the identification codes or addresses of the data interface devices 955-957 and correlates the identification codes with a database to determine whether the refrigerant-cycle system is serving a relatively high priority client such as, for example, a hospital, the home of an elderly or invalid person, etc. In such circumstances, the remote monitoring system 950 can provide relatively less cutback in cooling provided by the refrigerant-cycle system.
In one embodiment, the system 900 communicates with the remote monitoring system 950 to provide load shedding. Thus, for example, the remote monitoring system 950 (e.g., a power company) can communicate with the data interface device 956 and/or the data interface device 957 to turn off the refrigerant-cycle system. The remote monitoring system 950 can thus rotate the on and off times of air conditioners across a region to reduce the power load without implementing rolling blackouts. In one embodiment, the data interface device 956 is configured as a retrofit device that can be installed in a condenser unit to provide remote shutdown. In one embodiment, the data interface device 956 is configured as a retrofit device that can be installed in a condenser unit to remotely switch the condenser-unit to a low power (e.g., energy conservation) mode. In one embodiment, the data interface device 957 is configured as a retrofit device that can be installed in an evaporator unit to provide remote shutdown or to remotely switch the system to a lower power mode. In one embodiment, the remote monitoring system 950 sends separate shutdown and restart commands to one or more of the data interface devices 955-957. In one embodiment, the remote monitoring system 950 sends commands to the data interface devices 955-957 to shutdown for a specified period of time (e.g., 10 min, 30 min, 1 hour, etc.) after which the system automatically restarts.
In one embodiment, the system 900 communicates with the remote monitoring system 950 to control the temperature set point of the thermostat 952 to prevent blackouts or brownouts without regard to efficiency of the refrigerant-cycle system. When brownout or potential blackout conditions occur, the remote monitoring system 950 can override the homeowner's thermostat setting to cause the temperature set point on the thermostat 952 to change (e.g., increase) in order to reduce power usage. In most residential installations, low-voltage control wiring is provided between the thermostat 952 and the evaporator unit 102 and condenser unit 101. In most residential (and many industrial) applications the thermostat 952 receives electrical power via the low-voltage control wiring from a step-down transformer provided with the evaporator unit 102.
In one embodiment, the data interface device 955 is provided in connection with the power meter 949, and the data interface device 955 communicates with the thermostat 952 using wireless communications.
In a typical refrigeration or air conditioning system, the condenser unit 101 is placed outside the area being cooled and the evaporator unit 102 is placed inside the area being cooled. The nature of outside and inside depend on the particular installation. For example, in an air conditioning or HVAC system, the condenser unit 101 is typically placed outside the building, and the evaporator unit 102 is typically placed inside the building. In a refrigerator or freezer, the condenser unit 101 is placed outside the refrigerator and the evaporator unit 102 is placed inside the refrigerator. In any case, the waste heat from the condenser should be dumped outside (e.g., away from) the area being cooled.
When the system 900 is installed, the system 900 is programmed by specifying the type of refrigerant used and the characteristics of the condenser 107, the compressor 105, and the evaporator unit 102. In one embodiment, the system 900 is also programmed by specifying the size of the air handler system. In one embodiment, the system 900 is also programmed by specifying the expected (e.g., design) efficiency of the system 100.
The remote monitoring system 950 can do a better job of monitoring efficiency than published performance ratings such as the Energy Efficiency Ratio (EER) and SEER. The EER is determined by dividing the published steady state capacity by the published steady state power input at 80° F. DB/67° F. WB indoor and 95° F. DB outdoor. This is objective yet unrealistic with respect to system “real world” operating conditions. The published SEER rating of a system is determined by multiplying the steady state EER measured at conditions of 82° F. outdoor temperature, 80° F. DB/67° F. WB indoor entering air temperature by the (run time) Part Load Factor (PLF) of the system. A major factor not considered in SEER calculations is the actual part loading factor of the indoor evaporator cooling coil, which reduces the unit's listed BTUH capacity and SEER efficiency level. Many older air handlers and duct systems do not deliver the published BTUH and SEER Ratings. This is primarily due to inadequate air flow through the evaporator 110, a dirty evaporator 110, and/or dirty blower wheels. Also, improper location of supply diffusers and return air registers can result in inefficient floor level recirculation of the cold conditioned air, resulting in lack of heat loading of the evaporator 110.
By monitoring the system 100 under actual load conditions, and by measuring the relevant ambient temperature and humidity, the system 900 can calculate the actual efficiency of the system 100 in operation.
In one embodiment, a building interior temperature sensor 1009 is provided to the thermostat 1001. In one embodiment, a building interior humidity sensor 1010 is provided to the thermostat 1001. In one embodiment, the thermostat 1001 includes a display 1008 for displaying system status and efficiency. In one embodiment, the thermostat 1001 includes a keypad 1050 and/or indicator lights (e.g., LEDs) 1051. A power sensor 1011 to sense electrical power consumed by the compressor 105 is provided to the condenser unit sender 1002. In one embodiment, a power sensor 1017 to sense electrical power consumed by the condenser fan 122 is provided to the condenser unit sender 1002. The air 125 from the evaporator 110 flows in the ductwork 1080.
In one embodiment, a temperature sensor 1012, configured to measure the temperature of the refrigerant in the suction line 111 near the compressor 105, is provided to the condenser unit sender 1002. In one embodiment, a temperature sensor 1016, configured to measure the temperature of the refrigerant in the hot gas line 106, is provided to the condenser unit sender 1002. In one embodiment, a temperature sensor 1014, configured to measure the temperature of the refrigerant in the liquid line 108 near the condenser 107, is provided to the condenser unit sender 1002.
Contaminants in the refrigerant lines 111, 106, 108, etc. can reduce the efficiency of the refrigerant-cycle system and can reduce the life of the compressor 105 or other system components. In one embodiment, one or more contaminant sensors 1034, configured to sense contaminants in the refrigerant (e.g., water, oxygen, nitrogen, air, improper oil, etc.) are provided in at least one of the refrigerant lines and provided to the condenser unit sender 1002 (or, optionally, to the evaporator unit sender 1003). In one embodiment, a contaminant sensor 1034 senses refrigerant fluid or droplets at the input to the compressor 105, which can cause damage to the compressor 105. In one embodiment, a contaminant sensor 1060 is provided in the liquid line 108 to sense bubbles in the refrigerant. Bubbles in the liquid line 108 may indicate low refrigerant levels, an undersized condenser 107, insufficient cooling of the condenser 107, etc. In one embodiment, the sensor 1034 senses water or water vapor in the refrigerant lines. In one embodiment, the sensor 1034 senses acid in the refrigerant lines. In one embodiment, the sensor 1034 senses air or other gasses (e.g., oxygen, nitrogen, carbon dioxide, chlorine, etc.).
In one embodiment, a pressure sensor 1013, configured to measure pressure in the suction line 111, is provided to the condenser unit sender 1002. In one embodiment, a pressure sensor 1015, configured to measure pressure in the liquid line 108, is provided to the condenser unit sender 1002. In one embodiment, a pressure sensor (not shown), configured to measure pressure in the hot gas line 106, is provided to the condenser unit sender 1002. In one embodiment, the pressure sensor 1013 and the pressure sensor 1015 are connected to the system 100, by attaching the pressure sensors 1013 and 1015 to the service valves 120 and 121, respectively. Attaching the pressure sensors to the service valves 120 and 121 is a convenient way to access refrigerant pressure in a retrofit installation without having to open the pressurized refrigerant system.
In one embodiment, a flow sensor 1031, configured to measure flow in the suction line 111, is provided to the condenser unit sender 1002. In one embodiment, a flow sensor 1030, configured to measure flow in the liquid line 108, is provided to the condenser unit sender 1002. In one embodiment, a flow sensor (not shown), configured to measure flow in the hot gas line 106, is provided to the condenser unit sender 1002. In one embodiment, the flow sensors are ultrasonic sensors that can be attached to the refrigerant lines without opening the pressurized refrigerant system.
In one embodiment, a temperature sensor 1028 configured to measure ambient temperature is provided to the condenser unit sender 1002. In one embodiment, a humidity sensor 1029 configured to measure ambient humidity is provided to the condenser unit sender 1002.
In one embodiment, a temperature sensor 1020, configured to measure the temperature of the refrigerant in the liquid line 108 near the evaporator 110 is provided to the evaporator sender unit 1003. In one embodiment, a temperature sensor 1021, configured to measure the temperature of the refrigerant in the suction line 111 near the evaporator 110 is provided to the evaporator sender unit 1003.
In one embodiment, a temperature sensor 1026, configured to measure the temperature of air 124 flowing into the evaporator 110 is provided to the evaporator sender unit 1003.
In one embodiment, a temperature sensor 1026, configured to measure the temperature of air 125 flowing out of the evaporator 110 is provided to the evaporator sender unit 1003. In one embodiment, an airflow sensor 1023, configured to measure the airflow of air 125 flowing out of the evaporator 110 is provided to the evaporator sender unit 1003. In one embodiment, a humidity sensor 1024, configured to measure the humidity of air 125 flowing out of the evaporator 110 is provided to the evaporator sender unit 1003. In one embodiment, a differential pressure sensor 1025, configured to measure a pressure drop across the evaporator 110, is provided to the evaporator sender unit 1003.
In one embodiment, the temperature sensors are attached to the refrigerant lines (e.g., the lines 106, 108, 111, in order to measure the temperature of the refrigerant circulating inside the lines. In one embodiment, the temperature sensors 1012 and/or 1016 are provided inside the compressor 105. In one embodiment, the temperature sensors are provided inside one or more of the refrigerant lines.
A tachometer 1033 senses rotational speed of the fan blades in the fan 123. The tachometer 1033 is provided to the evaporator unit sender 1003. A tachometer 1032 senses rotational speed of the fan blades in the condenser fan 122. The tachometer 1032 is provided to the condenser unit sender 1002.
In one embodiment, a power sensor 1027, configured to measure electrical power consumed by the fan 123 is provided to the evaporator sender unit 1003.
In one embodiment, the evaporator sender unit 1003 communicates sensor data to the condenser unit sender 1002 through wireless transmission. In one embodiment, the evaporator sender unit 1003 communicates sensor data to the condenser unit sender 1002 through existing HVAC wiring. In one embodiment, the evaporator sender unit 1003 communicates sensor data to the condenser unit sender 1002 through existing HVAC wiring by modulating sensor data onto a carrier that is transmitted using the existing HVAC wiring.
Each of the sensors shown in
The pressure sensors 1013 and 1015 measure suction and discharge pressures, respectively, at the compressor 105. The temperature sensors 1026 and 1022 measure evaporator 110 return air temperature and supply air temperature, respectively. The temperature sensors 1018 and 1019 measure input air and discharge air, respectively, at the condenser 107.
The power sensors 1011, 1017, and 1027 are configured to measure electric power. In one embodiment, one or more of the power sensors measure voltage provided to a load and power is computed by using a specified impedance for the load. In one embodiment, one or more of the power sensors measure current provided to a load and power is computed by using a specified impedance for the load. In one embodiment, one or more of the power sensors measure voltage and current provided to a load and power is computed by using a specified power factor for the load. In one embodiment, the power sensors measure voltage, current, and the phase relationship between the voltage and the current.
The temperature sensors 1012 and/or 1021 measure the temperature of the refrigerant at the suction line 111. By measuring the suction line 111 temperature, the superheat can be determined. The suction pressure has been measured by the pressure sensor 1013, so the evaporating temperature can be read from a pressure-temperature chart. The superheat is the difference between the suction line 111 temperature and the evaporating temperature.
The temperature sensors 1014 and/or 1020 measure the temperature of the refrigerant in the liquid line 108. By measuring the liquid line 108 temperature, the subcooling can be determined. The discharge pressure is measured by the pressure sensor 1015, and thus the condensing temperature can be read from the pressure-temperature chart. The subcooling is the difference between the liquid line 108 temperature and the condensing temperature.
In one embodiment, the system 1000 calculates efficiency by measuring the work (cooling) done by the refrigerant-cycle system and dividing by the power consumed by the system. In one embodiment, the system 1000 monitors the system 100 for abnormal operation. Thus, for example, in one embodiment, the system 1000 measures the refrigerant temperature drop across the condenser 107 using the temperature sensors 1016 and 1014 to be used in calculating the heat removed by the condenser 107. The system 1000 measures the refrigerant temperature drop across the evaporator 110 to be used in calculating the heat absorbed by the evaporator 110.
The monitoring system 1000 is typically used to monitor the operation of the system 100 that was originally checked out and put into proper operation condition. Mechanical problems in an air conditioning system are generally classified in two categories: air side problems and refrigeration side problems.
The primary problem that can occur in the air category is a reduction in airflow. Air handling systems do not suddenly increase in capacity, that is, increase the amount of air across the coil. On the other hand, the refrigeration system does not suddenly increase in heat transfer ability. The system 1000 uses the temperature sensors 1026 and 1022 to measure the temperature drop of the air through the evaporator 110. After measuring the return air and supply air temperatures and subtracting to get the temperature drop, the system 1000 checks to see whether the temperature difference is higher or lower than it should be.
In one embodiment, a comparison of the desired (or expected) temperature drop across the evaporator 110 with the measured actual temperature drop is used to help classify potential air problems from refrigerant cycle problems. If the actual temperature drop is less than the required temperature drop, then the airflow has likely been reduced. Reduced airflow can be caused by dirty air filters or evaporator 110, problems with the fan 123, and/or unusual restrictions in the duct system.
Air filters of the throwaway type are typically replaced at least twice each year, at the beginning of both the cooling and heating seasons. In one embodiment, the thermostat 1001 allows the owner to indicate when a new air filter is installed. The thermostat 1001 keeps track of the time the filter has been in use, and provides a reminder to the owner when the filter should be replaced. In one embodiment, the thermostat 1001 uses actual elapsed clock time to determine filter usage.
In one embodiment, the thermostat 1001 calculates filter usage according to the amount of time the air handler has been blowing air through the filter. Thus, for example, in moderate climates or seasons where the air handler system is not used continuously, the thermostat 1001 will wait a longer period of actual time before indicating that filter replacement is warranted. In some areas of higher use or where dust is high, the filter will generally have to be replaced relatively more often. In one embodiment, the thermostat 1001 uses a weighting factor to combine running time with idle time to determine filter usage. Thus, for example, in determining filter usage, hours when the air handler is blowing air thorough the filter are weighted relatively more heavily than hours where the air handler system is idle. In one embodiment, the owner can program the thermostat 1001 to indicate that filter replacement is needed after a specified number of hours or days (e.g., as actual days, as running days, or as a combination thereof).
In one embodiment, the thermostat 1001 is configured to receive information from an information source regarding daily atmospheric dust conditions and to use such information in calculating filter usage. Thus, in one embodiment, when calculating filter use, the thermostat 1001 weighs days of relatively high atmospheric dust relatively more heavily than days of relatively low atmospheric dust. In one embodiment, the information source for atmospheric dust information includes a data network, such as, for example, the Internet, a pager network, a local area network, etc.
In one embodiment, the thermostat 1001 collects data for calculating filter usage and passes such data to a computer monitoring system.
In commercial and industrial applications, a regular schedule of maintenance is generally used. In one embodiment, sensors are provided in connection with the air filter, as described below in connection with
In one embodiment, power measured by the power sensor 1027 is used to help diagnose and detect problems with the fan 123 and/or the air handler system. If the fan 123 is drawing too much or too little current, or if the fan 123 is showing a low power factor, then possible problems with the blower and/or air handler system are indicated.
Placing furniture or carpeting over return air grilles reduces the air available for the blower to handle. Shutting off the air to unused areas will reduce the air over the evaporator 110. Covering a return air grille to reduce the noise from the centrally located furnace or air handler may reduce the objectionable noise, but it also drastically affects the operation of the system by reducing the air quantity. The collapse of the return air duct system will affect the entire duct system performance. Air leaks in the return duct will raise the return air temperature and reduce the temperature drop across the coil.
The airflow sensor 1023 can be used to measure air flow through the ducts. In one embodiment, the airflow sensor 1023 is a hot wire (or hot film) mass flow sensor. In one embodiment, the differential pressure sensor 1025 is used to measure airflow through the evaporator 110. In one embodiment, the differential pressure sensor 1025 is used to measure drop across the evaporator 110. In one embodiment, the pressure drop across the evaporator 110 is used to estimate when the evaporator 110 is restricting airflow (e.g., due to damage, dirt, hair, dust, etc.). In one embodiment, the differential pressure sensor 1025 is used to measure drop across an air filter to estimate when the filter is restricting airflow (e.g., due to age, damage, dirt, hair, dust, etc.). In one embodiment, the indicator lights 1051 are used to indicate that the filter needs to be changed. In one embodiment, the indicator lights 1051 are used to indicate that the evaporator 110 needs to be cleaned.
In one embodiment, the airflow sensor 1023 is used to measure airflow into the ductwork 1080. In one embodiment, the indicator lights 1051 are used to indicate that the airflow into the ductwork 1080 is restricted (e.g., due to dirt, furniture or carpets placed in front of vents, closed vents, dirty evaporator, dirty fan blades, etc.).
In one embodiment, a dust sensor is provided in the air stream of the evaporator 110. In one embodiment, the dust sensor includes a light source (optical and/or infrared) and a light sensor. The dust sensor measures light transmission between the source and the light sensor. The buildup of dust will cause the light to be attenuated. The sensor detects the presence of dust buildup at the evaporator 110 by measuring light attenuation between the light source and the light sensor. When the attenuation exceeds a desired value, the system 1000 indicates that cleaning of the air flow system is needed (e.g., the fan 123, the ductwork 1080, and/or the evaporator 110, etc.).
In one embodiment, the power sensor 1027 is used to measure power provided to the blower motor in the fan 123. If the fan 123 is drawing too much power or too little power, then potential airflow problems are indicated (e.g., blocked or closed vents, dirty fan blades, dirty evaporator, dirty filter, broken fan belt, slipping fan belt, etc.).
If the temperature drop across the evaporator 110 is less than desired, then the heat removal capacity of the system has been reduced. Such problems can generally be divided into two categories: refrigerant quantity, and refrigerant flow rate. If the system 100 has the correct amount of refrigerant charge and refrigerant is flowing at the desired rate (e.g., as measured by the flow sensors 1031 and/or 1030), the system 100 should work efficiently and deliver rated capacity. Problems with refrigerant quantity or flow rate typically affect the temperatures and pressures that occur in the refrigerant-cycle system when the correct amount of air is supplied through the evaporator 110. If the system is empty of refrigerant, a leak has occurred, and it must be found and repaired. If the system will not operate at all, it is probably an electrical problem that must be found and corrected.
If the system 100 will start and run but does not produce satisfactory cooling, then the amount of heat picked up in the evaporator 110 plus the amount of motor heat added and the total rejected from the condenser 107 is not the total heat quantity the unit is designed to handle. To diagnose the problem, the information listed in Table 1 is used. These results compared to normal operating results will generally identify the problem: (1) Evaporator 110 operating temperature; (2) Condensing unit condensing temperature; and/or (3) Refrigerant subcooling.
These items can be modified according to the expected energy efficiency ratio (EER) of the unit. The amount of evaporation and condensing surface designed into the unit are the main factors in the efficiency rating. A larger condensing surface results in a lower condensing temperature and a higher EER. A larger evaporating surface results in a higher suction pressure and a higher EER. The energy efficiency ratio for the conditions is calculated by dividing the net capacity of the unit in Btu/hr by the watts input.
Normal evaporator 110 operating temperatures can be found by subtracting the design coil split from the average air temperature going through the evaporator 110. The coil split will vary with the system design. Systems in the EER range of 7.0 to 8.0 typically have design splits in the range 25 to 30° F. Systems in the EER range of 8.0 to 9.0 typically have design splits in the range 20 to 25° F. Systems with 9.0+EER ratings will have design splits in the range 15 to 20° F. The formula used for determining coil operating temperatures is:
where COT is the coil operating temperature, EAT is the entering air temperature of the coil (e.g., as measured by the temperature sensor 1026), LAT is the leaving air temperature of the coil (e.g., as measured by the temperature sensor 1022), and split is the design split temperature.
The value (EAT+LAT)/2 is the average air temperature, which is also referred to as the mean temperature difference (MTD). It is also sometimes referred to as the coil TED or ΔT.
“Split” is the design split according to the EER rating. For example, a unit having an entering air condition of 80° F. DB and a 20° F. temperature drop across the evaporator 110 coil will have an operating coil temperature determined as follows: For an EER rating of 7.0 of 8.0:
For an EER rating of 8.0 to 9.0:
For an EER rating of 9.0+:
Thus, the operating coil temperature changes with the EER rating of the unit.
The surface area of the condenser 107 affects the condensing temperature the system 100 must develop to operate at rated capacity. The variation in the size of the condenser 107 also affects the production cost and price of the unit. The smaller the condenser 107, the lower the efficiency (EER) rating. In the same EER ratings used for the evaporator 110, at 95° outside ambient, the 7.0 to 8.0 EER category will operate in the 25 to 30° condenser 107 split range, the 8.0 to 9.0 EER category in the 20 to 25° condenser 107 split range, and the 9.0+EER category in the 15 to 20° condenser 107 split range.
This means that when the air entering the condenser 107 is at 95° F., the formula for finding the condensing temperature is:
RCT=EAT+split
where RCT is the refrigerant condensing temperature, EAT is the entering air temperature of the condenser 107, and split is the design temperature difference between the entering air temperature and the condensing temperatures of the hot high pressure vapor from the compressor 105.
For example, using the formula with 95° F. EAT, the split for the various EER systems would be:
For an EER rating of 7.0 to 8.0:
RCT=95°+25 to 30°=120 to 125° F.
For an EER rating of 8.0 to 9.0:
RCT=95°+20 to 25°=115 to 120° F.
For an EER rating of 9.0+:
RCT=95°+15 to 20°=110 to 115° F.
The operating head pressures vary not only with changes in outdoor temperatures but also with the different EER ratings.
The amount of subcooling produced in the condenser 107 is determined primarily by the quantity of refrigerant in the system 100. The temperature of the air entering the condenser 107 and the load in the evaporator 110 will have only a relatively small effect on the amount of subcooling produced. The amount of refrigerant in the system 100 has the predominant effect. Therefore, regardless of EER ratings, the unit should have, if properly charged, a liquid subcooled to 15 to 20° F. High ambient temperatures will produce the lower subcooled liquid because of the reduced quantity of refrigerant in the liquid state in the system. More refrigerant will stay in the vapor state to produce the higher pressure and condensing temperatures needed to eject the required amount of heat.
Table 1 shows 11 probable causes of trouble in an air conditioning system. After each probable cause is the reaction that the cause would have on the refrigeration system low side or suction pressure, the evaporator 110 superheat, the high side or discharge pressure, the amount of subcooling of the liquid leaving the condenser 107, and the amperage draw of the condensing unit. In one embodiment, an airflow sensor (not shown) is included to measure the air over the condenser 107.
Insufficient air over the evaporator 110 (as measured, for example, by using the airflow sensor 1023 and/or the differential pressure sensor 1025) is indicated by a greater than desired temperature drop in the air through the evaporator 110. An unbalanced load on the evaporator 110 will also give the opposite indication, indicating that some of the circuits of the evaporator 110 are overloaded while others are lightly loaded. In one embodiment, the temperature sensor 1022 includes multiple sensors to measure the temperature across the evaporator 110. The lightly loaded sections of the evaporator 110 allow liquid refrigerant to leave the coil and enter the suction manifold and suction line.
In TXV systems, the liquid refrigerant passing the sensing bulb of the TXV can cause the valve to close down. This reduces the operating temperature and capacity of the evaporator 110 as well as lowering the suction pressure. The evaporator 110 operating superheat can become very low because of the liquid leaving some of the sections of the evaporator 110.
With inadequate airflow, high side or discharge pressure will be low due to the reduced load on the compressor 105, reduced amount of refrigerant vapor pumped, and reduced heat load on the condenser 107. Condenser 107 liquid subcooling would be on the high side of the normal range because of the reduction in refrigerant demand by the TXV. Condensing unit amperage draw would be down due to the reduced load.
In systems using fixed metering devices, the unbalanced load would produce a lower temperature drop of the air through the evaporator 110 because the amount of refrigerant supplied by the fixed metering device would not be reduced; therefore, the system pressure (boiling point) would be approximately the same.
The evaporator 110 superheat would drop to zero with liquid refrigerant flooding into the suction line 111. Under extreme case of imbalance, liquid returning to the compressor 105 could cause damage to the compressor 105. The reduction in heat gathered in the evaporator 110 and the lowering of the refrigerant vapor to the compressor 105 will lower the load on the compressor 105. The compressor 105 discharge pressure (hot gas pressure) will be reduced.
The flow rate of the refrigerant will be only slightly reduced because of the lower head pressure. The subcooling of the refrigerant will be in the normal range. The amperage draw of the condensing unit will be slightly lower because of the reduced load on the compressor 105 and reduction in head pressure.
In the case of excessive load, the opposite effect exists. The temperature drop of the air through the coil will be less, because the unit cannot cool the air as much as it should. Air is moving through the coil at too high a velocity. There is also the possibility that the temperature of the air entering the coil is higher than the return air from the conditioned area. This could be from air leaks in the return duct system drawing hot air from unconditioned areas.
The excessive load raises the suction pressure. The refrigerant is evaporating at a rate faster than the pumping rate of the compressor 105. If the system uses a TXV, the superheat will be normal to slightly high. The valve will operate at a higher flow rate to attempt to maintain superheat settings. If the system 100 uses fixed metering devices, the superheat will be high. The fixed metering devices cannot feed enough increase in refrigerant quantity to keep the evaporator 110 fully active.
The high side or discharge pressure will be high. The compressor 105 will pump more vapor because of the increase in suction pressure. The condenser 107 must handle more heat and will develop a higher condensing temperature to eject the additional heat. A higher condensing temperature means a greater high side pressure. The quantity of liquid in the system has not changed, nor is the refrigerant flow restricted. The liquid subcooling will be in the normal range. The amperage draw of the unit will be high because of the additional load on the compressor 105.
When the temperature of the ambient air entering the condenser 107 is low, then the condenser 107 heat transfer rate is excessive, producing an excessively low discharge pressure. As a result, the suction pressure will be low because the amount of refrigerant through the metering device 109 will be reduced. This reduction will reduce the amount of liquid refrigerant supplied to the evaporator 110. The coil will produce less vapor and the suction pressure drops.
The decrease in the refrigerant flow rate into the coil reduces the amount of active coil, and a higher superheat results. In addition, the reduced system capacity will decrease the amount of heat removed from the air. There will be higher temperature and relative humidity in the conditioned area and the high side pressure will be low. This starts a reduction in system capacity. The amount of subcooling of the liquid will be in the normal range. The quantity of liquid in the condenser 107 will be higher, but the heat transfer rate of the evaporator 110 is less. The amperage draw of the condensing unit will be less because the compressor 105 is doing less work.
The amount of drop in the condenser 107 ambient air temperature that the air conditioning system will tolerate depends on the type of pressure reducing device in the system. Systems using fixed metering devices will have a gradual reduction in capacity as the outside ambient drops from 95° F. This gradual reduction occurs down to 65° F. Below this temperature the capacity loss is drastic, and some means of maintaining head pressure must be employed to prevent the evaporator 110 temperature from dropping below freezing. Some systems control air through the condenser 107 via dampers in the airstream or a variable speed condenser 107 fan.
Systems that use TXV will maintain higher capacity down to an ambient temperature of 47° F. Below this temperature, controls must be used. The control of airflow through the condenser 107 using dampers or the condenser 107 fan speed control can also be used. In larger TXV systems, liquid quantity in the condenser 107 is used to control head pressure.
The higher the temperature of the air entering the condenser 107, the higher the condensing temperature of the refrigerant vapor to eject the heat in the vapor. The higher the condensing temperature, the higher the head pressure. The suction pressure will be high for two reasons: (1) the pumping efficiency of the compressor 105 will be less; and (2) the higher temperature of the liquid will increase the amount of flash gas in the metering device 109, further reducing the system efficiency.
The amount of superheat produced in the coil will be different in a TXV system and a fixed metering device system. In the TXV system the valve will maintain superheat close to the limits of its adjustment range even though the actual temperatures involved will be higher. In a fixed metering device system, the amount of superheat produced in the coil is the reverse of the temperature of the air through the condenser 107. The flow rate through the fixed metering devices are directly affected by the head pressure. The higher the air temperature, the higher the head pressure and the higher the flow rate. As a result of the higher flow rate, the subcooling is lower.
Table 2 shows the superheat that will be developed in a properly charged air conditioning system using fixed metering devices. The head pressure will be high at the higher ambient temperatures because of the higher condensing temperatures required. The condenser 107 liquid subcooling will be in the lower portion of the normal range. The amount of liquid refrigerant in the condenser 107 will be reduced slightly because more will stay in the vapor state to produce the higher pressure and condensing temperature. The amperage draw of the condensing unit will be high.
A shortage of refrigerant in the system means less liquid refrigerant in the evaporator 110 to pick up heat, and lower suction pressure. The smaller quantity of liquid supplied to the evaporator 110 means less active surface in the coil for vaporizing the liquid refrigerant, and more surface to raise vapor temperature. The superheat will be high. There will be less vapor for the compressor 105 to handle and less heat for the condenser 107 to reject, lower high side pressure, and lower condensing temperature. The compressor 105 in an air conditioning system is cooled primarily by the cool returning suction gas. Compressors 105 that are low on charge can have a much higher operating temperature.
The amount of subcooling will be below normal to none, depending on the amount of undercharge. The system operation is usually not affected very seriously until the subcooling is zero and hot gas starts to leave the condenser 107, together with the liquid refrigerant. The amperage draw of the condensing unit will be slightly less than normal.
An overcharge of refrigerant will affect the system 100 in different ways, depending on the pressure reducing device used in the system 100 and the amount of overcharge.
In systems using a TXV, the valve will attempt to control the refrigerant flow in the coil to maintain the superheat setting of the valve. However, the extra refrigerant will back up into the condenser 107, occupying some of the heat transfer area that would otherwise be available for condensing. As a result, the discharge pressure will be slightly higher than normal, the liquid subcooling will be high, and the unit amperage draw will be high. The suction pressure and evaporator 110 superheat will be normal. Excessive overcharging will cause even higher head pressure, and hunting of the TXV.
For TXV systems with excessive overcharge the suction pressure will typically be high. Not only does the reduction in compressor 105 capacity (due to higher head pressure) raise the suction pressure, but the higher pressure will cause the TXV valve to overfeed on its opening stroke. This will cause a wider range of hunting of the valve. The evaporator 110 superheat will be very erratic from the low normal range to liquid out of the coil. The high side or discharge pressure will be extremely high. Subcooling of the liquid will also be high because of the excessive liquid in the condenser 107. The condensing unit amperage draw will be higher because of the extreme load on the compressor 105 motor.
The amount of refrigerant in the fixed metering system has a direct effect on system performance. An overcharge has a greater effect than an undercharge, but both affect system performance, efficiency (EER), and operating cost.
Overcharge has a similar effect but at a greater reduction rate. The addition of 3 oz of refrigerant (5%) reduces the net capacity to 24,600 Btu/hr; 6 oz added (10%) reduces the capacity to 19,000 Btu/hr; and 8 oz added (15%) drops the capacity to 11,000 Btu/hr. This shows that overcharging of a unit has a greater effect per ounce of refrigerant than does undercharging.
The effect of overcharge produces a high suction pressure because the refrigerant flow to the evaporator 110 increases. Suction superheat decreases because of the additional quantity to the evaporator 110. At approximately 8 to 10% of overcharge, the suction superheat becomes zero and liquid refrigerant will leave the evaporator 110. This causes flooding of the compressor 105 and greatly increases the chance of compressor 105 failure. The high side or discharge pressure is high because of the extra refrigerant in the condenser 107. Liquid subcooling is also high for the same reason. The power draw increases due to the greater amount of vapor pumped as well as the higher compressor 105 discharge pressure.
Restrictions in the liquid line 108 reduce the amount of refrigerant to the metering device 109. Both TXV valve systems and fixed metering device systems will then operate with reduced refrigerant flow rate to the evaporator 110. The following observations can be made of liquid line 108 restrictions. First, the suction pressure will be low because of the reduced amount of refrigerant to the evaporator 110. The suction superheat will be high because of the reduced active portion of the coil, allowing more coil surface for increasing the vapor temperature as well as reducing the refrigerant boiling point. The high side or discharge pressure will be low because of the reduced load on the compressor 105. Liquid subcooling will be high. The liquid refrigerant will accumulate in the condenser 107. It cannot flow out at the proper rate because of the restriction. As a result, the liquid will cool more than desired. Finally, the amperage draw of the condensing unit will be low.
Either a plugged fixed metering device or plugged feeder tube between the TXV valve distributor and the coil will cause part of the coil to be inactive. The system 100 will then be operating with an undersized coil, resulting in low suction pressure because the coil capacity has been reduced. The suction superheat will be high in the fixed metering device systems. The reduced amount of vapor produced in the coil and resultant reduction in suction pressure will reduce compressor 105 capacity, head pressure, and the flow rate of the remaining active capillary tubes. The high side or discharge pressure will be low.
Liquid subcooling will be high; the liquid refrigerant will accumulate in the condenser 107. The unit amperage draw will be low.
In TXV systems, a plugged feeder tube reduces the capacity of the coil. The coil cannot provide enough vapor to satisfy the pumping capacity of the compressor 105 and the suction pressure balances out at a low pressure. The superheat, however, will be in the normal range because the valve will adjust to the lower operating conditions and maintain the setting superheat range. The high side or discharge pressure will be low because of the reduced load on the compressor 105 and the condenser 107.
Low suction and discharge pressures indicate a refrigerant shortage. The liquid subcooling is normal to slightly above normal. This indicates a surplus of refrigerant in the condenser 107. Most of the refrigerant is in the coil, where the evaporation rate is low due to the higher operating pressure in the coil. The amperage draw of the condensing unit would be low because of the light load on the compressor 105.
If the hot gas line 106 is restricted, then the high side or compressor 105 discharge pressure will be high if measured at the compressor 105 outlet or low if measured at the condenser 107 outlet or liquid line 108. In either case, the compressor 105 current draw will be high. The suction pressure is high due to reduced pumping capacity of the compressor 105. The evaporator 110 superheat is high because the suction pressure is high. The high side pressure is high when measured at the compressor 105 discharge or low when measured at the liquid line 108. Liquid subcooling is in the high end of the normal range. Even with all of this, the compressor 105 amperage draw is above normal. All symptoms point to an extreme restriction in the hot gas line 106. This problem is easily found when the discharge pressure is measured at the compressor 105 discharge.
When the measuring point is the liquid line 108 at the condenser 107 outlet, the facts are easily misinterpreted. High suction pressure and low discharge pressure will usually be interpreted as an inefficient compressor 105. The amperage draw of the compressor 105 must be measured. The high amperage draw indicates that the compressor 105 is operating against a high discharge pressure. A restriction apparently exists between the outlet of the compressor 105 and the pressure measuring point.
When the compressor 105 will not pump the required amount of refrigerant vapor (e.g., because it is undersized, or is not working at rated capacity), the suction pressure will balance out higher than normal. The evaporator 110 superheat will be high. The high side or discharge pressure will be extremely low. Liquid subcooling will be low because not much heat will be in the condenser 107. The condensing temperature will therefore be close to the entering air temperature. The amperage draw of the condensing unit will be extremely low, indicating that the compressor 105 is doing very little work.
The following formulas can be used by the systems 900, 1000 to calculate various operating parameters of the system 100 using data from one or more of the sensors shown in
Power is:
Watts=volts×amps×PF
where PF is the power factor.
Heat is:
Btu=W×ΔT
Specific heat is:
Btu=W×c×ΔT
Sensible heat added or removed from a substance is:
Q=W×SH×ΔT
Latent heat added or removed from a substance is:
Q=W×LH
The refrigeration effect is:
where W is weight of refrigerant circulated per minute (e.g., lb/min), 200 Btu/min is the equivalent of 1 ton of refrigeration, and NRE is the net refrigerating effect (Btu/lb of refrigerant).
The coefficient of performance (COP) is:
System capacity is:
Qt=4.45×CFM×Δh
where Qt is the total (sensible and latent) cooling being done, CFM is the airflow across the evaporator 110, and Δh is the change of enthalpy of the air across the coil.
Condensing temperature is:
RCT=EAT+split
where RCT is the refrigerant condensing temperature, EAT is the temperature of the air entering the condenser 107, and split is the design temperature difference between the entering air temperature and the condensing temperatures of the hot high-pressure vapor from the compressor 105.
Net cooling capacity is:
HC=HT−HM
where HT is the heat transfer (gross capacity), HM is the motor heat, and HC is the net cooling capacity.
Airflow rate of a system can be expressed as:
Q=Qs(1.08×TD)
where Q is the flow rate in CFM, Qs is the sensible-heat load in Btu/hr, and TD is the dry bulb temperature difference in ° F.
In a fan, airflow (CFM) is approximately related to rotation (rpm) as follows:
In a fan, pressure is approximately related to rotation as follows:
In a fan, work is approximately related to rotation as follows:
In one embodiment, the tachometer 1033 is provided to measure the rotational velocity of the fan 123. In one embodiment, the tachometer 1032 is provided to measure the rotational velocity of the fan 122. In one embodiment, the system 1000 uses one or more of the above fan equations to calculate desired fan rotation rates. In one embodiment, the system 1000 controls the speed of the fan 123 and/or the fan 122 to increase system efficiency.
The quantity of air used for cooling based on the sensible cooling is approximately:
CFM=Hs(TD×1.08)
The sensible heat removed is:
Qs=1.08×CFM×DBT difference
The latent heat removed is:
QL=0.68×CFM×gr moisture difference
The total heat removed is:
Qt=Qs+QL
or
Qt=4.5×CFM×total heat difference
The rate of heat transfer is:
Q=U×A×TD
where Q is the heat transfer (Btuh), U is the overall heat transfer coefficient (Btuh/ft2/° F.), A is the area (ft2), TD is the temperature difference between inside and outside design temperature and the refrigerated space design temperature.
The keypad 1050 is used to provide control inputs to the efficiency monitoring system. The display 1008 provides feedback to the user, temperature set point display. In one embodiment, the power use and/or power cost can be displayed on the display 1008. In one embodiment, the system 1000 receives rate information from the power company to use in calculating power costs. In one embodiment, the absolute efficiency of the refrigerant-cycle system can be shown on the display 1008. In one embodiment, the relative efficiency of the refrigerant-cycle system can be shown on the display 1008. In one embodiment, the data from various sensors in the system 1000 can be shown on the display 1008. In one embodiment, diagnostic messages (e.g., change the filter, add refrigerant, etc.) are shown on the display 1008. In one embodiment, messages from the power company are shown on the display 1008. In one embodiment, warning messages from the power company are shown on the display 1008. In one embodiment, the thermostat 1001 communicates with the power company (or other remote device) using power line communication methods such as, for example, BPL.
When the system 1000 is configured, the installer programs in the fixed system parameters needed for calculation of efficiency and/or other quantities derived from the sensor data. Typical fixed programmed parameters include the type of refrigerant, the compressor specifications, the condenser specifications, the evaporator specifications, the duct specifications, the fan specifications, the system SEER, and/or other system parameters. Typical fixed programmed parameters can also include equipment model and/or serial numbers, manufacturer data, engineering data, etc.
In one embodiment, the system 1000 is configured by bringing the refrigerant-cycle system up to design specifications, and then running the system 1000 in a calibration mode wherein the system 1000 takes sensor readings to measure normal baseline parameters for the refrigerant-cycle system. Using the measured baseline data, the system 1000 can calculate various system parameters (e.g., split temperatures, etc.).
In one embodiment, the system 1000 is first run in a calibration mode to measure baseline data, and then run in a normal monitoring mode wherein it compares operation of the refrigerant-cycle system with the baseline data. The system 1000 then gives alerts to potential problems when the operating parameters vary too much from the baseline data.
In one embodiment, the system 1000 is configured by using a combination of programmed parameters (e.g., refrigerant type, temperature splits, etc.) and baseline data obtained by operating the refrigerant-cycle system.
Although various embodiments have been described above, other embodiments will be within the skill of one of ordinary skill in the art. Thus, for example, although described primarily in terms of an air-conditioning system, one of ordinary skill in the art will recognize that all or part of the system 1000 can be applied to other refrigerant-cycle systems, such as commercial HVAC systems, refrigerator systems, freezers, water chillers, etc. Thus, the invention is limited only by the claims that follow.
This application is a continuation U.S. patent application Ser. No. 14/727,756, filed Jun. 1, 2015 (now U.S. Pat. No. 9,690,307), which is a continuation of U.S. patent application Ser. No. 13/767,479, filed Feb. 14, 2013 (now U.S. Pat. No. 9,046,900), which is a continuation of U.S. patent application Ser. No. 13/269,188, filed Oct. 7, 2011 (now U.S. Pat. No. 9,304,521), which is a continuation of U.S. patent application Ser. No. 11/779,203, filed Jul. 17, 2007 (now U.S. Pat. No. 8,034,170), which is a continuation of U.S. patent application Ser. No. 11/130,569, filed May 17, 2005 (now U.S. Pat. No. 7,244,294), which is a continuation of U.S. patent application Ser. No. 10/916,222, filed Aug. 11, 2004 (now U.S. Pat. No. 7,275,377). The entire contents of the above applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2054542 | Hoelle | Sep 1936 | A |
2296822 | Wolfert | Sep 1942 | A |
2631050 | Haeberlein | Mar 1953 | A |
2804839 | Hallinan | Sep 1957 | A |
2961606 | Mead | Nov 1960 | A |
2962702 | Derr et al. | Nov 1960 | A |
2978879 | Heidorn | Apr 1961 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3047696 | Heidorn | Jul 1962 | A |
3082951 | Kayan | Mar 1963 | A |
3107843 | Finn | Oct 1963 | A |
3170304 | Hale | Feb 1965 | A |
3232519 | Long | Feb 1966 | A |
3278111 | Parker | Oct 1966 | A |
3327197 | Marquis | Jun 1967 | A |
3339164 | Landis et al. | Aug 1967 | A |
3400374 | Schumann | Sep 1968 | A |
3513662 | Golber | May 1970 | A |
3581281 | Martin et al. | May 1971 | A |
3585451 | Day, III | Jun 1971 | A |
3653783 | Sauder | Apr 1972 | A |
3660718 | Pinckaers | May 1972 | A |
3665339 | Liu | May 1972 | A |
3665399 | Zehr et al. | May 1972 | A |
3680324 | Garland | Aug 1972 | A |
3697953 | Schoenwitz | Oct 1972 | A |
3707851 | McAshan, Jr. | Jan 1973 | A |
3729949 | Talbot | May 1973 | A |
3735377 | Kaufman | May 1973 | A |
3742302 | Neill | Jun 1973 | A |
3742303 | Dageford | Jun 1973 | A |
3767328 | Ladusaw | Oct 1973 | A |
3777240 | Neill | Dec 1973 | A |
3783681 | Hirt et al. | Jan 1974 | A |
3820074 | Toman | Jun 1974 | A |
3882305 | Johnstone | May 1975 | A |
3924972 | Szymaszek | Dec 1975 | A |
3927712 | Nakayama | Dec 1975 | A |
3935519 | Pfarrer et al. | Jan 1976 | A |
3950962 | Odashima | Apr 1976 | A |
3960011 | Renz et al. | Jun 1976 | A |
3978382 | Pfarrer et al. | Aug 1976 | A |
3998068 | Chirnside | Dec 1976 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4014182 | Granryd | Mar 1977 | A |
4018584 | Mullen | Apr 1977 | A |
4019172 | Srodes | Apr 1977 | A |
4024725 | Uchida et al. | May 1977 | A |
4027289 | Toman | May 1977 | A |
4034570 | Anderson et al. | Jul 1977 | A |
4038061 | Anderson et al. | Jul 1977 | A |
4045973 | Anderson et al. | Sep 1977 | A |
4046532 | Nelson | Sep 1977 | A |
RE29450 | Goldsby et al. | Oct 1977 | E |
4060716 | Pekrul et al. | Nov 1977 | A |
4066869 | Apaloo et al. | Jan 1978 | A |
4090248 | Swanson et al. | May 1978 | A |
4102150 | Kountz | Jul 1978 | A |
4102394 | Botts | Jul 1978 | A |
4104888 | Reedy et al. | Aug 1978 | A |
4105063 | Bergt | Aug 1978 | A |
4112703 | Kountz | Sep 1978 | A |
4132086 | Kountz | Jan 1979 | A |
4136730 | Kinsey | Jan 1979 | A |
4137057 | Piet et al. | Jan 1979 | A |
4137725 | Martin | Feb 1979 | A |
4142375 | Abe et al. | Mar 1979 | A |
4143707 | Lewis et al. | Mar 1979 | A |
4146085 | Wills | Mar 1979 | A |
RE29966 | Nussbaum | Apr 1979 | E |
4151725 | Kountz et al. | May 1979 | A |
4153003 | Willis | May 1979 | A |
4156350 | Elliott et al. | May 1979 | A |
4161106 | Savage et al. | Jul 1979 | A |
4165619 | Girard | Aug 1979 | A |
4171622 | Yamaguchi et al. | Oct 1979 | A |
4173871 | Brooks | Nov 1979 | A |
4178988 | Cann et al. | Dec 1979 | A |
RE30242 | del Toro et al. | Apr 1980 | E |
4197717 | Schumacher | Apr 1980 | A |
4205381 | Games et al. | May 1980 | A |
4209994 | Mueller et al. | Jul 1980 | A |
4211089 | Mueller et al. | Jul 1980 | A |
4217761 | Cornaire et al. | Aug 1980 | A |
4220010 | Mueller et al. | Sep 1980 | A |
4227862 | Andrew et al. | Oct 1980 | A |
4232530 | Mueller | Nov 1980 | A |
4233818 | Lastinger | Nov 1980 | A |
4236379 | Mueller | Dec 1980 | A |
4244182 | Behr | Jan 1981 | A |
4246763 | Mueller et al. | Jan 1981 | A |
4248051 | Darcy et al. | Feb 1981 | A |
4251988 | Allard et al. | Feb 1981 | A |
4257795 | Shaw | Mar 1981 | A |
4259847 | Pearse, Jr. | Apr 1981 | A |
4267702 | Houk | May 1981 | A |
4270174 | Karlin et al. | May 1981 | A |
4271898 | Freeman | Jun 1981 | A |
4281358 | Plouffe et al. | Jul 1981 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4286438 | Clarke | Sep 1981 | A |
4290480 | Sulkowski | Sep 1981 | A |
4296727 | Bryan | Oct 1981 | A |
4301660 | Mueller et al. | Nov 1981 | A |
4306293 | Marathe | Dec 1981 | A |
4307775 | Saunders et al. | Dec 1981 | A |
4308725 | Chiyoda | Jan 1982 | A |
4311188 | Kojima et al. | Jan 1982 | A |
4319461 | Shaw | Mar 1982 | A |
4321529 | Simmonds et al. | Mar 1982 | A |
4325223 | Cantley | Apr 1982 | A |
4328678 | Kono et al. | May 1982 | A |
4328680 | Stamp, Jr. et al. | May 1982 | A |
4333316 | Stamp, Jr. et al. | Jun 1982 | A |
4333317 | Sawyer | Jun 1982 | A |
4336001 | Andrew et al. | Jun 1982 | A |
4338790 | Saunders et al. | Jul 1982 | A |
4338791 | Stamp, Jr. et al. | Jul 1982 | A |
4345162 | Hammer et al. | Aug 1982 | A |
4346755 | Alley et al. | Aug 1982 | A |
4350021 | Lundstrom | Sep 1982 | A |
4350023 | Kuwabara et al. | Sep 1982 | A |
4351163 | Johannsen | Sep 1982 | A |
4356703 | Vogel | Nov 1982 | A |
4361273 | Levine et al. | Nov 1982 | A |
4365983 | Abraham et al. | Dec 1982 | A |
4370098 | McClain et al. | Jan 1983 | A |
4372119 | Gillbrand et al. | Feb 1983 | A |
4376926 | Senor | Mar 1983 | A |
4381549 | Stamp, Jr. et al. | Apr 1983 | A |
4382367 | Roberts | May 1983 | A |
4384462 | Overman et al. | May 1983 | A |
4387368 | Day, III et al. | Jun 1983 | A |
4387578 | Paddock | Jun 1983 | A |
4390058 | Otake et al. | Jun 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4390922 | Pelliccia | Jun 1983 | A |
4395886 | Mayer | Aug 1983 | A |
4395887 | Sweetman | Aug 1983 | A |
4399548 | Castleberry | Aug 1983 | A |
4402054 | Osborne et al. | Aug 1983 | A |
4406133 | Saunders et al. | Sep 1983 | A |
4407138 | Mueller | Oct 1983 | A |
4408660 | Sutoh et al. | Oct 1983 | A |
4412788 | Shaw et al. | Nov 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4418388 | Allgor et al. | Nov 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4425010 | Bryant et al. | Jan 1984 | A |
4429578 | Darrel et al. | Feb 1984 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4434390 | Elms | Feb 1984 | A |
4441329 | Dawley | Apr 1984 | A |
4448038 | Barbier | May 1984 | A |
4449375 | Briccetti | May 1984 | A |
4451929 | Yoshida | May 1984 | A |
4460123 | Beverly | Jul 1984 | A |
4463571 | Wiggs | Aug 1984 | A |
4463574 | Spethmann et al. | Aug 1984 | A |
4463576 | Burnett et al. | Aug 1984 | A |
4465229 | Kompelien | Aug 1984 | A |
4467230 | Rovinsky | Aug 1984 | A |
4467385 | Bandoli et al. | Aug 1984 | A |
4467613 | Behr et al. | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4470266 | Briccetti et al. | Sep 1984 | A |
4474024 | Eplett et al. | Oct 1984 | A |
4474542 | Kato et al. | Oct 1984 | A |
4479389 | Anderson, III et al. | Oct 1984 | A |
4484452 | Houser, Jr. | Nov 1984 | A |
4489551 | Watanabe et al. | Dec 1984 | A |
4490986 | Paddock | Jan 1985 | A |
4494383 | Nagatomo et al. | Jan 1985 | A |
4495779 | Tanaka et al. | Jan 1985 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497031 | Froehling et al. | Jan 1985 | A |
4498310 | Imanishi et al. | Feb 1985 | A |
4499739 | Matsuoka et al. | Feb 1985 | A |
4502084 | Hannett | Feb 1985 | A |
4502833 | Hibino et al. | Mar 1985 | A |
4502842 | Currier et al. | Mar 1985 | A |
4502843 | Martin | Mar 1985 | A |
4505125 | Baglione | Mar 1985 | A |
4506518 | Yoshikawa et al. | Mar 1985 | A |
4507934 | Tanaka et al. | Apr 1985 | A |
4510547 | Rudich, Jr. | Apr 1985 | A |
4510576 | MacArthur et al. | Apr 1985 | A |
4512161 | Logan et al. | Apr 1985 | A |
4516407 | Watabe | May 1985 | A |
4517468 | Kemper et al. | May 1985 | A |
4520674 | Canada et al. | Jun 1985 | A |
4523435 | Lord | Jun 1985 | A |
4523436 | Schedel et al. | Jun 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4527399 | Lord | Jul 1985 | A |
4535607 | Mount | Aug 1985 | A |
4538420 | Nelson | Sep 1985 | A |
4538422 | Mount et al. | Sep 1985 | A |
4539820 | Zinsmeyer | Sep 1985 | A |
4540040 | Fukumoto et al. | Sep 1985 | A |
4545210 | Lord | Oct 1985 | A |
4545214 | Kinoshita | Oct 1985 | A |
4548549 | Murphy et al. | Oct 1985 | A |
4549403 | Lord et al. | Oct 1985 | A |
4549404 | Lord | Oct 1985 | A |
4550770 | Nussdorfer et al. | Nov 1985 | A |
4553400 | Branz | Nov 1985 | A |
4555057 | Foster | Nov 1985 | A |
4555910 | Sturges | Dec 1985 | A |
4557317 | Harmon, Jr. | Dec 1985 | A |
4558181 | Blanchard et al. | Dec 1985 | A |
4561260 | Nishi et al. | Dec 1985 | A |
4563624 | Yu | Jan 1986 | A |
4563877 | Harnish | Jan 1986 | A |
4563878 | Baglione | Jan 1986 | A |
4567733 | Mecozzi | Feb 1986 | A |
4568909 | Whynacht | Feb 1986 | A |
4574871 | Parkinson et al. | Mar 1986 | A |
4575318 | Blain | Mar 1986 | A |
4577977 | Pejsa | Mar 1986 | A |
4580947 | Shibata et al. | Apr 1986 | A |
4583373 | Shaw | Apr 1986 | A |
4589060 | Zinsmeyer | May 1986 | A |
4593367 | Slack et al. | Jun 1986 | A |
4598764 | Beckey | Jul 1986 | A |
4602484 | Bendikson | Jul 1986 | A |
4603556 | Suefuji et al. | Aug 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4611470 | Enstrom | Sep 1986 | A |
4612775 | Branz et al. | Sep 1986 | A |
4614089 | Dorsey | Sep 1986 | A |
4617804 | Fukushima et al. | Oct 1986 | A |
4620286 | Smith et al. | Oct 1986 | A |
4620424 | Tanaka et al. | Nov 1986 | A |
4621502 | Ibrahim et al. | Nov 1986 | A |
4626753 | Letterman | Dec 1986 | A |
4627245 | Levine | Dec 1986 | A |
4627483 | Harshbarger, III et al. | Dec 1986 | A |
4627484 | Harshbarger, Jr. et al. | Dec 1986 | A |
4630572 | Evans | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642034 | Terauchi | Feb 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4646532 | Nose | Mar 1987 | A |
4648044 | Hardy et al. | Mar 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4649710 | Inoue et al. | Mar 1987 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4653285 | Pohl | Mar 1987 | A |
4655688 | Bohn et al. | Apr 1987 | A |
4660386 | Hansen et al. | Apr 1987 | A |
4662184 | Pohl et al. | May 1987 | A |
4674292 | Ohya et al. | Jun 1987 | A |
4677830 | Sumikawa et al. | Jul 1987 | A |
4680940 | Vaughn | Jul 1987 | A |
4682473 | Rogers, III | Jul 1987 | A |
4684060 | Adams et al. | Aug 1987 | A |
4685615 | Hart | Aug 1987 | A |
4686835 | Alsenz | Aug 1987 | A |
4689967 | Han et al. | Sep 1987 | A |
4697431 | Alsenz | Oct 1987 | A |
4698978 | Jones | Oct 1987 | A |
4698981 | Kaneko et al. | Oct 1987 | A |
4701824 | Beggs et al. | Oct 1987 | A |
4703325 | Chamberlin et al. | Oct 1987 | A |
4706152 | DeFilippis et al. | Nov 1987 | A |
4706469 | Oguni et al. | Nov 1987 | A |
4712648 | Mattes et al. | Dec 1987 | A |
4713717 | Pejouhy et al. | Dec 1987 | A |
4715190 | Han et al. | Dec 1987 | A |
4715792 | Nishizawa et al. | Dec 1987 | A |
4716582 | Blanchard et al. | Dec 1987 | A |
4716957 | Thompson et al. | Jan 1988 | A |
4720980 | Howland | Jan 1988 | A |
4722018 | Pohl | Jan 1988 | A |
4722019 | Pohl | Jan 1988 | A |
4724678 | Pohl | Feb 1988 | A |
4735054 | Beckey | Apr 1988 | A |
4735060 | Alsenz | Apr 1988 | A |
4744223 | Umezu | May 1988 | A |
4745765 | Pettitt | May 1988 | A |
4745766 | Bahr | May 1988 | A |
4745767 | Ohya et al. | May 1988 | A |
4750332 | Jenski et al. | Jun 1988 | A |
4750672 | Beckey et al. | Jun 1988 | A |
4751501 | Gut | Jun 1988 | A |
4751825 | Voorhis et al. | Jun 1988 | A |
4754410 | Leech et al. | Jun 1988 | A |
4755957 | White et al. | Jul 1988 | A |
4765150 | Persem | Aug 1988 | A |
4768346 | Mathur | Sep 1988 | A |
4768348 | Noguchi | Sep 1988 | A |
4783752 | Kaplan et al. | Nov 1988 | A |
4787213 | Gras et al. | Nov 1988 | A |
4790142 | Beckey | Dec 1988 | A |
4796142 | Libert | Jan 1989 | A |
4796466 | Farmer | Jan 1989 | A |
4798055 | Murray et al. | Jan 1989 | A |
4805118 | Rishel | Feb 1989 | A |
4807445 | Matsuoka et al. | Feb 1989 | A |
4820130 | Eber et al. | Apr 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4831560 | Zaleski | May 1989 | A |
4831832 | Alsenz | May 1989 | A |
4831833 | Duenes et al. | May 1989 | A |
4835706 | Asahi | May 1989 | A |
4835980 | Oyanagi et al. | Jun 1989 | A |
4838037 | Wood | Jun 1989 | A |
4841734 | Torrence | Jun 1989 | A |
4843575 | Crane | Jun 1989 | A |
4845956 | Berntsen et al. | Jul 1989 | A |
4848099 | Beckey et al. | Jul 1989 | A |
4848100 | Barthel et al. | Jul 1989 | A |
4850198 | Helt et al. | Jul 1989 | A |
4850204 | Bos et al. | Jul 1989 | A |
4852363 | Kampf et al. | Aug 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4856286 | Sulfstede et al. | Aug 1989 | A |
4858676 | Bolfik et al. | Aug 1989 | A |
4866635 | Kahn et al. | Sep 1989 | A |
4866944 | Yamazaki | Sep 1989 | A |
4869073 | Kawai et al. | Sep 1989 | A |
4873836 | Thompson | Oct 1989 | A |
4875589 | Lacey et al. | Oct 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4878355 | Beckey et al. | Nov 1989 | A |
4881184 | Abegg, III et al. | Nov 1989 | A |
4882747 | Williams | Nov 1989 | A |
4882908 | White | Nov 1989 | A |
4884412 | Sellers et al. | Dec 1989 | A |
4885707 | Nichol et al. | Dec 1989 | A |
4885914 | Pearman | Dec 1989 | A |
4887436 | Enomoto et al. | Dec 1989 | A |
4887857 | VanOmmeren | Dec 1989 | A |
4889280 | Grald et al. | Dec 1989 | A |
4893480 | Matsui et al. | Jan 1990 | A |
4899551 | Weintraub | Feb 1990 | A |
4903500 | Hanson | Feb 1990 | A |
4903759 | Lapeyrouse | Feb 1990 | A |
4904993 | Sato | Feb 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909076 | Busch et al. | Mar 1990 | A |
4910966 | Levine et al. | Mar 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4916633 | Tychonievich et al. | Apr 1990 | A |
4916909 | Mathur et al. | Apr 1990 | A |
4916912 | Levine et al. | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918932 | Gustafson et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4924418 | Bachman et al. | May 1990 | A |
4928750 | Nurczyk | May 1990 | A |
4932588 | Fedter et al. | Jun 1990 | A |
4939909 | Tsuchiyama et al. | Jul 1990 | A |
4943003 | Shimizu et al. | Jul 1990 | A |
4944160 | Malone et al. | Jul 1990 | A |
4945491 | Rishel | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4949550 | Hanson | Aug 1990 | A |
4953784 | Yasufuku et al. | Sep 1990 | A |
4959970 | Meckler | Oct 1990 | A |
4964060 | Hartsog | Oct 1990 | A |
4964125 | Kim | Oct 1990 | A |
4966006 | Thuesen et al. | Oct 1990 | A |
4967567 | Proctor et al. | Nov 1990 | A |
4970496 | Kirkpatrick | Nov 1990 | A |
4974427 | Diab | Dec 1990 | A |
4974665 | Zillner, Jr. | Dec 1990 | A |
4975024 | Heckel | Dec 1990 | A |
4977751 | Hanson | Dec 1990 | A |
4985857 | Bajpai et al. | Jan 1991 | A |
4987748 | Meckler | Jan 1991 | A |
4990057 | Rollins | Feb 1991 | A |
4990893 | Kiluk | Feb 1991 | A |
4991770 | Bird et al. | Feb 1991 | A |
5000009 | Clanin | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5009074 | Goubeaux et al. | Apr 1991 | A |
5009075 | Okoren | Apr 1991 | A |
5009076 | Winslow | Apr 1991 | A |
5012629 | Rehman et al. | May 1991 | A |
5018357 | Livingstone et al. | May 1991 | A |
5018665 | Sulmone | May 1991 | A |
RE33620 | Persem | Jun 1991 | E |
5022234 | Goubeaux et al. | Jun 1991 | A |
5039009 | Baldwin et al. | Aug 1991 | A |
5042264 | Dudley | Aug 1991 | A |
5051720 | Kittirutsunetorn | Sep 1991 | A |
5054294 | Dudley | Oct 1991 | A |
5056036 | Van Bork | Oct 1991 | A |
5056329 | Wilkinson | Oct 1991 | A |
5058388 | Shaw et al. | Oct 1991 | A |
5062278 | Sugiyama | Nov 1991 | A |
5065593 | Dudley et al. | Nov 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
RE33775 | Behr et al. | Dec 1991 | E |
5070468 | Niinomi et al. | Dec 1991 | A |
5071065 | Aalto et al. | Dec 1991 | A |
5073091 | Burgess et al. | Dec 1991 | A |
5073862 | Carlson | Dec 1991 | A |
5076067 | Prenger et al. | Dec 1991 | A |
5076494 | Ripka | Dec 1991 | A |
5077983 | Dudley | Jan 1992 | A |
5083438 | McMullin | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088297 | Maruyama et al. | Feb 1992 | A |
5094086 | Shyu | Mar 1992 | A |
5095712 | Narreau | Mar 1992 | A |
5095715 | Dudley | Mar 1992 | A |
5099654 | Baruschke et al. | Mar 1992 | A |
5102316 | Caillat et al. | Apr 1992 | A |
5103391 | Barrett | Apr 1992 | A |
5107500 | Wakamoto et al. | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5109676 | Waters et al. | May 1992 | A |
5109700 | Hicho | May 1992 | A |
5109916 | Thompson | May 1992 | A |
5115406 | Zatezalo et al. | May 1992 | A |
5115643 | Hayata et al. | May 1992 | A |
5115644 | Alsenz | May 1992 | A |
5115967 | Wedekind | May 1992 | A |
5118260 | Fraser, Jr. | Jun 1992 | A |
5119466 | Suzuki | Jun 1992 | A |
5119637 | Bard et al. | Jun 1992 | A |
5121610 | Atkinson et al. | Jun 1992 | A |
5123017 | Simpkins et al. | Jun 1992 | A |
5123252 | Hanson | Jun 1992 | A |
5123253 | Hanson et al. | Jun 1992 | A |
5123255 | Ohizumi | Jun 1992 | A |
5125067 | Erdman | Jun 1992 | A |
RE34001 | Wrobel | Jul 1992 | E |
5127232 | Paige et al. | Jul 1992 | A |
5131237 | Valbjorn | Jul 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5140394 | Cobb, III et al. | Aug 1992 | A |
5141407 | Ramsey et al. | Aug 1992 | A |
5142877 | Shimizu | Sep 1992 | A |
5150584 | Tomasov et al. | Sep 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
5167494 | Inagaki et al. | Dec 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5170936 | Kubo et al. | Dec 1992 | A |
5181389 | Hanson et al. | Jan 1993 | A |
5186014 | Runk | Feb 1993 | A |
5197666 | Wedekind | Mar 1993 | A |
5199855 | Nakajima et al. | Apr 1993 | A |
5200872 | D'Entremont et al. | Apr 1993 | A |
5200987 | Gray | Apr 1993 | A |
5201862 | Pettitt | Apr 1993 | A |
5203178 | Shyu | Apr 1993 | A |
5203179 | Powell | Apr 1993 | A |
5209076 | Kauffman et al. | May 1993 | A |
5209400 | Winslow et al. | May 1993 | A |
5219041 | Greve | Jun 1993 | A |
5224354 | Ito et al. | Jul 1993 | A |
5224835 | Oltman | Jul 1993 | A |
5226472 | Benevelli et al. | Jul 1993 | A |
5228300 | Shim | Jul 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5228307 | Koce | Jul 1993 | A |
5230223 | Hullar et al. | Jul 1993 | A |
5231844 | Park | Aug 1993 | A |
5233841 | Jyrek | Aug 1993 | A |
5235526 | Saffell | Aug 1993 | A |
5237830 | Grant | Aug 1993 | A |
5241664 | Ohba et al. | Aug 1993 | A |
5241833 | Ohkoshi | Sep 1993 | A |
5243827 | Hagita et al. | Sep 1993 | A |
5243829 | Bessler | Sep 1993 | A |
5245833 | Mei et al. | Sep 1993 | A |
5248244 | Ho et al. | Sep 1993 | A |
5251453 | Stanke et al. | Oct 1993 | A |
5251454 | Yoon | Oct 1993 | A |
5255977 | Eimer et al. | Oct 1993 | A |
5257506 | DeWolf et al. | Nov 1993 | A |
5262704 | Farr | Nov 1993 | A |
5265434 | Alsenz | Nov 1993 | A |
5269458 | Sol | Dec 1993 | A |
5271556 | Helt et al. | Dec 1993 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5279458 | DeWolf et al. | Jan 1994 | A |
5282728 | Swain | Feb 1994 | A |
5284026 | Powell | Feb 1994 | A |
5285646 | TaeDuk | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5290154 | Kotlarek et al. | Mar 1994 | A |
5291752 | Alvarez et al. | Mar 1994 | A |
5299504 | Abele | Apr 1994 | A |
5303112 | Zulaski et al. | Apr 1994 | A |
5303560 | Hanson et al. | Apr 1994 | A |
5311451 | Barrett | May 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5320506 | Fogt | Jun 1994 | A |
5333460 | Lewis et al. | Aug 1994 | A |
5335507 | Powell | Aug 1994 | A |
5336058 | Yokoyama | Aug 1994 | A |
5337576 | Dorfman et al. | Aug 1994 | A |
5347476 | McBean, Sr. | Sep 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5362206 | Westerman et al. | Nov 1994 | A |
5362211 | Iizuka et al. | Nov 1994 | A |
5368446 | Rode | Nov 1994 | A |
5369958 | Kasai et al. | Dec 1994 | A |
5381669 | Bahel et al. | Jan 1995 | A |
5381692 | Winslow et al. | Jan 1995 | A |
5388176 | Dykstra et al. | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5414792 | Shorey | May 1995 | A |
5415008 | Bessler | May 1995 | A |
5416781 | Ruiz | May 1995 | A |
5423190 | Friedland | Jun 1995 | A |
5423192 | Young et al. | Jun 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5432500 | Scripps | Jul 1995 | A |
5435145 | Jaster | Jul 1995 | A |
5435148 | Sandofsky et al. | Jul 1995 | A |
5440890 | Bahel et al. | Aug 1995 | A |
5440891 | Hindmon, Jr. et al. | Aug 1995 | A |
5440895 | Bahel et al. | Aug 1995 | A |
5446677 | Jensen et al. | Aug 1995 | A |
5450359 | Sharma et al. | Sep 1995 | A |
5452291 | Eisenhandler et al. | Sep 1995 | A |
5454229 | Hanson et al. | Oct 1995 | A |
5457965 | Blair et al. | Oct 1995 | A |
5460006 | Torimitsu | Oct 1995 | A |
5467011 | Hunt | Nov 1995 | A |
5467264 | Rauch et al. | Nov 1995 | A |
5469045 | Dove et al. | Nov 1995 | A |
5475986 | Bahel et al. | Dec 1995 | A |
5478212 | Sakai et al. | Dec 1995 | A |
5481481 | Frey et al. | Jan 1996 | A |
5481884 | Scoccia | Jan 1996 | A |
5483141 | Uesugi | Jan 1996 | A |
5491978 | Young et al. | Feb 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5499512 | Jurewicz et al. | Mar 1996 | A |
5509786 | Mizutani et al. | Apr 1996 | A |
5511387 | Tinsler | Apr 1996 | A |
5512883 | Lane, Jr. | Apr 1996 | A |
5515267 | Alsenz | May 1996 | A |
5515692 | Sterber et al. | May 1996 | A |
5519301 | Yoshida et al. | May 1996 | A |
5519337 | Casada | May 1996 | A |
5528908 | Bahel et al. | Jun 1996 | A |
5532534 | Baker et al. | Jul 1996 | A |
5533347 | Ott et al. | Jul 1996 | A |
5535136 | Standifer | Jul 1996 | A |
5535597 | An | Jul 1996 | A |
5546015 | Okabe | Aug 1996 | A |
5546073 | Duff et al. | Aug 1996 | A |
5546756 | Ali | Aug 1996 | A |
5546757 | Whipple, III | Aug 1996 | A |
5548966 | Tinsler | Aug 1996 | A |
5555195 | Jensen et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5563490 | Kawaguchi et al. | Oct 1996 | A |
5564280 | Schilling et al. | Oct 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5570085 | Bertsch | Oct 1996 | A |
5570258 | Manning | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5577905 | Momber et al. | Nov 1996 | A |
5579648 | Hanson et al. | Dec 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5586445 | Bessler | Dec 1996 | A |
5586446 | Torimitsu | Dec 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5592058 | Archer et al. | Jan 1997 | A |
5592824 | Sogabe et al. | Jan 1997 | A |
5596507 | Jones et al. | Jan 1997 | A |
5600960 | Schwedler et al. | Feb 1997 | A |
5602749 | Vosburgh | Feb 1997 | A |
5602757 | Haseley et al. | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5610339 | Haseley et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5615071 | Higashikata et al. | Mar 1997 | A |
5616829 | Balaschak et al. | Apr 1997 | A |
5623834 | Bahel et al. | Apr 1997 | A |
5628201 | Bahel et al. | May 1997 | A |
5630325 | Bahel et al. | May 1997 | A |
5635896 | Tinsley et al. | Jun 1997 | A |
5641270 | Sgourakes et al. | Jun 1997 | A |
5643482 | Sandelman et al. | Jul 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5651263 | Nonaka et al. | Jul 1997 | A |
5655379 | Jaster et al. | Aug 1997 | A |
5655380 | Calton | Aug 1997 | A |
5656765 | Gray | Aug 1997 | A |
5656767 | Garvey, III et al. | Aug 1997 | A |
5666815 | Aloise | Sep 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5689963 | Bahel et al. | Nov 1997 | A |
5691692 | Herbstritt | Nov 1997 | A |
5694010 | Oomura et al. | Dec 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5699670 | Jurewicz et al. | Dec 1997 | A |
5706007 | Fragnito et al. | Jan 1998 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5711785 | Maxwell | Jan 1998 | A |
5713724 | Centers et al. | Feb 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715704 | Cholkeri et al. | Feb 1998 | A |
5718822 | Richter | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5737931 | Ueno et al. | Apr 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5743109 | Schulak | Apr 1998 | A |
5745114 | King et al. | Apr 1998 | A |
5749238 | Schmidt | May 1998 | A |
5751916 | Kon et al. | May 1998 | A |
5752385 | Nelson | May 1998 | A |
5754450 | Solomon et al. | May 1998 | A |
5754732 | Vlahu | May 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5757892 | Blanchard et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764509 | Gross et al. | Jun 1998 | A |
5772214 | Stark | Jun 1998 | A |
5772403 | Allison et al. | Jun 1998 | A |
5782101 | Dennis | Jul 1998 | A |
5784232 | Farr | Jul 1998 | A |
5790898 | Kishima et al. | Aug 1998 | A |
5795381 | Holder | Aug 1998 | A |
5798941 | McLeister | Aug 1998 | A |
5802860 | Barrows | Sep 1998 | A |
5805856 | Hanson | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5812061 | Simons | Sep 1998 | A |
5825597 | Young | Oct 1998 | A |
5827963 | Selegatto et al. | Oct 1998 | A |
5839094 | French | Nov 1998 | A |
5839291 | Chang et al. | Nov 1998 | A |
5841654 | Verissimo et al. | Nov 1998 | A |
5857348 | Conry | Jan 1999 | A |
5860286 | Tulpule | Jan 1999 | A |
5861807 | Leyden et al. | Jan 1999 | A |
5867998 | Guertin | Feb 1999 | A |
5869960 | Brand | Feb 1999 | A |
5873257 | Peterson | Feb 1999 | A |
5875430 | Koether | Feb 1999 | A |
5875638 | Tinsler | Mar 1999 | A |
5884494 | Okoren et al. | Mar 1999 | A |
5887786 | Sandelman | Mar 1999 | A |
5900801 | Heagle et al. | May 1999 | A |
5904049 | Jaster et al. | May 1999 | A |
5918200 | Tsutsui et al. | Jun 1999 | A |
5924295 | Park | Jul 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5934087 | Watanabe et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5946922 | Viard et al. | Sep 1999 | A |
5947693 | Yang | Sep 1999 | A |
5947701 | Hugenroth | Sep 1999 | A |
5949677 | Ho | Sep 1999 | A |
5950443 | Meyer et al. | Sep 1999 | A |
5953490 | Wiklund et al. | Sep 1999 | A |
5956658 | McMahon | Sep 1999 | A |
5971712 | Kann | Oct 1999 | A |
5975854 | Culp, III et al. | Nov 1999 | A |
5984645 | Cummings | Nov 1999 | A |
5986571 | Flick | Nov 1999 | A |
5987903 | Bathla | Nov 1999 | A |
5988986 | Brinken et al. | Nov 1999 | A |
5995347 | Rudd et al. | Nov 1999 | A |
5995351 | Katsumata et al. | Nov 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6006171 | Vines et al. | Dec 1999 | A |
6011368 | Kalpathi et al. | Jan 2000 | A |
6013108 | Karolys et al. | Jan 2000 | A |
6017192 | Clack et al. | Jan 2000 | A |
6020702 | Farr | Feb 2000 | A |
6023420 | McCormick et al. | Feb 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6035653 | Itoh et al. | Mar 2000 | A |
6035661 | Sunaga et al. | Mar 2000 | A |
6038871 | Gutierrez et al. | Mar 2000 | A |
6041605 | Heinrichs | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6042344 | Lifson | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6050098 | Meyer et al. | Apr 2000 | A |
6050780 | Hasegawa et al. | Apr 2000 | A |
6052731 | Holdsworth et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6068447 | Foege | May 2000 | A |
6070110 | Shah et al. | May 2000 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6077051 | Centers et al. | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6082495 | Steinbarger et al. | Jul 2000 | A |
6082971 | Gunn et al. | Jul 2000 | A |
6085530 | Barito | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6092370 | Tremoulet, Jr. et al. | Jul 2000 | A |
6092378 | Das et al. | Jul 2000 | A |
6092992 | Imblum et al. | Jul 2000 | A |
6095674 | Verissimo et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110260 | Kubokawa | Aug 2000 | A |
6119949 | Lindstrom | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6128583 | Dowling | Oct 2000 | A |
6128953 | Mizukoshi | Oct 2000 | A |
6129527 | Donahoe et al. | Oct 2000 | A |
6138461 | Park et al. | Oct 2000 | A |
6142741 | Nishihata et al. | Nov 2000 | A |
6144888 | Lucas et al. | Nov 2000 | A |
6145328 | Choi | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6152376 | Sandelman et al. | Nov 2000 | A |
6153942 | Roseman et al. | Nov 2000 | A |
6153993 | Oomura et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6157310 | Milne et al. | Dec 2000 | A |
6158230 | Katsuki | Dec 2000 | A |
6160477 | Sandelman et al. | Dec 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172476 | Tolbert, Jr. et al. | Jan 2001 | B1 |
6174136 | Kilayko et al. | Jan 2001 | B1 |
6176683 | Yang | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6177884 | Hunt et al. | Jan 2001 | B1 |
6178362 | Woolard et al. | Jan 2001 | B1 |
6179214 | Key et al. | Jan 2001 | B1 |
6181033 | Wright | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6191545 | Kawabata et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6215405 | Handley et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6223543 | Sandelman | May 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6228155 | Tai | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234019 | Caldeira | May 2001 | B1 |
6240733 | Brandon et al. | Jun 2001 | B1 |
6240736 | Fujita et al. | Jun 2001 | B1 |
6244061 | Takagi et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6260004 | Hays et al. | Jul 2001 | B1 |
6266968 | Redlich | Jul 2001 | B1 |
6268664 | Rolls et al. | Jul 2001 | B1 |
6272868 | Grabon et al. | Aug 2001 | B1 |
6276901 | Farr et al. | Aug 2001 | B1 |
6279332 | Yeo et al. | Aug 2001 | B1 |
6290043 | Ginder et al. | Sep 2001 | B1 |
6293114 | Kamemoto | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6302654 | Millet et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6320275 | Okamoto et al. | Nov 2001 | B1 |
6324854 | Jayanth | Dec 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6332327 | Street et al. | Dec 2001 | B1 |
6334093 | More | Dec 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6359410 | Randolph | Mar 2002 | B1 |
6360551 | Renders | Mar 2002 | B1 |
6366889 | Zaloom | Apr 2002 | B1 |
6368065 | Hugenroth et al. | Apr 2002 | B1 |
6375439 | Missio | Apr 2002 | B1 |
6378315 | Gelber et al. | Apr 2002 | B1 |
6381971 | Honda | May 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6389823 | Loprete et al. | May 2002 | B1 |
6390779 | Cunkelman | May 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6397606 | Roh et al. | Jun 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6406266 | Hugenroth et al. | Jun 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6408258 | Richer | Jun 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6414594 | Guerlain | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6433791 | Selli et al. | Aug 2002 | B2 |
6437691 | Sandelman et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438981 | Whiteside | Aug 2002 | B1 |
6442953 | Trigiani et al. | Sep 2002 | B1 |
6449972 | Pham et al. | Sep 2002 | B2 |
6450771 | Centers et al. | Sep 2002 | B1 |
6451210 | Sivavec et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6454177 | Sasao et al. | Sep 2002 | B1 |
6454538 | Witham et al. | Sep 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6457319 | Ota et al. | Oct 2002 | B1 |
6457948 | Pham | Oct 2002 | B1 |
6460731 | Estelle et al. | Oct 2002 | B2 |
6462654 | Sandelman et al. | Oct 2002 | B1 |
6463747 | Temple | Oct 2002 | B1 |
6466971 | Humpleman et al. | Oct 2002 | B1 |
6467280 | Pham et al. | Oct 2002 | B2 |
6471486 | Centers et al. | Oct 2002 | B1 |
6474084 | Gauthier et al. | Nov 2002 | B2 |
6484520 | Kawaguchi et al. | Nov 2002 | B2 |
6487457 | Hull et al. | Nov 2002 | B1 |
6490506 | March | Dec 2002 | B1 |
6492923 | Inoue et al. | Dec 2002 | B1 |
6497554 | Yang et al. | Dec 2002 | B2 |
6501240 | Ueda et al. | Dec 2002 | B2 |
6501629 | Marriott | Dec 2002 | B1 |
6502409 | Gatling et al. | Jan 2003 | B1 |
6505087 | Lucas et al. | Jan 2003 | B1 |
6505475 | Zugibe et al. | Jan 2003 | B1 |
6510350 | Steen, III et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6523130 | Hickman et al. | Feb 2003 | B1 |
6526766 | Hiraoka et al. | Mar 2003 | B1 |
6529590 | Centers | Mar 2003 | B1 |
6529839 | Uggerud et al. | Mar 2003 | B1 |
6533552 | Centers et al. | Mar 2003 | B2 |
6535123 | Sandelman et al. | Mar 2003 | B2 |
6535270 | Murayama | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6537034 | Park et al. | Mar 2003 | B2 |
6542062 | Herrick | Apr 2003 | B1 |
6549135 | Singh et al. | Apr 2003 | B2 |
6551069 | Narney, II et al. | Apr 2003 | B2 |
6553774 | Ishio et al. | Apr 2003 | B1 |
6558126 | Hahn et al. | May 2003 | B1 |
6560976 | Jayanth | May 2003 | B2 |
6571280 | Hubacher | May 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6571586 | Ritson et al. | Jun 2003 | B1 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6577959 | Chajec et al. | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6589029 | Heller | Jul 2003 | B1 |
6591620 | Kikuchi et al. | Jul 2003 | B2 |
6595475 | Svabek et al. | Jul 2003 | B2 |
6595757 | Shen | Jul 2003 | B2 |
6598056 | Hull et al. | Jul 2003 | B1 |
6601397 | Pham et al. | Aug 2003 | B2 |
6604093 | Etzion et al. | Aug 2003 | B1 |
6609070 | Lueck | Aug 2003 | B1 |
6609078 | Starling et al. | Aug 2003 | B2 |
6615594 | Jayanth et al. | Sep 2003 | B2 |
6616415 | Renken et al. | Sep 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6621443 | Selli et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6629420 | Renders | Oct 2003 | B2 |
6630749 | Takagi et al. | Oct 2003 | B1 |
6631298 | Pagnano et al. | Oct 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6647735 | Street et al. | Nov 2003 | B2 |
6658345 | Miller | Dec 2003 | B2 |
6658373 | Rossi et al. | Dec 2003 | B2 |
6662584 | Whiteside | Dec 2003 | B1 |
6662653 | Scaliante et al. | Dec 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6672846 | Rajendran et al. | Jan 2004 | B2 |
6675591 | Singh et al. | Jan 2004 | B2 |
6679072 | Pham et al. | Jan 2004 | B2 |
6681582 | Suzuki et al. | Jan 2004 | B2 |
6684349 | Gullo et al. | Jan 2004 | B2 |
6685438 | Yoo et al. | Feb 2004 | B2 |
6698218 | Goth et al. | Mar 2004 | B2 |
6701725 | Rossi et al. | Mar 2004 | B2 |
6708083 | Orthlieb et al. | Mar 2004 | B2 |
6708508 | Demuth et al. | Mar 2004 | B2 |
6709244 | Pham | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6711911 | Grabon et al. | Mar 2004 | B1 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6721770 | Morton et al. | Apr 2004 | B1 |
6725182 | Pagnano et al. | Apr 2004 | B2 |
6732538 | Trigiani et al. | May 2004 | B2 |
6745107 | Miller | Jun 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6757665 | Unsworth et al. | Jun 2004 | B1 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6758051 | Jayanth et al. | Jul 2004 | B2 |
6760207 | Wyatt et al. | Jul 2004 | B2 |
6772096 | Murakami et al. | Aug 2004 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6775995 | Bahel et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6786473 | Alles | Sep 2004 | B1 |
6799951 | Lifson et al. | Oct 2004 | B2 |
6804993 | Selli | Oct 2004 | B2 |
6811380 | Kim | Nov 2004 | B2 |
6813897 | Bash et al. | Nov 2004 | B1 |
6816811 | Seem | Nov 2004 | B2 |
6823680 | Jayanth | Nov 2004 | B2 |
6829542 | Reynolds et al. | Dec 2004 | B1 |
6832120 | Frank et al. | Dec 2004 | B1 |
6832898 | Yoshida et al. | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6837922 | Gorin | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6854345 | Alves et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6868678 | Mei et al. | Mar 2005 | B2 |
6868686 | Ueda et al. | Mar 2005 | B2 |
6869272 | Odachi et al. | Mar 2005 | B2 |
6870486 | Souza et al. | Mar 2005 | B2 |
6885949 | Selli | Apr 2005 | B2 |
6889173 | Singh | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6892546 | Singh et al. | May 2005 | B2 |
6897772 | Scheffler et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6901066 | Helgeson | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922155 | Evans et al. | Jul 2005 | B1 |
6931445 | Davis | Aug 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6952658 | Greulich et al. | Oct 2005 | B2 |
6953630 | Wells | Oct 2005 | B2 |
6956344 | Robertson et al. | Oct 2005 | B2 |
6964558 | Hahn et al. | Nov 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6968295 | Carr | Nov 2005 | B1 |
6973410 | Seigel | Dec 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
6973794 | Street et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6978225 | Retlich et al. | Dec 2005 | B2 |
6981384 | Dobmeier et al. | Jan 2006 | B2 |
6983321 | Trinon et al. | Jan 2006 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6986469 | Gauthier et al. | Jan 2006 | B2 |
6987450 | Marino et al. | Jan 2006 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
6992452 | Sachs et al. | Jan 2006 | B1 |
6996441 | Tobias | Feb 2006 | B1 |
6997390 | Alles | Feb 2006 | B2 |
6998807 | Phillips et al. | Feb 2006 | B2 |
6998963 | Flen et al. | Feb 2006 | B2 |
6999996 | Sunderland | Feb 2006 | B2 |
7000422 | Street et al. | Feb 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7009510 | Douglass et al. | Mar 2006 | B1 |
7010925 | Sienel et al. | Mar 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7024665 | Ferraz et al. | Apr 2006 | B2 |
7024870 | Singh et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7035693 | Cassiolato et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7042180 | Terry et al. | May 2006 | B2 |
7042350 | Patrick et al. | May 2006 | B2 |
7043339 | Maeda et al. | May 2006 | B2 |
7043459 | Peevey | May 2006 | B2 |
7047753 | Street et al. | May 2006 | B2 |
7053766 | Fisler et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062580 | Donaires | Jun 2006 | B2 |
7062830 | Alles | Jun 2006 | B2 |
7063537 | Selli et al. | Jun 2006 | B2 |
7072797 | Gorinevsky | Jul 2006 | B2 |
7075327 | Dimino et al. | Jul 2006 | B2 |
7079810 | Petite et al. | Jul 2006 | B2 |
7079967 | Rossi et al. | Jul 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091847 | Capowski et al. | Aug 2006 | B2 |
7092767 | Pagnano et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7096153 | Guralnik et al. | Aug 2006 | B2 |
7102490 | Flen et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7110843 | Pagnano et al. | Sep 2006 | B2 |
7110898 | Montijo et al. | Sep 2006 | B2 |
7113376 | Nomura et al. | Sep 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7123020 | Hill et al. | Oct 2006 | B2 |
7123458 | Mohr et al. | Oct 2006 | B2 |
7124728 | Carey et al. | Oct 2006 | B2 |
7126465 | Faltesek | Oct 2006 | B2 |
7130170 | Wakefield et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7134295 | Maekawa | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7142125 | Larson et al. | Nov 2006 | B2 |
7145438 | Flen et al. | Dec 2006 | B2 |
7145462 | Dewing et al. | Dec 2006 | B2 |
7159408 | Sadegh et al. | Jan 2007 | B2 |
7162884 | Alles | Jan 2007 | B2 |
7163158 | Rossi et al. | Jan 2007 | B2 |
7171372 | Daniel et al. | Jan 2007 | B2 |
7174728 | Jayanth | Feb 2007 | B2 |
7180412 | Bonicatto et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7201006 | Kates | Apr 2007 | B2 |
7207496 | Alles | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7212887 | Shah et al. | May 2007 | B2 |
7222493 | Jayanth et al. | May 2007 | B2 |
7224740 | Hunt | May 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7227450 | Garvy et al. | Jun 2007 | B2 |
7228691 | Street et al. | Jun 2007 | B2 |
7230528 | Kates | Jun 2007 | B2 |
7234313 | Bell et al. | Jun 2007 | B2 |
7236765 | Bonicatto et al. | Jun 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7246014 | Forth et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7257501 | Zhan et al. | Aug 2007 | B2 |
7260505 | Felke et al. | Aug 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7263446 | Morin et al. | Aug 2007 | B2 |
7266812 | Pagnano | Sep 2007 | B2 |
7270278 | Street et al. | Sep 2007 | B2 |
7274995 | Zhan et al. | Sep 2007 | B2 |
7275377 | Kates | Oct 2007 | B2 |
7286945 | Zhan et al. | Oct 2007 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
7290989 | Jayanth | Nov 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7295896 | Norbeck | Nov 2007 | B2 |
7317952 | Bhandiwad et al. | Jan 2008 | B2 |
7328192 | Stengard et al. | Feb 2008 | B1 |
7330886 | Childers et al. | Feb 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7336168 | Kates | Feb 2008 | B2 |
7337191 | Haeberle et al. | Feb 2008 | B2 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7346472 | Moskowitz et al. | Mar 2008 | B1 |
7349824 | Seigel | Mar 2008 | B2 |
7350112 | Fox et al. | Mar 2008 | B2 |
7351274 | Helt et al. | Apr 2008 | B2 |
7352545 | Wyatt et al. | Apr 2008 | B2 |
7363200 | Lu | Apr 2008 | B2 |
7376712 | Granatelli et al. | May 2008 | B1 |
7377118 | Esslinger | May 2008 | B2 |
7383030 | Brown et al. | Jun 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7392661 | Alles | Jul 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7400240 | Shrode et al. | Jul 2008 | B2 |
7412842 | Pham | Aug 2008 | B2 |
7414525 | Costea et al. | Aug 2008 | B2 |
7421351 | Navratil | Sep 2008 | B2 |
7421374 | Zhan et al. | Sep 2008 | B2 |
7421850 | Street et al. | Sep 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7424345 | Norbeck | Sep 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7432824 | Flen et al. | Oct 2008 | B2 |
7433854 | Joseph et al. | Oct 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7437150 | Morelli et al. | Oct 2008 | B1 |
7440560 | Barry | Oct 2008 | B1 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7443313 | Davis et al. | Oct 2008 | B2 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7445665 | Hsieh et al. | Nov 2008 | B2 |
7447603 | Bruno | Nov 2008 | B2 |
7447609 | Guralnik et al. | Nov 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7454439 | Gansner et al. | Nov 2008 | B1 |
7458223 | Pham | Dec 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7469546 | Kates | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7483810 | Jackson et al. | Jan 2009 | B2 |
7484376 | Pham | Feb 2009 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7491034 | Jayanth | Feb 2009 | B2 |
7503182 | Bahel et al. | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7523619 | Kojima et al. | Apr 2009 | B2 |
7528711 | Kates | May 2009 | B2 |
7533070 | Guralnik et al. | May 2009 | B2 |
7537172 | Rossi et al. | May 2009 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7552596 | Galante et al. | Jun 2009 | B2 |
7555364 | Poth et al. | Jun 2009 | B2 |
7574333 | Lu | Aug 2009 | B2 |
7580812 | Ariyur et al. | Aug 2009 | B2 |
7594407 | Singh et al. | Sep 2009 | B2 |
7596959 | Singh et al. | Oct 2009 | B2 |
7606683 | Bahel et al. | Oct 2009 | B2 |
7631508 | Braun et al. | Dec 2009 | B2 |
7636901 | Munson et al. | Dec 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7648077 | Rossi et al. | Jan 2010 | B2 |
7648342 | Jayanth | Jan 2010 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7660700 | Moskowitz et al. | Feb 2010 | B2 |
7660774 | Mukherjee et al. | Feb 2010 | B2 |
7664613 | Hansen | Feb 2010 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7686872 | Kang | Mar 2010 | B2 |
7693809 | Gray | Apr 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7704052 | Iimura et al. | Apr 2010 | B2 |
7706320 | Davis et al. | Apr 2010 | B2 |
7724131 | Chen | May 2010 | B2 |
7726583 | Maekawa | Jun 2010 | B2 |
7734451 | MacArthur et al. | Jun 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
7742393 | Bonicatto et al. | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7752854 | Singh et al. | Jul 2010 | B2 |
7756086 | Petite et al. | Jul 2010 | B2 |
7791468 | Bonicatto et al. | Sep 2010 | B2 |
7844366 | Singh | Nov 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7848827 | Chen | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7877218 | Bonicatto et al. | Jan 2011 | B2 |
7878006 | Pham | Feb 2011 | B2 |
7885959 | Horowitz et al. | Feb 2011 | B2 |
7885961 | Horowitz et al. | Feb 2011 | B2 |
7905098 | Pham | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7922914 | Verdegan et al. | Apr 2011 | B1 |
7937623 | Ramacher et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7949494 | Moskowitz et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7966152 | Stluka et al. | Jun 2011 | B2 |
7967218 | Alles | Jun 2011 | B2 |
7978059 | Petite et al. | Jul 2011 | B2 |
7987679 | Tanaka et al. | Aug 2011 | B2 |
7996045 | Bauer et al. | Aug 2011 | B1 |
7999668 | Cawthorne et al. | Aug 2011 | B2 |
8000314 | Brownrigg et al. | Aug 2011 | B2 |
8002199 | Habegger | Aug 2011 | B2 |
8005640 | Chiefetz et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8013732 | Petite et al. | Sep 2011 | B2 |
8018182 | Roehm et al. | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8029608 | Breslin | Oct 2011 | B1 |
8031455 | Paik et al. | Oct 2011 | B2 |
8031650 | Petite et al. | Oct 2011 | B2 |
8034170 | Kates | Oct 2011 | B2 |
8036844 | Ling et al. | Oct 2011 | B2 |
8040231 | Kuruvila et al. | Oct 2011 | B2 |
8041539 | Guralnik et al. | Oct 2011 | B2 |
8046107 | Zugibe et al. | Oct 2011 | B2 |
8061417 | Gray | Nov 2011 | B2 |
8064412 | Petite | Nov 2011 | B2 |
8065886 | Singh et al. | Nov 2011 | B2 |
8068997 | Ling et al. | Nov 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8090559 | Parthasarathy et al. | Jan 2012 | B2 |
8090824 | Tran et al. | Jan 2012 | B2 |
8095337 | Kolbet et al. | Jan 2012 | B2 |
8108200 | Anne et al. | Jan 2012 | B2 |
8125230 | Bharadwaj et al. | Feb 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8134330 | Alles | Mar 2012 | B2 |
8150720 | Singh et al. | Apr 2012 | B2 |
8156208 | Bornhoevd et al. | Apr 2012 | B2 |
8160827 | Jayanth et al. | Apr 2012 | B2 |
8170968 | Colclough et al. | May 2012 | B2 |
8171136 | Petite | May 2012 | B2 |
8175846 | Khalak et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8182579 | Woo et al. | May 2012 | B2 |
8214175 | Moskowitz et al. | Jul 2012 | B2 |
8228648 | Jayanth et al. | Jul 2012 | B2 |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8258763 | Nakamura et al. | Sep 2012 | B2 |
8279565 | Hall et al. | Oct 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8328524 | Iimura et al. | Dec 2012 | B2 |
8335657 | Jayanth et al. | Dec 2012 | B2 |
8380556 | Singh et al. | Feb 2013 | B2 |
8393169 | Pham | Mar 2013 | B2 |
8625244 | Paik et al. | Jan 2014 | B2 |
9046900 | Kates | Jun 2015 | B2 |
9168315 | Scaringe et al. | Oct 2015 | B1 |
9304521 | Kates | Apr 2016 | B2 |
9310094 | Kates | Apr 2016 | B2 |
9310439 | Pham et al. | Apr 2016 | B2 |
9690307 | Kates | Jun 2017 | B2 |
9765979 | Alsaleem et al. | Sep 2017 | B2 |
20010005320 | Ueda et al. | Jun 2001 | A1 |
20010023596 | Fujita et al. | Sep 2001 | A1 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010054291 | Roh et al. | Dec 2001 | A1 |
20010054293 | Gustafson et al. | Dec 2001 | A1 |
20010054294 | Tsuboi | Dec 2001 | A1 |
20020000092 | Sharood et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020017057 | Weder | Feb 2002 | A1 |
20020018724 | Millet et al. | Feb 2002 | A1 |
20020020175 | Street et al. | Feb 2002 | A1 |
20020029575 | Okamoto | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020035495 | Spira et al. | Mar 2002 | A1 |
20020040280 | Morgan | Apr 2002 | A1 |
20020059803 | Jayanth | May 2002 | A1 |
20020064463 | Park et al. | May 2002 | A1 |
20020067999 | Suitou et al. | Jun 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020093259 | Sunaga et al. | Jul 2002 | A1 |
20020095269 | Natalini et al. | Jul 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020108384 | Higashiyama | Aug 2002 | A1 |
20020113877 | Welch | Aug 2002 | A1 |
20020117992 | Hirono et al. | Aug 2002 | A1 |
20020118106 | Brenn | Aug 2002 | A1 |
20020127120 | Hahn et al. | Sep 2002 | A1 |
20020138217 | Shen et al. | Sep 2002 | A1 |
20020139128 | Suzuki et al. | Oct 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020157409 | Pham et al. | Oct 2002 | A1 |
20020159890 | Kajiwara et al. | Oct 2002 | A1 |
20020161545 | Starling et al. | Oct 2002 | A1 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20020170299 | Jayanth et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020187057 | Loprete et al. | Dec 2002 | A1 |
20020189267 | Singh et al. | Dec 2002 | A1 |
20020193890 | Pouchak | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030004660 | Hunter | Jan 2003 | A1 |
20030004765 | Wiegand | Jan 2003 | A1 |
20030005710 | Singh et al. | Jan 2003 | A1 |
20030006884 | Hunt | Jan 2003 | A1 |
20030014218 | Trigiani et al. | Jan 2003 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030037555 | Street et al. | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030050824 | Suermondt et al. | Mar 2003 | A1 |
20030051490 | Jayanth | Mar 2003 | A1 |
20030055603 | Rossi et al. | Mar 2003 | A1 |
20030055663 | Struble | Mar 2003 | A1 |
20030061825 | Sullivan | Apr 2003 | A1 |
20030063983 | Ancel et al. | Apr 2003 | A1 |
20030070438 | Kikuchi et al. | Apr 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074285 | Hoffman et al. | Apr 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030078677 | Hull et al. | Apr 2003 | A1 |
20030078742 | VanderZee et al. | Apr 2003 | A1 |
20030089493 | Takano et al. | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20030108430 | Yoshida et al. | Jun 2003 | A1 |
20030115890 | Jayanth et al. | Jun 2003 | A1 |
20030135786 | Vollmar et al. | Jul 2003 | A1 |
20030137396 | Durej et al. | Jul 2003 | A1 |
20030150924 | Peter | Aug 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030183085 | Alexander | Oct 2003 | A1 |
20030191606 | Fujiyama et al. | Oct 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030205143 | Cheng | Nov 2003 | A1 |
20030213256 | Ueda et al. | Nov 2003 | A1 |
20030213851 | Burd et al. | Nov 2003 | A1 |
20030216837 | Reich et al. | Nov 2003 | A1 |
20030216888 | Ridolfo | Nov 2003 | A1 |
20030233172 | Granqvist et al. | Dec 2003 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040016244 | Street et al. | Jan 2004 | A1 |
20040016251 | Street et al. | Jan 2004 | A1 |
20040016253 | Street et al. | Jan 2004 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040024495 | Sunderland | Feb 2004 | A1 |
20040026522 | Keen et al. | Feb 2004 | A1 |
20040037706 | Hahn et al. | Feb 2004 | A1 |
20040042904 | Kim | Mar 2004 | A1 |
20040047406 | Hunt | Mar 2004 | A1 |
20040049715 | Jaw | Mar 2004 | A1 |
20040059691 | Higgins | Mar 2004 | A1 |
20040068390 | Saunders | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040079093 | Gauthier et al. | Apr 2004 | A1 |
20040093879 | Street et al. | May 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040111186 | Rossi | Jun 2004 | A1 |
20040117166 | Cassiolato | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040133367 | Hart | Jul 2004 | A1 |
20040140772 | Gullo et al. | Jul 2004 | A1 |
20040140812 | Scallante et al. | Jul 2004 | A1 |
20040144106 | Douglas et al. | Jul 2004 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20040159114 | Demuth et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040184627 | Kost et al. | Sep 2004 | A1 |
20040184928 | Millet et al. | Sep 2004 | A1 |
20040184929 | Millet et al. | Sep 2004 | A1 |
20040184930 | Millet et al. | Sep 2004 | A1 |
20040184931 | Millet et al. | Sep 2004 | A1 |
20040187502 | Jayanth et al. | Sep 2004 | A1 |
20040191073 | Iimura et al. | Sep 2004 | A1 |
20040199480 | Unsworth et al. | Oct 2004 | A1 |
20040210419 | Wiebe et al. | Oct 2004 | A1 |
20040213384 | Alles et al. | Oct 2004 | A1 |
20040230582 | Pagnano et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040239266 | Lee et al. | Dec 2004 | A1 |
20040258542 | Wiertz et al. | Dec 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20050040249 | Wacker et al. | Feb 2005 | A1 |
20050043923 | Forster et al. | Feb 2005 | A1 |
20050053471 | Hong et al. | Mar 2005 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050066675 | Manole et al. | Mar 2005 | A1 |
20050073532 | Scott et al. | Apr 2005 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20050100449 | Hahn et al. | May 2005 | A1 |
20050103036 | Maekawa | May 2005 | A1 |
20050125439 | Nourbakhsh et al. | Jun 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20050131624 | Gaessler et al. | Jun 2005 | A1 |
20050149570 | Sasaki et al. | Jul 2005 | A1 |
20050154495 | Shah | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050166610 | Jayanth | Aug 2005 | A1 |
20050169636 | Aronson et al. | Aug 2005 | A1 |
20050172647 | Thybo et al. | Aug 2005 | A1 |
20050188842 | Hsieh et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050196285 | Jayanth | Sep 2005 | A1 |
20050198063 | Thomas et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050204756 | Dobmeier et al. | Sep 2005 | A1 |
20050207741 | Shah et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20050222715 | Ruhnke et al. | Oct 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050229612 | Hrejsa et al. | Oct 2005 | A1 |
20050229777 | Brown et al. | Oct 2005 | A1 |
20050232781 | Herbert et al. | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050235664 | Pham | Oct 2005 | A1 |
20050247194 | Kang et al. | Nov 2005 | A1 |
20050251293 | Seigel | Nov 2005 | A1 |
20050252220 | Street et al. | Nov 2005 | A1 |
20050262856 | Street et al. | Dec 2005 | A1 |
20050262923 | Kates | Dec 2005 | A1 |
20050279110 | Zeng et al. | Dec 2005 | A1 |
20060010898 | Suharno et al. | Jan 2006 | A1 |
20060015777 | Loda | Jan 2006 | A1 |
20060020426 | Singh | Jan 2006 | A1 |
20060021362 | Sadegh et al. | Feb 2006 | A1 |
20060032245 | Kates | Feb 2006 | A1 |
20060032246 | Kates | Feb 2006 | A1 |
20060032247 | Kates | Feb 2006 | A1 |
20060032248 | Kates | Feb 2006 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060036349 | Kates | Feb 2006 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060071089 | Kates | Apr 2006 | A1 |
20060071666 | Unsworth et al. | Apr 2006 | A1 |
20060074917 | Chand et al. | Apr 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060117767 | Mowris | Jun 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060129339 | Bruno | Jun 2006 | A1 |
20060130500 | Gauthier et al. | Jun 2006 | A1 |
20060137364 | Braun et al. | Jun 2006 | A1 |
20060137368 | Kang et al. | Jun 2006 | A1 |
20060138866 | Bergmann et al. | Jun 2006 | A1 |
20060140209 | Cassiolato et al. | Jun 2006 | A1 |
20060151037 | Lepola et al. | Jul 2006 | A1 |
20060179854 | Esslinger | Aug 2006 | A1 |
20060182635 | Jayanth | Aug 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060196196 | Kates | Sep 2006 | A1 |
20060196197 | Kates | Sep 2006 | A1 |
20060201168 | Kates | Sep 2006 | A1 |
20060222507 | Jayanth | Oct 2006 | A1 |
20060229739 | Morikawa | Oct 2006 | A1 |
20060235650 | Vinberg et al. | Oct 2006 | A1 |
20060238388 | Jayanth | Oct 2006 | A1 |
20060242200 | Horowitz et al. | Oct 2006 | A1 |
20060244641 | Jayanth et al. | Nov 2006 | A1 |
20060256488 | Benzing et al. | Nov 2006 | A1 |
20060259276 | Rossi et al. | Nov 2006 | A1 |
20060271589 | Horowitz et al. | Nov 2006 | A1 |
20060271623 | Horowitz et al. | Nov 2006 | A1 |
20060280627 | Jayanth | Dec 2006 | A1 |
20070002505 | Watanabe et al. | Jan 2007 | A1 |
20070006124 | Ahmed et al. | Jan 2007 | A1 |
20070027735 | Rokos | Feb 2007 | A1 |
20070067512 | Donaires et al. | Mar 2007 | A1 |
20070089434 | Singh et al. | Apr 2007 | A1 |
20070089435 | Singh et al. | Apr 2007 | A1 |
20070089438 | Singh et al. | Apr 2007 | A1 |
20070089439 | Singh et al. | Apr 2007 | A1 |
20070089440 | Singh et al. | Apr 2007 | A1 |
20070101750 | Pham et al. | May 2007 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070186569 | Street et al. | Aug 2007 | A1 |
20070204635 | Tanaka et al. | Sep 2007 | A1 |
20070204921 | Alles | Sep 2007 | A1 |
20070205296 | Bell et al. | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070239894 | Thind et al. | Oct 2007 | A1 |
20080000241 | Larsen et al. | Jan 2008 | A1 |
20080015797 | Kates | Jan 2008 | A1 |
20080016888 | Kates | Jan 2008 | A1 |
20080033674 | Nikovski et al. | Feb 2008 | A1 |
20080051945 | Kates | Feb 2008 | A1 |
20080058970 | Perumalsamy et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080109185 | Cheung et al. | May 2008 | A1 |
20080110189 | Alston et al. | May 2008 | A1 |
20080114569 | Seigel | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080183424 | Seem | Jul 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080234869 | Yonezawa et al. | Sep 2008 | A1 |
20080315000 | Gorthala et al. | Dec 2008 | A1 |
20080319688 | Kim | Dec 2008 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090030555 | Gray | Jan 2009 | A1 |
20090037142 | Kates | Feb 2009 | A1 |
20090038010 | Ma et al. | Feb 2009 | A1 |
20090055465 | DePue et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057428 | Geadelmann et al. | Mar 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090072985 | Patel et al. | Mar 2009 | A1 |
20090093916 | Parsonnet et al. | Apr 2009 | A1 |
20090094998 | McSweeney et al. | Apr 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090106601 | Ngai et al. | Apr 2009 | A1 |
20090112672 | Flamig et al. | Apr 2009 | A1 |
20090114309 | Sakai et al. | May 2009 | A1 |
20090119036 | Jayanth et al. | May 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090125257 | Jayanth et al. | May 2009 | A1 |
20090140880 | Flen et al. | Jun 2009 | A1 |
20090151374 | Kasahara | Jun 2009 | A1 |
20090187281 | Kates | Jul 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090229469 | Campbell et al. | Sep 2009 | A1 |
20090241570 | Kuribayashi et al. | Oct 2009 | A1 |
20090296832 | Hunt | Dec 2009 | A1 |
20090324428 | Tolbert, Jr. et al. | Dec 2009 | A1 |
20100006042 | Pitonyak et al. | Jan 2010 | A1 |
20100011962 | Totsugi | Jan 2010 | A1 |
20100017465 | Brownrigg et al. | Jan 2010 | A1 |
20100039984 | Brownrigg | Feb 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070666 | Brindle | Mar 2010 | A1 |
20100078493 | Alles | Apr 2010 | A1 |
20100081357 | Alles | Apr 2010 | A1 |
20100081372 | Alles | Apr 2010 | A1 |
20100089076 | Schuster et al. | Apr 2010 | A1 |
20100102136 | Hadzidedic et al. | Apr 2010 | A1 |
20100111709 | Jayanth | May 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100169030 | Parlos | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100194582 | Petite | Aug 2010 | A1 |
20100214709 | Hall et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
20100257410 | Cottrell et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100265909 | Petite et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100287489 | Alles | Nov 2010 | A1 |
20100293397 | Pham et al. | Nov 2010 | A1 |
20100305718 | Clark et al. | Dec 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100312881 | Davis et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100330985 | Addy | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110023945 | Hayashi et al. | Feb 2011 | A1 |
20110040785 | Steenberg et al. | Feb 2011 | A1 |
20110042541 | Spencer et al. | Feb 2011 | A1 |
20110045454 | McManus et al. | Feb 2011 | A1 |
20110054842 | Kates | Mar 2011 | A1 |
20110071960 | Singh | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110083450 | Turner et al. | Apr 2011 | A1 |
20110102159 | Olson et al. | May 2011 | A1 |
20110103460 | Bonicatto | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110112814 | Clark | May 2011 | A1 |
20110118905 | Mylaraswamy et al. | May 2011 | A1 |
20110121952 | Bonicatto et al. | May 2011 | A1 |
20110144932 | Alles | Jun 2011 | A1 |
20110144944 | Pham | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110181438 | Millstein et al. | Jul 2011 | A1 |
20110184563 | Foslien et al. | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20110218957 | Coon et al. | Sep 2011 | A1 |
20110264324 | Petite et al. | Oct 2011 | A1 |
20110264409 | Jayanth et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110310929 | Petite et al. | Dec 2011 | A1 |
20110315019 | Lyon et al. | Dec 2011 | A1 |
20110320050 | Petite et al. | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120047940 | Junge et al. | Mar 2012 | A1 |
20120054242 | Ferrara et al. | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120075092 | Petite et al. | Mar 2012 | A1 |
20120092154 | Petite | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143528 | Kates | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120245968 | Beaulieu et al. | Sep 2012 | A1 |
20120248210 | Warren et al. | Oct 2012 | A1 |
20120248211 | Warren et al. | Oct 2012 | A1 |
20120260804 | Kates | Oct 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20120265586 | Mammone | Oct 2012 | A1 |
20120271673 | Riley | Oct 2012 | A1 |
20120291629 | Tylutki et al. | Nov 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20130066479 | Shetty et al. | Mar 2013 | A1 |
20130156607 | Jayanth | Jun 2013 | A1 |
20130166231 | Jayanth et al. | Jun 2013 | A1 |
20130174588 | Pham | Jul 2013 | A1 |
20130176649 | Wallis et al. | Jul 2013 | A1 |
20130182285 | Matsuhara et al. | Jul 2013 | A1 |
20130287063 | Kates | Oct 2013 | A1 |
20130294933 | Pham | Nov 2013 | A1 |
20140000290 | Kates | Jan 2014 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
20140000294 | Kates | Jan 2014 | A1 |
20140012422 | Kates | Jan 2014 | A1 |
20140069121 | Pham | Mar 2014 | A1 |
20140074730 | Arensmeier et al. | Mar 2014 | A1 |
20140084836 | Pham et al. | Mar 2014 | A1 |
20140229014 | Pham et al. | Aug 2014 | A1 |
20140260342 | Pham | Sep 2014 | A1 |
20140260390 | Pham | Sep 2014 | A1 |
20140262134 | Arensmeier et al. | Sep 2014 | A1 |
20140266755 | Arensmeier et al. | Sep 2014 | A1 |
20140297208 | Arensmeier | Oct 2014 | A1 |
20140299289 | Alsaleem et al. | Oct 2014 | A1 |
20150135748 | Alsaleem et al. | May 2015 | A1 |
20150155701 | Wallis et al. | Jun 2015 | A1 |
20150261230 | Kates | Sep 2015 | A1 |
20150367463 | Pham | Dec 2015 | A1 |
20160076536 | Jayanth et al. | Mar 2016 | A1 |
20160223238 | Kates | Aug 2016 | A1 |
20160226416 | Pham et al. | Aug 2016 | A1 |
20170179709 | Wallis et al. | Jun 2017 | A1 |
20170308072 | Arensmeier | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1147440 | May 1983 | CA |
1151265 | Aug 1983 | CA |
2528778 | Dec 2004 | CA |
2567264 | Jul 2007 | CA |
173493 | Nov 1934 | CH |
1133425 | Oct 1996 | CN |
1169619 | Jan 1998 | CN |
1297522 | May 2001 | CN |
1354347 | Jun 2002 | CN |
1356472 | Jul 2002 | CN |
1654893 | Aug 2005 | CN |
1742427 | Mar 2006 | CN |
1906453 | Jan 2007 | CN |
1922445 | Feb 2007 | CN |
101048713 | Oct 2007 | CN |
101124436 | Feb 2008 | CN |
101156033 | Apr 2008 | CN |
101270908 | Sep 2008 | CN |
101361244 | Feb 2009 | CN |
101466193 | Jun 2009 | CN |
101506600 | Aug 2009 | CN |
101802521 | Aug 2010 | CN |
101821693 | Sep 2010 | CN |
102354206 | Feb 2012 | CN |
842351 | Jun 1952 | DE |
764179 | Apr 1953 | DE |
1144461 | Feb 1963 | DE |
1403516 | Oct 1968 | DE |
1403467 | Oct 1969 | DE |
3118638 | May 1982 | DE |
3133502 | Jun 1982 | DE |
3508353 | Sep 1985 | DE |
3422398 | Dec 1985 | DE |
29723145 | Apr 1998 | DE |
0008524 | Mar 1980 | EP |
0060172 | Sep 1982 | EP |
0085246 | Aug 1983 | EP |
0124603 | Nov 1984 | EP |
0254253 | Jan 1988 | EP |
0346152 | Dec 1989 | EP |
0351272 | Jan 1990 | EP |
0351833 | Jan 1990 | EP |
0355255 | Feb 1990 | EP |
0361394 | Apr 1990 | EP |
0398436 | Nov 1990 | EP |
0410330 | Jan 1991 | EP |
0419857 | Apr 1991 | EP |
0432085 | Jun 1991 | EP |
0453302 | Oct 1991 | EP |
0479421 | Apr 1992 | EP |
0557023 | Aug 1993 | EP |
0579374 | Jan 1994 | EP |
0660213 | Jun 1995 | EP |
0747598 | Dec 1996 | EP |
0877462 | Nov 1998 | EP |
0982497 | Mar 2000 | EP |
1008816 | Jun 2000 | EP |
1087142 | Mar 2001 | EP |
1087184 | Mar 2001 | EP |
1138949 | Oct 2001 | EP |
1139037 | Oct 2001 | EP |
1187021 | Mar 2002 | EP |
1209427 | May 2002 | EP |
1241417 | Sep 2002 | EP |
1245912 | Oct 2002 | EP |
1245913 | Oct 2002 | EP |
1393034 | Mar 2004 | EP |
1435002 | Jul 2004 | EP |
1487077 | Dec 2004 | EP |
1541869 | Jun 2005 | EP |
2180270 | Apr 2010 | EP |
2472862 | Jul 1981 | FR |
2582430 | Nov 1986 | FR |
2589561 | May 1987 | FR |
2628558 | Sep 1989 | FR |
2660739 | Oct 1991 | FR |
2062919 | May 1981 | GB |
2064818 | Jun 1981 | GB |
2075774 | Nov 1981 | GB |
2116635 | Sep 1983 | GB |
2229295 | Sep 1990 | GB |
2347217 | Aug 2000 | GB |
56010639 | Feb 1981 | JP |
59145392 | Aug 1984 | JP |
61046485 | Mar 1986 | JP |
62116844 | May 1987 | JP |
63061783 | Mar 1988 | JP |
63302238 | Dec 1988 | JP |
01014554 | Jan 1989 | JP |
02110242 | Apr 1990 | JP |
02294580 | Dec 1990 | JP |
04080578 | Mar 1992 | JP |
06058273 | Mar 1994 | JP |
08021675 | Jan 1996 | JP |
08087229 | Apr 1996 | JP |
08284842 | Oct 1996 | JP |
H08261541 | Oct 1996 | JP |
2000350490 | Dec 2000 | JP |
2002155868 | May 2002 | JP |
2003018883 | Jan 2003 | JP |
2003176788 | Jun 2003 | JP |
2004316504 | Nov 2004 | JP |
2005188790 | Jul 2005 | JP |
2005241089 | Sep 2005 | JP |
2005345096 | Dec 2005 | JP |
2006046219 | Feb 2006 | JP |
2006046519 | Feb 2006 | JP |
2006274807 | Oct 2006 | JP |
2009002651 | Jan 2009 | JP |
2009229184 | Oct 2009 | JP |
2010048433 | Mar 2010 | JP |
10-1998-0036844 | Aug 1998 | KR |
20000000261 | Jan 2000 | KR |
1020000000261 | Jan 2000 | KR |
1020000025265 | May 2000 | KR |
1020020041977 | Jun 2002 | KR |
20030042857 | Jun 2003 | KR |
1020040021281 | Mar 2004 | KR |
1020060020353 | Mar 2006 | KR |
30009 | Jun 2003 | RU |
55218 | Jul 2006 | RU |
WO-8601262 | Feb 1986 | WO |
WO-8703988 | Jul 1987 | WO |
WO-8705097 | Aug 1987 | WO |
WO-8802527 | Apr 1988 | WO |
WO-8806703 | Sep 1988 | WO |
WO-9718636 | May 1997 | WO |
WO-9748161 | Dec 1997 | WO |
WO-9917066 | Apr 1999 | WO |
WO-9961847 | Dec 1999 | WO |
WO-9965681 | Dec 1999 | WO |
WO-0021047 | Apr 2000 | WO |
WO-0051223 | Aug 2000 | WO |
WO-0169147 | Sep 2001 | WO |
WO-0214968 | Feb 2002 | WO |
WO-0249178 | Jun 2002 | WO |
WO-0275227 | Sep 2002 | WO |
WO-02090840 | Nov 2002 | WO |
WO-02090913 | Nov 2002 | WO |
WO-02090914 | Nov 2002 | WO |
WO-03031996 | Apr 2003 | WO |
WO-03090000 | Oct 2003 | WO |
WO-04049088 | Jun 2004 | WO |
WO-2005022049 | Mar 2005 | WO |
WO-2005065355 | Jul 2005 | WO |
WO-05073686 | Aug 2005 | WO |
WO-2005108882 | Nov 2005 | WO |
WO-06023075 | Mar 2006 | WO |
WO-2006025880 | Mar 2006 | WO |
WO-2006091521 | Aug 2006 | WO |
WO-2008010988 | Jan 2008 | WO |
WO-2008079108 | Jul 2008 | WO |
WO-08144864 | Dec 2008 | WO |
WO-2009058356 | May 2009 | WO |
WO-2009061370 | May 2009 | WO |
WO-10138831 | Dec 2010 | WO |
WO-11069170 | Jun 2011 | WO |
WO-12092625 | Jul 2012 | WO |
WO-2012118550 | Sep 2012 | WO |
Entry |
---|
Office Action regarding Chinese Patent Application No. 201480025776.7, dated Jan. 10, 2018. Translation provided by Unitalen Attorneys At Law. |
Office Action regarding U.S. Appl. No. 15/645,970 dated Feb. 16, 2018. |
Final Office Action regarding U.S. Appl. No. 15/583,942 dated Apr. 18, 2018. |
First Office Action regarding Chinese Application No. 201610422700.4 dated Apr. 2, 2018. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding Chinese Patent Application No. 201610244700.4, dated Mar. 25, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated May 21, 2018. |
Kim, Minsung et al., “Performance of a Residential Heat Pump Operating in the Cooling Mode With Single Faults Imposed”, Sep. 2006, U.S. Department of Commerce, NISTIR 7350 (175 pages). |
Notice of Allowance regarding U.S. Appl. No. 15/645,970 dated Jun. 29, 2018. |
Non-Final Office Action regarding U.S. Appl. No. 14/949,090 dated Jul. 5, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated Jul. 3, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/208,636 dated Jul. 30, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/583,942 dated Aug. 7, 2018. |
Non-Final Office Action regarding U.S. Appl. No. 15/613,375 dated Aug. 30, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/208,636 dated Sep. 25, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/645,970 dated Oct. 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/949,090 dated Nov. 26, 2018. |
Non Final Office Action for U.S. Appl. No. 15/096,186 dated Sep. 20, 2018, 14 pages. |
Non-Final Office Action regarding U.S. Appl. No. 16/113,271 dated Jan. 25, 2019. |
First Examination Report issued by the Indian Patent Office regarding Application No. 479/MUMNP/2015 dated Dec. 21, 2018. |
Non-Final Office Action regarding U.S. Appl. No. 14/949,090 dated Feb. 14, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/613,375 dated Feb. 27, 2019. |
First Examination Report issued by the Indian Patent Office regarding Application No. 2574/MUMNP/2015 dated Mar. 20, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/096,186 dated Feb. 26, 2019. |
Corrected Notice of Allowability regarding U.S. Appl. No. 14/080,473 dated Dec. 27, 2017. |
Office Action regarding Chinese Patent Application No. 201480016177.9, dated Apr. 7, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/208,636 dated Jan. 3, 2018. |
U.S. Appl. No. 12/943,626, filed Nov. 10, 2010, E. Todd Clark. |
U.S. Appl. No. 13/770,479, filed Feb. 19, 2013, Nagaraj Jayanth. |
U.S. Appl. No. 14/080,473, filed Nov. 14, 2013, Hung M. Pham. |
U.S. Appl. No. 14/208,636, filed Mar. 13, 2014, Hung M. Pham. |
U.S. Appl. No. 14/607,782, filed Jan. 28, 2015, Fadi M. Alsaleem. |
U.S. Appl. No. 14/949,090, filed Nov. 23, 2015, Nagaraj Jayanth. |
U.S. Appl. No. 15/096,186, filed Apr. 11, 2016, Lawrence Kates. |
U.S. Appl. No. 15/450,404, filed Mar. 6, 2017, Frank S. Wallis. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165—3950 Tons 50 and 60 Hz; CTV PRC007—EN; Oct. 2002; 56 pages. |
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages. |
European Search Report for EP 82306809.3; dated Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; dated Jul. 22, 1991; 1 Page. |
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92/05-05, May 1992. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992. |
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages. |
European Search Report for EP 93 30 4470; dated Oct. 26, 1993; 1 Page. |
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74/2034, Copyright © 1994, Rev. 11-94, 12 pages. |
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996. |
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. 6-96, 12 pages. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
European Search Report for EP 94 30 3484; dated Apr. 3, 1997; 1 Page. |
International Search Report; International Application No. PCT/IB96/01435; dated May 23, 1997; 1 Page. |
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997. |
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997. |
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997. |
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997. |
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages. |
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119. |
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998, 141 pages. |
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998, 329 pages. |
European Search Report for EP 96 30 4219; dated Dec. 1, 1998; 2 Pages. |
International Search Report; International Application No. PCT/US98/18710; dated Jan. 26, 1999; 1 Page. |
European Search Report for EP 98 30 3525; dated May 28, 1999; 2 Pages. |
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841. |
Refrigeration Monitor and Case Control Installation and Operation Manual, Computer Process Controls, Aug. 12, 1999. |
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999. |
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999. |
European Search Report for EP 99 30 6052; dated Dec. 28, 1999; 3 Pages. |
Translation of claims and Abstract of KR Patent Laying-Open No. 2000-0000261. |
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages. |
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages. |
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprill9_0l.html, 3 pages. |
European Search Report for EP 01 30 7547; dated Feb. 20, 2002; 1 Page. |
European Search Report for Application No. EP 01 30 1752, dated Mar. 26, 2002. |
European Search Report for EP 02 25 0266; dated May 17, 2002; 3 Pages. |
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages. |
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages. |
International Search Report for PCT/US02/13459; ISA/US; dated Sep. 19, 2002. |
European Search Report for Application No. EP 02 25 1531, dated Sep. 30, 2002. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003. |
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages. |
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003. |
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003. |
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages. |
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003. |
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages. |
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003. |
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004. |
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004. |
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages. |
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004. |
European Search Report for EP 02 72 9050, dated Jun. 17, 2004, 2 pages. |
Supplementary European Search Report for EP 02 73 1544, dated Jun. 18, 2004, 2 Pages. |
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004. |
International Search Report, International Application No. PCT/US04/13384; dated Aug. 1, 2004; 1 Page. |
International Search Report for PCT/US2013/061389, dated Jan. 22, 2014, 7 pages. |
Final Office Action regarding U.S. Appl. No. 11/850,846, dated Jan. 17, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014. |
European Search Report regarding Application No. 07811712.4-1608 / 2069638 PCT/US2007019563, dated Jan. 7, 2014. |
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 13/784,890, dated Dec. 30, 2013. |
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Nov. 25, 2013. |
Advisory Action regarding U.S. Appl. No. 12/261,643, dated Nov. 22, 2013. |
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013. |
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, dated Oct. 4, 2013. English translation provided by Y.S. Chang & Associates. |
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Sep. 16, 2013. |
Third Office Action regarding Chinese Patent Application No. 200910211779.0, dated Sep. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013. |
Non-Final Office Action in U.S. Appl. No. 13/784,890, dated Jun. 11, 2013. |
Non-Final Office Action in U.S. Appl. No. 11/850,846, dated May 24, 2013. |
International Search Report regarding Application No. PCT/US2013/021161, dated May 8, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, dated May 8, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013. |
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012. |
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012. |
Extended European Search Report regarding Application No. 12182243.1-2311, dated Oct. 29, 2012. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012. |
International Search Report for PCT/US2012/026973, dated Sep. 3, 2012, 5 pages. |
Final Office Action for U.S. Appl. No. 11/850,846, dated Aug. 13, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/685,375, dated Aug. 6, 2012. |
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012. |
Patent Examination Report No. 3 regarding Australian Patent Application No. 2008325240, dated Jul. 19, 2012. |
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jun. 27, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012. |
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, dated May 24, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012. |
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law. |
Non-Final office Action regarding U.S. Appl. No. 11/850,846, dated Apr. 24, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Apr. 10, 2012. |
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012. |
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012. |
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012. |
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012. |
Non-Final Office Action in U.S. Appl. No. 12/685,375, dated Jan. 19, 2012. |
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012. |
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011. |
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Nov. 2, 2011. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Oct. 20, 2011. |
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Aug. 24, 2011. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011. |
Final Office Action for U.S. Appl. No. 12/054,011, dated Jun. 30, 2011. |
International Search Report regarding Application No. PCT/US2010/056315, dated Jun. 28, 2011. |
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011. |
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011. |
Non-Final Office Action dated Mar. 3, 2011 for U.S. Appl. No. 12/054,011. |
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011. |
Examiner's First Report on Australian Patent Application No. 2008319275, dated Jan. 31, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011. |
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011. |
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011. |
First Office Action regarding Chinese Patent Application No. 201010117657.8, dated Dec. 29, 2010. English translation provided by Unitalen Attorneys at Law. |
International Search Report regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010. |
Final Office Action dated Dec. 7, 2010 for U.S. Appl. No. 12/054,011. |
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010. |
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010. |
Non-Final Office Action dated Aug. 13, 2010 for U.S. Appl. No. 12/054,011. |
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010. |
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law. |
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010. |
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010. |
First Office Action from the State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, dated Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010. |
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010. |
Office Action regarding U.S. Appl. No. 11/098,582 dated Mar. 3, 2010. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010. |
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010. |
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010. |
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010. |
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009. |
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009. |
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009. |
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009. |
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009. |
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088. |
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009. |
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009. |
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009. |
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009. |
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009. |
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821. |
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295. |
Second Office action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200510005907.8, translation provided by CCPIT Patent and Trademark Law Office. |
Third Office Action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200580013451.8, translated by CCPIT Patent and Trademark Law Office. |
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009. |
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009. |
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009. |
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009. |
Second Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Feb. 27, 2009. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821. |
International Search Report for International Application No. PCT/US2008/012362, dated Feb. 12, 2009. |
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295. |
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009. |
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009. |
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009. |
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008. |
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008. |
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Oct. 28, 2008. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008. |
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008. |
First Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Sep. 5, 2008. |
International Search Report from PCT /US2008/060900, dated Aug. 4, 2008, 6 pages. |
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008. |
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Mar. 26, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008. |
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557. |
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008. |
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609. |
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007. |
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223. |
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007. |
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007. |
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007. |
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages. |
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages. |
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages. |
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014. |
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004. |
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003. |
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003. |
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002. |
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002. |
Honeywell, A7075A1000 HVAC Service Assistant, 2001. |
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages. cited by other. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005. |
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005. |
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005. |
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223 (Kates.003A). |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 13, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005. |
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005. |
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005. |
International Search Report for International Application No. PCT/US2005/11154, dated Oct. 19, 2005. |
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223 (Kates.003A). |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562 (Kates.021A). |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601 (Kates.020A). |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871 (Kates.002A). |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005. |
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562 (Kates.021A). |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601 (Kates.020A). |
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006. |
International Search Report for International Application No. PCT/US04/43859, dated Mar. 2, 2006. |
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569 (Kates.022A). |
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223 (Kates.003A). |
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562 (Kates.021A). |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006. |
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601 (Kates.020A). |
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871 (Kates.002A). |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006. |
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569 (Kates.022A). |
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223 (Kates.003A). |
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222. |
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007. |
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562 (Kates.021A). |
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871 (Kates.002A). |
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007. |
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007. |
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007. |
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569 (Kates.022A). |
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT. |
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557 (Kates.012DV1). |
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609 (Kates.021DV1). |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701 (Kates.020DV1). |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007. |
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223 (Kates.003A). |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871 (Kates.002A). |
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages. |
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages. |
Final Office Action regarding U.S. Appl. No. 13/932,611, dated May 28, 2014. |
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014. |
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012. |
Written Opinion from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014. |
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014. |
International Search Report from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014. |
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-LS2000-Load-Shed - System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages, dated Sep. 22, 2004. |
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages. |
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005. |
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006. |
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007. |
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014. |
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
Building Environmental Control (BEC) Installation and Operation Manual, Computer Process Controls, Jan. 5, 1998. |
European Search Report for Application No. EP 04 81 5853, dated Jul. 17, 2007, 2 Pages. |
European Search Report for Application No. EP 06 02 6263, dated Jul. 17, 2007, 4 Pages. |
First Office Action issued by the Chinese Patent Office dated May 30, 2008 regarding Application No. 200580013451.8, 8 Pages. |
Second Office Action issued by the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2012/026973, dated Sep. 3, 2012. |
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009. |
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009. |
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages. |
Home Comfort Zones, MyTemp User Manual v4.3, May 2008. |
Invitation to Indicate Claims to be Searched regarding European Patent Application No. 07 796 879.0, dated Feb. 20, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/784,890, dated Jun. 11, 2013. |
Restriction Requirement regarding U.S. Appl. No. 11/776,879, dated Jun. 4, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2007/016135, dated Oct. 22, 2007. |
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/US2014/032927, ISA/KR dated Aug. 21, 2014. |
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011. |
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/061389, dated Jan. 22, 2014. |
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014. |
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Applicaiton No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law. |
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012. |
The International Search Report regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014. |
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014. |
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/028859, dated Aug. 22, 2014. |
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law. |
Examiner's Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014. |
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015. |
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,810 date Jan. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014. |
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014. |
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014. |
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015. |
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015. |
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015. |
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015. |
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015. |
Interview Summary regarding U.S. Appl. No. 13/269,188, dated Mar. 18, 2015. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated Mar. 13, 2015. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 16, 2015. |
Office Action regarding U.S. Appl. No. 13/770,123, dated Apr. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015. |
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015. |
Haiad et al., “EER & SEER as Predictors of Seasonal Energy Performance ”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER_CASE_ProjectSummary_Oct2004_V6a.pdf. |
Notice of Allowance regarding U.S. Appl. No. 13/835,742, dated Apr. 17, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/836,453, dated Apr. 15, 2015. |
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015. |
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015. |
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015. |
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015. |
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015. |
Extended European Search Report regarding European Application No. 08845689.2-1608/2207964, dated Jun. 19, 2015. |
Extended European Search Report regarding European Application No. 08848538.8-1608 / 2220372, dated Jun. 19, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/244,967, dated Jul. 14, 2015. |
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16, 2015. |
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015. |
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4_Pane13_Paper05.pdf. |
Notice of Allowance regarding U.S. Appl. No. 12/261,643, dated Jul. 29, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015. |
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015. |
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015. |
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Sep. 10, 2015. |
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015. |
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys At Law. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015. |
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015. |
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015. |
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015. |
Interview Summary regarding U.S. Appl. No. 12/054,011, dated Jan. 30, 2012. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Nov. 3, 2015. |
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2015. |
First Office Action issued by the Chinese Patent Office dated May 30, 2008 regarding Application No. 200580013451.8, 8 Pages. Translation provided by CCPIT Patent and Trademark Law Office. |
Second Office Action issued by the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages. Translation provided by CCPIT Patent and Trademark Law Office. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016. |
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Mar. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016. |
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/617,451, dated Jun. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016. |
Interview Summary regarding U.S. Appl. No. 14/209,415, dated Jun. 20, 2016. |
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016. |
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/617,451, dated Jul. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016. |
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 7, 2016. |
Office Action regarding U.S. Appl. No. 15/096,196, dated Sep. 13, 2016. |
Office Action regarding Canadian Patent Application No. 2,904,734, dated Sep. 13, 2016. |
Office Action regarding U.S. Appl. No. 14/300,782, dated Sep. 30, 2016. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Oct. 5, 2016. |
Office Action regarding Australian Patent Application No. 2015255255, dated Sep. 8, 2016. |
Office Action regarding Canadian Patent Application No. 2,908,362, dated Sep. 21, 2016. |
Search Report regarding European Patent Application No. 14764311.8, dated Oct. 27, 2016. |
Search Report regarding European Patent Application No. 14763232.7, dated Oct. 27, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated Nov. 4, 2016. |
Louis Goodman et al. “Vertical Motion of Neutrally Buoyant Floats.” Journal of Atmospheric and Oceanic Technology. vol. 7. Feb. 1990. |
Search Report regarding European Patent Application No. 14780284.7, dated Nov. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Nov. 16, 2016. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated Dec. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Jan. 20, 2017. |
Search Report regarding European Patent Application No. 16187893.9, dated Jan. 19, 2017. |
Advisory Action regarding U.S. Appl. No. 14/080,473, dated Jan. 30, 2017. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Jan. 26, 2017. |
Office Action regarding Indian Patent Application No. 102/KOLNP/2009, dated Mar. 10, 2017. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Mar. 14, 2017. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 17, 2017. |
Advisory Action regarding U.S. Appl. No. 14/208,636, dated Mar. 23, 2017. |
Richard E. Lofftus, Jr. “System Charge and Performance Evaluation.” HVAC/R Training, Vatterott College. Jan. 2007. |
Search Report regarding European Patent Application No. 12752872.7, dated May 4, 2017. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 10, 2017. |
Advisory Action and Examiner-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 23, 2017. |
Office Action regarding Canadian Patent Application No. 2,934,860, dated May 4, 2017. |
Restriction Requirement regarding U.S. Appl. No. 14/607,782, dated Jun. 29, 2017. |
Search Report regarding European Patent Application No. 10830696.0, dated Jul. 18, 2017. |
Office Action regarding European Patent Application No. 07811712.4, dated Jul. 25, 2017. |
Office Action regarding U.S. Appl. No. 14/607,782, dated Sep. 21, 2017. |
Examiner's Answer regarding U.S. Appl. No. 12/943,626, dated Sep. 19, 2017. |
Office Action regarding Indian Patent Application No. 456/MUMNP/2010, dated Oct. 3, 2017. |
Office Action regarding European Patent Application No. 07796879.0, dated Oct. 19, 2017. |
Office Action regarding Australian Patent Application No. 2014248049, dated Oct. 10, 2017. |
Response to 312 Amendment regarding U.S. Appl. No. 15/096,186 dated Jun. 11, 2019. |
Final Office Action regarding U.S. Appl. No. 14/949,090 dated Jul. 19, 2019. |
Notice of Allowance regarding U.S. Appl. No. 16/113,271 dated Jun. 13, 2019. |
Non-Final Office Action regarding U.S. Appl. No. 15/798,081 dated Jul. 25, 2019. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/949,090 dated Aug. 13, 2019. |
Supplemental Notice of Allowability regarding U.S. Appl. No. 16/113,271 dated Aug. 14, 2019. |
Number | Date | Country | |
---|---|---|---|
20180129233 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14727756 | Jun 2015 | US |
Child | 15633657 | US | |
Parent | 13767479 | Feb 2013 | US |
Child | 14727756 | US | |
Parent | 13269188 | Oct 2011 | US |
Child | 13767479 | US | |
Parent | 11779203 | Jul 2007 | US |
Child | 13269188 | US | |
Parent | 11130569 | May 2005 | US |
Child | 11779203 | US | |
Parent | 10916222 | Aug 2004 | US |
Child | 11130569 | US |