Not applicable
Not applicable
Various embodiments relate to a method and apparatus for transferring cargo having a cavity therein, the system comprising: (a) a lifter/lifting device suspended in free floating form by a crane; (b) the lifter having a frame and at least one lifting arm/prong which is detachably connected to the frame; and (c) wherein the frame has at least one lifting connector for detachably connecting the lifter to the crane.
More particularly, various embodiments relate to an improved method and apparatus wherein at least one of the lifting arms has a first/front/free end for engaging the cargo by penetrating the cargo cavity, and a second/rear/attached end which is detachably connected to the frame; and wherein the lifter, when suspended by the crane, is configured such that the free end of at least one lifting arm is elevated higher than the attached end of the at least one lifting arm.
Using prior art sling methods to move multiple units of cargo can be slow and/or dangerous. Various embodiments of the method and apparatus can significantly increase the production speed and safety of loading and/or unloading cargo (e.g., in some cases doubling production speeds). In various embodiments the method and apparatus helps protect the integrity of the cargo being moved/transferred compared to the prior sling method which has the cargo units moving relative to each other and at different angles to each other during transfer (see e.g.,
In one embodiment is provided a system for transferring cargo having a cavity therein, the system comprising: (a) a lifter/lifting device suspended by a crane; (b) the lifter having a frame and at least one lifting arm which is detachably connected to the frame; and (c) wherein the frame has at least one lifting connector for detachably connecting the lifter to the crane.
In one embodiment at least one of the lifting arms has a free end for engaging the cargo by penetrating the cargo cavity, and an attached end which is detachably connected to the frame; and wherein the lifter, when suspended by the crane, is configured such that the free end of at least one lifting arm is elevated higher than the attached end of the at least one lifting arm.
In various embodiments is provided a method of moving a plurality of cargo units, each of the cargo units having at least one cavity, comprising the steps of:
(a) providing a lifter, the lifter including:
(b) moving the lifter to a position immediately adjacent to the plurality of units of cargo;
(c) causing each first/free end of the at least one lifting arm to penetrate the at least one cavity of the at least one cargo unit of the plurality of units of cargo;
(d) while the first/free end of each of the at least one lifting arm has penetrated the at least one cavity of the at least one cargo unit of the plurality of units of cargo, a crane raising the at least one cargo unit of the plurality of units of cargo to an elevated position;
(e) after step “d”, while the free end of each of the at least one lifting arm has penetrated at least one cavity of the at least one cargo unit of the plurality of units of cargo, the crane moving the lifter and the at least one cargo unit of the plurality of units of cargo to a second position, which second position is spaced apart from its position in step “b”, wherein during this step “e” the free end of each of the at least one lifting arm is elevated compared to the second end of each of the at least one lifting arm;
(f) after step “e,” the crane depositing the at least one cargo unit of the plurality of units of cargo at the second position by lowering the lifter/lifting device, and
(g) after the lowering of the lifter, the free end of each of the at least one lifting arm being withdrawn from the at least one cavity of each of the at least one cargo unit of the plurality of cargo units.
In various embodiments during step “e” wherein during this step “e”, the free end of each of the at least one lifting arm is elevated compared to the second end of each of the at least one lifting arm such that the longitudinal axis of at least one of the at least one lifting arm forms an angle of inclination relative to a generally horizontal plane which is greater than 5 degrees. In various embodiments the angle of inclination can be greater than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 89 degrees. In various embodiments the angle of inclination can fall within a range of between any two of the above specified degree measurements for a minimum angle of inclination.
In various embodiments, during steps “b”, “c”, “d”, and/or “e”, the crane can cause the angle of inclination to increase. In various embodiments the increase in the angle of inclination during steps “b”, “c”, “d”, and/or “e” can be greater than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 degrees. In various embodiments the increase in the angle of inclination during steps “b”, “c”, “d”, and/or “e” can fall within a range of between any two of the above specified degree measurements for an increase in the angle of inclination.
In various embodiments, during steps “b”, “c”, “d”, and/or “e”, the angle of inclination can decrease due the lifter/lifting unit lifting the at least one cargo unit of the plurality of units of cargo. In various embodiments the decrease in the angle of inclination during steps “b”, “c”, “d”, and/or “e” from lifting the at least one cargo unit of the plurality of units of cargo can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and/or 15 degrees. In various embodiments the decrease in the angle of inclination during steps “b”, “c”, “d”, and/or “e” from lifting the at least one cargo unit of the plurality of units of cargo can fall within a range of between any two of the above specified degree measurements for a decrease in the angle of inclination.
In various embodiments a plurality of lifting arms can be provided with first/front and second/rear ends, wherein each of the plurality of lifting arms can be detachably connectable to the lifter at their second/rear ends. In various embodiments each of the plurality of lifting arms can be substantially of the same length. In various embodiments, the plurality of lifting arms can be of different lengths. In various embodiments the ratio of lengths between the shortest of the plurality of lifting arms to the longest of the plurality of lifting arms can be about 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1.0. In various embodiments the ratio of lengths between the shortest of the plurality of lifting arms to the longest of the plurality of lifting arms can fall within a range of between any two of the above specified ratios.
In various embodiments the detachable connection of the at least one lifting arm to the lifter can comprise a pin connector. In various embodiments the detachable connection can comprise a set screw connector.
In various embodiments the quantity of the at least one lifting arm detachably connected to the lifting device is selectable by a user. In various embodiments the quantity of the at least one lifting arm detachably connected to the lifting device selectable by a user is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In various embodiments the quantity of the at least one lifting arm detachably connected to the lifting device selectable by a user can fall within a range of between any two of the above specified quantities.
In various embodiments, the cargo lifted by the at least one lifting arm, is forced/tends to move away from the first/free end of the at least one lifting arm to the spaced apart second/rear end of the at least one lifting arm, by the combination of the angle of inclination of the at least one lifting arm and gravity.
In various embodiments, during the process of moving a set of a plurality of cargo units (such as coiled wires from a vessel's hull) where a crane uses a lifter/lifting unit and multiple lifting and depositing steps, the lifter/lifting unit having a first quantity of lifting arms/prongs has its quantity of lifting arms/prongs selectively changed by a user to a second quantity or number which is different than the first quantity or number. After the selective change to the second quantity of lifting arms/prongs, the crane causes the lifter/lifter unit to in quantity additional multiple lifting and depositing steps and a crane causes the lifting unit/lifter to engage in multiple lifting and depositing steps to move an additional plurality of cargo units (such as coiled wires) from the vessel's hull.
In various embodiments different types of cranes can be used with the method and apparatus, such as a vessel's crane, a shore crane, and/or a floating crane. In various embodiments multiple cranes and multiple lifting devices can be used simultaneously.
While certain novel features of this invention shown and described below are pointed out in the annexed claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being “critical” or “essential.”
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Detailed descriptions of one or more preferred embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in any appropriate system, structure or manner.
Frame 100 can comprise a set of structural members forming first/front end 110, second/rear end 120, top section/portion 130, bottom section/portion 134, and left 138 and right 140 sides. A first family of connectors, such as eyelets 262 and 264 can be provided on the top section 130 and at the second/rear end 120 of frame 100. A second family of connectors, such as eyelets 270, can be provided on the top section 130 and toward the first/front end 110 of frame 100. The second family of eyelets 270 can provide multiple choices for connecting points. For example, in
In various embodiments there can be a vertical spacing 160 between the plurality of lifting arms (e.g., arms 500, 600, 700, 800, and/or 900) and the top section/portion 130 of frame 100. In various embodiments one or more of the plurality of lifting arms (e.g., arms 500, 600, 700, 800, and/or 900) can have a length 410 extending outside frame 100, as shown in
In various embodiments one or more of the lifting arms (e.g., arms 500, 600, 700, 800, and/or 900) can be detachably connectable to frame 100.
As shown in
In various embodiments a plurality of lifting arms 500, 600, 700, 800, and 900 can be provided with first/front and second/rear ends (respectively 510,520; 610,620; 710,720; 810,820; and 910,920), wherein each of the plurality of lifting arms 500, 600, 700, 800, and 900 can be detachably connectable to the lifter 10 at their second/rear ends (respectively 520,620,720,820,920). In various embodiments each of the plurality of lifting arms 500, 600, 700, 800, and 900 can be substantially of the same length 410.
In various embodiments a plurality of lifting arms 500, 600, 700, 800, and 900 can be provided with first/front and second/rear ends (respectively 510,520; 610,620; 710,720; 810,820; and 910,920), wherein each of the plurality of lifting arms 500, 600, 700, 800, and 900 can be detachably connectable to the lifter at their second/rear ends (respectively 520,620,720,820,920), wherein various of the plurality of lifting arms 500, 600, 700, 800, and 900 can be of different lengths (e.g., in
In various embodiments the detachable connection between the at least one lifting arm 500, 600, 700, 800, and 900 and the frame 100 of the lifter 10 can comprise a pin connector. Pin connectors are shown in
Similar types of detachable connections can be made for lifting arms 600, 700, 800, and 900—e.g., second frame opening 202 and removable connecting pin 640 passing through connector opening 212 and lifting arm opening 630 for lifting arm 600; third frame opening 203 and removable connecting pin 740 passing through connector opening 213 and lifting arm opening 730 for lifting arm 700; fourth frame opening 204 and removable connecting pin 840 passing through connector opening 214 and lifting arm opening 830 for lifting arm 800; and fifth frame opening 205 and removable connecting pin 940 passing through connector opening 215 and lifting arm opening 930 for lifting arm 900.
In various embodiments the detachable connection can comprise a set screw connector. In various embodiments multiple pins and openings can be provided for each lifting arm (e.g., pins 540, 540′ inserted respectively into connector openings 211,211′ and lifting arm openings 530,530′ for arm 500; pins 640, 640′ inserted respectively into connector openings 212,212′ and lifting arm openings 630,630′ for arm 600; pins 740, 740′ inserted respectively into connector openings 213,213′ and lifting arm openings 730,730′ for arm 700; pins 840, 840′ inserted respectively into connector openings 214,214′ and lifting arm openings 830,830′ for arm 800; and pins 940, 940′ inserted respectively into connector openings 215,215′ and lifting arm openings 930,930′ for arm 900). In various embodiments one or more frame receiving openings (e.g., 201,202,203,204, and/or 205) can include a rear stop to prevent the second/rear ends (520,620,720,820,920) of lifting arms 500,600,700,800,900 from sliding too far past second/rear end 120 of frame 100 and/or for respectively aligning lifting arm openings 530,630,730,830, and 930 with connector openings 211,212,213,214, and 215.
In various embodiments the quantity of the at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) being detachably connected to the frame 100 of the lifting device 10 (such as through one or more openings 201, 202, 203, 204, and/or 205 in frame 100) is selectable by a user. In various embodiments the quantity of at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) being detachably connected to the lifting device 10 selectable by a user is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In various embodiments the quantity of the at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) detachably connected to the lifting device 10 selectable by a user can fall within a range of between any two of the above specified quantities.
In various embodiments the method and apparatus can be used to transfer a plurality of cargo units 3550 from the hold 3000 of a vessel 2900 to another vessel such as a barge 3500, and/or to a dock 3300 as shown, e.g., in
As can be seen in
In various embodiments there can be horizontal spacing between the respective center lines of adjacent lifting arms, e.g., horizontal spacings 422,424,426, and 428, as shown in
In various embodiments, the horizontal spacing between adjacent lifting arms, measured from their respective center lines, can be generally consistent with the horizontal spacing between adjacent cargo units to be picked up, measured from the respective centers of the respective cavities of the adjacent cargo units (for example, as shown in
In various embodiments is provided a method of moving a plurality of cargo units 3550 (e.g., 901, 801, 701, 601, and 501), each of the cargo units (e.g., 901, 801, 701, 601, and 501) having a cavity (e.g., respectively 902, 802, 702, 602, and 502), comprising the steps of:
(a) providing a lifter/lifting device 10, the lifter 10 including:
(i) a frame 100 with first/front 110 and second/rear 120 ends and top 130 and bottom 134 portions; and
(ii) at least one lifting arm (e.g., 900, 800, 700, 600, and 500) having spaced apart first/front/free (e.g., respectively 910, 810, 710, 610, and 510) and second/rear (e.g., respectively 920, 820, 720, 620, and 520) ends, wherein the second/rear end (e.g., respectively 920, 820, 720, 620, and 520) is detachably connected to the frame 100 at the second/rear end 120 of the frame 100;
(b) moving the lifter 10 to a position immediately adjacent the plurality of units of cargo 3550 (e.g., see
(c) causing each first/front/free end (e.g., respectively 910, 810, 710, 610, and 510) of the at least one lifting arm (e.g., respectively 900, 800, 700, 600, and 500) to penetrate at least one cavity (e.g., respectively 902, 802, 702, 602, and 502) of the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550;
(d) while each first/front/free end (e.g., respectively 910, 810, 710, 610, and 510) of the at least one lifting arm (e.g., 900, 800, 700, 600, and 500) has penetrated the at least one cavity (e.g., respectively 902, 802, 702, 602, and 502) of the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550, a crane 1500 raising the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550 to an elevated position (see e.g.,
(e) after step “d”, while each first/front/free end (e.g., respectively 910, 810, 710, 610, and 510) of the at least one lifting arm (e.g., respectively 900, 800, 700, 600, and 500) has penetrated at least one cavity (e.g., respectively 902, 802, 702, 602, and 502) of the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550, the crane 1500 moving the lifter 10 and the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550 to a second position (see e.g.,
(f) after step “e, the crane 1500 depositing the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of units of cargo 3550 at the second position by lowering the lifter/lifting device 10; and
(g) after the lowering of the lifter/lifting device 10, each first/front/free end (e.g., respectively 910, 810, 710, 610, and 510) of the at least one lifting arm (e.g., 900, 800, 700, 600, and 500) is withdrawn from the at least one cavity (e.g., respectively 902, 802, 702, 602, and 502) of the at least one cargo unit (e.g., respectively 901, 801, 701, 601, and 501) of the plurality of cargo units 3550.
In various embodiments during step “e” each first/front/free end (e.g., 910, 810, 710, 610, and 510) of the at least one lifting arm (respectively, 900, 800, 700, 600, and 500) is elevated compared to each second/rear end (respectively, 920, 820, 720, 620, and 520) of the at least one lifting arm (respectively, 900, 800, 700, 600, and 500), the longitudinal axis (respectively, 914, 814, 714, 614, and 514) of the at least one lifting arm (respectively, 900, 800, 700, 600, and 500) forms an angle of inclination 60 relative to a generally horizontal plane 50 which is greater than 5 degrees. In various embodiments the angle of inclination 60 can be greater than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 89 degrees. In various embodiments the angle of inclination 60 can fall within a range of between any two of the above specified degree measurements for a minimum angle of inclination.
In various embodiments between steps “c” and “e” the crane 1500 can cause the longitudinal axis (respectively, 914, 814, 714, 614, and 514) of the at least one lifting arm (respectively, 900, 800, 700, 600, and 500) to increase its angle of inclination 60 relative to a generally horizontal plane 50 (see e.g., angle 60 in
In various embodiments, prior to step “c” and/or after step “f”, the length 1532 of lifting cables 1530 can be shortened relative to the length 1522 of lifting cables 1520, or the length 1522 of lifting cables 1520 can be lengthened relative to the length 1532 of lifting cables 1530, in order to cause the longitudinal axis (respectively, 914, 814, 714, 614, and 514) of the at least one lifting arm (respectively, 900, 800, 700, 600, and 500) to increase its angle of inclination 60 relative to a generally horizontal plane 50 (see e.g., angle 60 in
In various embodiments, during step “d”, the at least one cargo unit (e.g., 901, 801, 701, 601, and 501, respectively) each includes first and second ends, and has each respective first end placed in an elevated condition relative to each respective second end (see e.g.,
In various embodiments a plurality of lifting arms (e.g., 900, 800, 700, 600, and 500) can be provided with first/front and second/rear ends (respectively, 910,920; 810,820; 710,720; 610,620, and 510,520), wherein each of the plurality of lifting arms (900, 800, 700, 600, and 500) can be detachably connectable to the frame 100 of the lifter 10 at their second ends (respectively, 920, 820, 720, 620, and 520), wherein various of the plurality of lifting arms can be of different lengths (see e.g., lengths 410 and 412 shown in
In various embodiments the detachable connection of the at least one lifting arm (e.g., 900, 800, 700, 600, and 500) to the frame 100 of the lifter 10 can comprise a pin connector (e.g., pin 540 for lifting arm 500, pin 640 for lifting arm 600, pin 740 for lifting arm 700, pin 840 for lifting arm 800, and pin 940 for lifting arm 900). In various embodiments the detachable connection can comprise a set screw connector.
In various embodiments the quantity of the at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) detachably connected to the frame 100 of lifting device 10 is selectable by a user. In various embodiments the quantity of the at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) detachably connected to the frame 100 of the lifting device 10 selectable by a user is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In various embodiments the quantity of the at least one lifting arm (e.g., lifting arms 500, 600, 700, 800, and/or 900) detachably connected to the frame 100 of the lifting device 10 selectable by a user can fall within a range of between any two of the above specified quantities.
In various embodiments, one or more of the lifting arms can be provided with a connector at the lifting arm first/front end, such as connector eyelets 512,612,712,812, and 912, each connector extending, respectively, from the front ends 510, 610, 710, 810, and 910 of lifting arms 500, 600, 700, 800, and 900, as shown in
In various embodiments, one or more of the lifting arms/prongs (e.g., 900, 800, 700, 600, and/or 500) can each be provided with a plurality of user selectable longitudinally spaced apart paired positioning connector openings (which set of a plurality of longitudinally spaced apart paired connector openings can be located closer to the second end of each lifting arm/prong). For example lifting arm/prong 900 can be provided with selectable paired connector openings 930, 931, 932, and 934 which are longitudinally spaced about the longitudinal centerline 902 of lifting arm/prong 900. The longitudinally spaced apart paired connector openings allow a user to select a desired length for a particular arm/prong extending outside of frame 100. For example, the longest length 410 for arm/prong 900 can be achieved by using connecting pin/bolt 940 with paired openings 930 and connector brackets 215, and the shortest length 412 of arm/prong 900 by using paired openings 934 and connector brackets.
As other examples lifting arm/prong 500 can be provided with selectable paired connector openings 530, 531, 532, and 534 which are longitudinally spaced about the longitudinal centerline 502 of lifting arm/prong 500 (selectively usable with pin/bolt 540 and connector brackets 211 for adjusting the pickup length of the arm/prong); lifting arm/prong 600 can be provided with selectable paired connector openings 630, 631, 632, and 634 which are longitudinally spaced about the longitudinal centerline 602 of lifting arm/prong 600 (selectively usable with pin/bolt 640 and connector brackets 212 for adjusting the pickup length of the arm/prong); lifting arm/prong 700 can be provided with selectable paired connector openings 730, 731, 732, and 734 which are longitudinally spaced about the longitudinal centerline 702 of lifting arm/prong 700 (selectively usable with pin/bolt 740 and connector brackets 213 for adjusting the pickup length of the arm/prong); and lifting arm/prong 800 can be provided with selectable paired connector openings 830, 831, 832, and 834 which are longitudinally spaced about the longitudinal centerline 802 of lifting arm/prong 800 (selectively usable with pin/bolt 840 and connector brackets 214 for adjusting the pickup length of the arm/prong).
In various embodiments the at least two (2) pairs of longitudinally spaced apart paired connector openings are provided in a pickup arm/prong which allow a user to select a desired arm pickup length for the particular arm/prong extending outside of frame 100. In various embodiments the quantity of pairs of longitudinally spaced art paired connector openings in any one pickup arm/prong can be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 pairs. In various embodiments the quantity of pairs of longitudinally spaced art paired connector openings in any one pickup arm/prong can fall within a range of between any two of the above specified quantities of pairs of longitudinally spaced apart paired connector openings.
It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
This is a continuation of U.S. application Ser. No. 16/131,136, filed on Sep. 14, 2018 (issuing as U.S. Pat. No. 10,654,545 on May 19, 2020), which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/558,591 filed Sep. 14, 2017, each of the above referenced applications/patents are incorporated herein by reference, and priority of/to each of the above referenced applications/patents is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1546364 | Bennington | Jul 1925 | A |
1742384 | Fitzgerald, Jr. | Jan 1930 | A |
3574383 | Frater | Apr 1971 | A |
3897097 | Davis, Jr. | Jul 1975 | A |
4139179 | Kukulski | Feb 1979 | A |
4722106 | Scegiel | Feb 1988 | A |
4784419 | Jensen | Nov 1988 | A |
4955972 | LaBounty | Sep 1990 | A |
5688009 | Pienta | Nov 1997 | A |
6081573 | Akimoto | Jun 2000 | A |
6174125 | Davis | Jan 2001 | B1 |
6502878 | Peters | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
62558591 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16131136 | Sep 2018 | US |
Child | 16876997 | US |