This invention relates to drug infusion devices and, in particular, implantable drug infusion devices that are programmable by a medical professional.
Drug infusion devices dispense fluid medication, containing a drug, to a patient. Some drug infusion devices are portable, allowing a patient to receive fluid medication while remaining mobile. In addition, some drug infusion devices are implanted in the patient's body to more effectively and less obtrusively dispense such fluid medication to a patient.
Various devices and techniques for treating a patient by drug infusion are disclosed in, for example, U.S. Pat. No. 5,782,798, entitled Techniques For Treating Eating Disorders By Brain Stimulation and Drug Infusion; U.S. Pat. No. 5,814,014, entitled Techniques of Treating Neurodegnerative Disorders by Brain Infusion; and U.S. Pat. Nos. 6,579,280 and 7,008,413, each entitled Generic Multi-Step Therapeutic Treatment Protocol. All of these are assigned to Medtronic, Inc. of Minneapolis, Minn., and all are hereby incorporated by reference.
U.S. Pat. No. 4,146,029, Ellinwood, Self-Powered Implanted Programmable Medication System and Method, discloses a device and method for dispensing medication internally of the body utilizing an implanted system which includes medication storage and dispensing control circuitry having control components which may be modified by means external of the body being treated to control the manner of dispensing the medication within such body. In particular, extracorporeal control means may provide some measure to achieve selected medication programs corresponding to particular codes.
An implantable drug administration device may be non-invasively programmed to change the dosage amount and/or the dosage delivery rate. A medical professional may program the delivery rate of a drug contained in the reservoir of the device over a specified interval.
Implantable drug infusion devices and systems are commonly programmable with a plurality of programming steps. Each programming step typically is conducted for a specific time or a specific period of time and specifies an amount of fluid medication or a rate of delivery of fluid medication to a patient. A plurality of programming steps can typically be sequenced to create a programming cycle delivering fluid medication to a patient at different rates based on a daily, weekly, or other time-based schedule.
A program cycle is typically designed, i.e., planned and developed, to cover a set of known time periods, e.g., a period of one week. Each day of the week could be separately programmed or could be based on repetition of a daily program. For example, one could program a program to be repeated each week day and a different program to run on each day of the weekend, for example. Each step in the program cycle, perhaps each hour of the day, could have a different programmed delivery amount or delivery rate. As an example, drug infusion devices could deliver more pain medication during daytime hours when a patient is more active. Other patient activity schedules can and are accommodated, such as non-daily, weekly schedules.
Upon implantation of the drug infusion device, the device may need to be programmed, i.e., a new or modified programming cycle may need to be installed, loaded and/or activated. Or, not infrequently, the drug infusion device may need to be adjusted or readjusted to take into account variations in the patient's condition and/or the patient's activities, for example. These situations typically involve programming a cycle which takes effect immediately or at some discrete point in time in the future.
In one embodiment, a drug infusion system including a drug infusion device capable of delivering a drug to a patient includes a drug delivery module capable of delivering the drug to the patient at one of a series of dosages in each of a series of sequential time slots over a period of time, and a controller operatively coupled to the drug delivery module to control delivery rates at which the drug is delivered to the patient. The controller is configured to cause the drug delivery module to deliver the drug in the series of sequential time slots in a manner defined by a formula in which at least one quantitative drug delivery characteristic is a function of a past drug delivery profile and at least one of: a) a medical professional-provided profile, b) a patient-chosen parameter, and c) a non-variable parameter. The at least one quantitative drug delivery characteristic may include at least one of: a) an amount of drug delivered at each time slot, b) a delivery rate, and c) duration of drug delivery, in each time slot.
The formula may be a function of a medical professional-provided profile and the non-variable parameter, (for example, a constant quantity or constant percentage increase) is a parameter chosen by the medical professional. The formula may include a seed value, i.e., a starting point for drug delivery rate, supplied by the medical professional. The seed value may be, for example, a definite numerical value for delivery rate or dosage, or it could be a function of a past drug delivery interval (for example, a defined percentage of drug delivery rate at a particular point in the past or an average delivery rate over a defined previous time period ), or a previous flex prescription. The medical professional-provided profile may include conditions governing a delivery parameter such as (for example) an upper or a lower limit for delivery rate, or a range for delivery rate.
The past drug delivery profile may include a drug delivery parameter in a previous time slot.
The patient-chosen parameter may include an input from the patient characterizing the patient's condition. The patient input may be a rating of pain experienced by the patient or a rating of involuntary movement being experienced by the patient. The input may be an indication of the patient's desire for a change in quantity of drug (for example, a desire for an administration of a bolus).
The controller may be further configured to cause the delivery module to deliver a bolus in response to the user input, wherein the controller interrupts the series of sequential time slots and deliver the bolus during the interruption. Alternatively, the controller may be configured to cause the module to deliver a bolus wherein the drug delivered in the bolus is in addition to the drug delivered according to the formula during the duration of the bolus. The controller may be further configured to cause the delivery device to resume the series of sequential time slots after the bolus delivery, starting at the time slot corresponding to the elapsed time since the initial start of the series.
In another aspect, the non-variable parameter of the function may include a percent rate of change of at least one quantitative characteristic of drug delivery from a previous time slot.
The duration of each time slot in the series of time slots may be fixed, or alternatively, may be variable. The number of time slots in the series of sequential time slots may be fixed or may be variable.
In another aspect, the controller includes a memory unit capable of storing information relating to the formula; and a programmer which is external to the patient and which includes a user interface configured to receive an input from a user; the memory unit and the programmer being adapted for communication. The communication may be RF or inductive communication, or any other communication mode.
In another aspect, a method of delivering a drug to a patient by an implantable drug infusion device includes: delivering the drug to the patient at one of a series of dosages in each of a series of sequential time slots over a period of time; controlling the delivery of the drug in a manner defined by a formula in which at least one of a) an amount of drug delivered at each time slot, b) a delivery rate, and c) duration of drug delivery, is a function of a past drug delivery profile and at least one of: a) a medical professional-provided profile, b) a patient-chosen parameter, and c) a non-variable parameter. They may also be functions of a specified seed value, or starting value, as well.
In the method, the formula may be a function of a medical professional-provided profile and a non-variable parameter is a parameter chosen by a medical professional. The patient-chosen parameter may include an input from the patient characterizing the patient's condition. The patient input may be a rating of at least one of pain experienced by the patient; involuntary movement; and desire for a drug bolus.
The non-variable parameter of the function may include a percent rate of change of at least one of a quantitative characteristic of drug delivery from a previous time slot. In addition, the non-variable parameter of the function may include an increment of change of at least one of a quantitative characteristic of drug delivery in a previous time slot. The time slots may be of unequal duration.
The device and methods described herein make it possible to provide a drug dosage regimen which includes non-uniform incremental changes in delivered dosage. This is desirable in cases where an abrupt transition in dosage or an abrupt start-up or cessation of drug administration results in undesirable effects on the patient.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the invention as described in the written description and claims hereof, as well as in the appended drawings. It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings are not necessarily to scale, and sizes of various elements may be distorted for clarity. The drawings illustrate one or more embodiment(s) of the invention, and together with the description serve to explain the principles and operation of the invention.
During a programming operation, the internal controller 28 receives programming information, via telemetry, from the clinical programmer 20. Programming information is stored in the memory unit 26 of the controller 28. As described in greater detail below, the processor 29 performs algorithms and other operations on the supplied information to determine the dosing regimen to be performed by drug delivery module 30. Drugs may be provided to a patient 10 by drug delivery module 30 at one or more predetermined dosages, generally calculated as a delivery rate, typically specified as an amount of drug provided to patient 10 in a defined period of time. For example, the dosage may be specified as an amount of drug (measured in, for example, milligrams) per twenty-four hour period. U.S. Pat. No. 7,008,413 entitled “Generic Multi-Step Therapeutic Treatment Protocol”, and U.S. Published Patent Application No. 2005/0043863 entitled “Drug Infusion System and Method Adapted to Start During Programming Cycle”, both of which are hereby incorporated by reference, describe methods of programming a dosing regimen.
Some drugs may have undesirable side effects when dosage is abruptly started or significantly increased that can be minimized by a gradual ramp-up of the dosage delivered. This may be accomplished by starting drug delivery at a relatively low dosage and increasing the dosage in a step-wise fashion over a period of time. With some medications, there may be patient discomfort or other undesirable effects when administration of the drug is abruptly stopped or dosage is significantly and abruptly decreased. In some cases, a gradual tapering down of dosage (rather than an abrupt halt or drop in dosage) may ease the discomfort and other undesirable effects. This tapering down may be accomplished in a step-wise fashion. Another situation where an incrementally stepped increase in dosage is one where a patient is drug resistant. A stepped increase or decrease in dosage may also be desirable for a newly implanted patient who will be transitioned to a flex prescription, for an established infusion patient transitioning to a new flex prescription, or for an infusion patient being transitioned to a different drug or a different drug concentration.
The delivery rate in successive steps need not increase (or decrease) in a uniform manner. The change in this parameter from step to step may be non-uniform. For example, in
In the embodiment illustrated in
The drug delivery protocol may be a function of a medical professional-provided profile. The medical professional-provided profile may include conditions governing a delivery parameter such as, for example, an upper limit for delivery rate which will not be exceeded (delivery rate<Y), or a lower limit under which delivery rate will not fall (delivery rate>X), or a range for delivery rate (X<delivery rate<Y).
The protocol illustrated in
While medication delivery is being ramped up or ramped down, it may be desirable to administer a bolus of medication at certain times and, in some cases, to allow the patient to self-administer a bolus.
Once protocol is completed, the infusion device can be instructed to continue a particular dosage for an indefinite period of time. Or, a flex prescription may be commenced once a stepped program is completed. This is illustrated in
One or more drug delivery parameter (for example, amount of drug to be delivered at each time slot, or the delivery rate in each time slot, or the duration of drug delivery) may be based on an equation or formula input by the user.
The following is an illustration of a script for programming a non-uniform incrementally stepped dosage regimen:
The above script is a particular programming scenario presented for purposes of illustration. Those skilled in the art will appreciate that alternative programming scenarios may be programmed by providing appropriate queries to elicit the information needed from the medical professional.
In another alternative, a dosage regimen is provided based on an equation or formula programmed by the medical professional and also on one or more patient-entered input(s) indicating the patient's assessment of their condition. For example, the patient may enter a pain score or a self-assessment of severity of involuntary movement, or may input a desire for a bolus on the patient programmer 15 illustrated in
The processor 29 in controller 28 is configured to determine a dosing parameter by applying an algorithm to information input by the medical professional. For example, if the medical professional inputs a desired initial delivery rate, a desired final delivery rate (i.e., the delivery rate to be reached at the end of the stepped protocol) and the time frame desired to transition from the initial rate to the final rate, the processor 29 can run an algorithm to determine, for example, the number of steps, the duration of each step, and the increase (or decrease) in delivery rate for each step. The algorithm may be designed so that one or more parameters are held constant while others may be varied. For example, the number of time slots or duration of individual time slots may be fixed in one embodiment, or may alternatively be subject to the user's choice. The inputs may also or alternatively include how many steps are desired; the overall change in dosage expressed as a percentage of a dosage used as a starting point or seed value; and/or the total volume to be delivered. These factors and other like them will be used by the algorithm to determine the end point for the drug delivery program to be configured by the algorithm. Alternatively, a processor in the clinical programmer or a combination of a processor in the clinical programmer and the processor 29 in the implantable device can determine the dosing parameter by applying one or more algorithms to information input by the medical professional.
It will be recognized and understood that the dosing protocols illustrated and described above are examples only and many other dosing regimens incorporating non-uniform incremental changes are possible.
While the embodiments of the present invention have been described in terms of an implantable drug infusion device, it is to be recognized and understood that the features of the present invention could also be implemented in a non-implantable drug infusion device. An example of a non-implantable programmable drug infusion device is that sold under the trademark Paradigm by Medtronic, Inc.
One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation. Various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
60990679 | Nov 2007 | US |