A method and apparatus for multi-user concurrent random access for wireless local area networks (WLANs) is described. The method, implemented in a wireless transmit/receive unit (WTRU), includes detecting a trigger frame for uplink (UL) multi-user (MU) transmission. The trigger frame includes an assignment of resource units (RUs) for random access in upcoming UL MU packet data convergence protocol (PDCP) protocol data units (PPDUs) and an indication that the trigger frame is one of a plurality of trigger frames in a cascading sequence of trigger frames in an MU transmission opportunity (TxOP). The method further includes selecting one of the RUs in the assignment of RUs for a random access transmission and sending the random access transmission on the selected one of the RUs.
A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
As shown in
The communications systems 100 may also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, such as the core network 106, the Internet 110, and/or the other networks 112. By way of example, the base stations 114a, 114b may be a base transceiver station (BTS), a Node-B, an eNode B, a Home Node B, a Home eNode B, a site controller, an access point (AP), a wireless router, and the like. While the base stations 114a, 114b are each depicted as a single element, it will be appreciated that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.
The base station 114a may be part of the RAN 104, which may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), relay nodes, etc. The base station 114a and/or the base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic region, which may be referred to as a cell (not shown). The cell may further be divided into cell sectors. For example, the cell associated with the base station 114a may be divided into three sectors. Thus, in one embodiment, the base station 114a may include three transceivers, i.e., one for each sector of the cell. In another embodiment, the base station 114a may employ multiple-input multiple-output (MIMO) technology and, therefore, may utilize multiple transceivers for each sector of the cell.
The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d over an air interface 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 may be established using any suitable radio access technology (RAT).
More specifically, as noted above, the communications system 100 may be a multiple access system and may employ one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, the base station 114a in the RAN 104 and the WTRUs 102a, 102b, 102c may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may establish the air interface 116 using wideband CDMA (WCDMA). WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High-Speed Downlink Packet Access (HSDPA) and/or High-Speed Uplink Packet Access (HSUPA).
In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may establish the air interface 116 using Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A).
In other embodiments, the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.16 (i.e., Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1×, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), GSM EDGE (GERAN), and the like.
The base station 114b in
The RAN 104 may be in communication with the core network 106, which may be any type of network configured to provide voice, data, applications, and/or voice over internet protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d. For example, the core network 106 may provide call control, billing services, mobile location-based services, pre-paid calling, Internet connectivity, video distribution, etc., and/or perform high-level security functions, such as user authentication. Although not shown in
The core network 106 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include circuit-switched telephone networks that provide plain old telephone service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use common communication protocols, such as the transmission control protocol (TCP), user datagram protocol (UDP) and the internet protocol (IP) in the TCP/IP internet protocol suite. The networks 112 may include wired or wireless communications networks owned and/or operated by other service providers. For example, the networks 112 may include another core network connected to one or more RANs, which may employ the same RAT as the RAN 104 or a different RAT.
Some or all of the WTRUs 102a, 102b, 102c, 102d in the communications system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers for communicating with different wireless networks over different wireless links. For example, the WTRU 102c shown in
The processor 118 may be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Array (FPGAs) circuits, any other type of integrated circuit (IC), a state machine, and the like. The processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to the transceiver 120, which may be coupled to the transmit/receive element 122. While
The transmit/receive element 122 may be configured to transmit signals to, or receive signals from, a base station (e.g., the base station 114a) over the air interface 116. For example, in one embodiment, the transmit/receive element 122 may be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals, for example. In yet another embodiment, the transmit/receive element 122 may be configured to transmit and receive both RF and light signals. It will be appreciated that the transmit/receive element 122 may be configured to transmit and/or receive any combination of wireless signals.
In addition, although the transmit/receive element 122 is depicted in
The transceiver 120 may be configured to modulate the signals that are to be transmitted by the transmit/receive element 122 and to demodulate the signals that are received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 may include multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11, for example.
The processor 118 of the WTRU 102 may be coupled to, and may receive user input data from, the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (e.g., a liquid crystal display (LCD) display unit or organic light-emitting diode (OLED) display unit). The processor 118 may also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128. In addition, the processor 118 may access information from, and store data in, any type of suitable memory, such as the non-removable memory 130 and/or the removable memory 132. The non-removable memory 130 may include random-access memory (RAM), read-only memory (ROM), a hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from, and store data in, memory that is not physically located on the WTRU 102, such as on a server or a home computer (not shown).
The processor 118 may receive power from the power source 134, and may be configured to distribute and/or control the power to the other components in the WTRU 102. The power source 134 may be any suitable device for powering the WTRU 102. For example, the power source 134 may include one or more dry cell batteries (e.g., nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), etc.), solar cells, fuel cells, and the like.
The processor 118 may also be coupled to the GPS chipset 136, which may be configured to provide location information (e.g., longitude and latitude) regarding the current location of the WTRU 102. In addition to, or in lieu of, the information from the GPS chipset 136, the WTRU 102 may receive location information over the air interface 116 from a base station (e.g., base stations 114a, 114b) and/or determine its location based on the timing of the signals being received from two or more nearby base stations. It will be appreciated that the WTRU 102 may acquire location information by way of any suitable location-determination method while remaining consistent with an embodiment.
The processor 118 may further be coupled to other peripherals 138, which may include one or more software and/or hardware modules that provide additional features, functionality and/or wired or wireless connectivity. For example, the peripherals 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (for photographs or video), a universal serial bus (USB) port, a vibration device, a television transceiver, a hands free headset, a Bluetooth® module, a frequency modulated (FM) radio unit, a digital music player, a media player, a video game player module, an Internet browser, and the like.
The RAN 104 may include eNode-Bs 140a, 140b, 140c, though it will be appreciated that the RAN 104 may include any number of eNode-Bs while remaining consistent with an embodiment. The eNode-Bs 140a, 140b, 140c may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the air interface 116. In one embodiment, the eNode-Bs 140a, 140b, 140c may implement MIMO technology. Thus, the eNode-B 140a, for example, may use multiple antennas to transmit wireless signals to, and receive wireless signals from, the WTRU 102a.
Each of the eNode-Bs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling of users in the uplink and/or downlink, and the like. As shown in
The core network 106 shown in
The MME 142 may be connected to each of the eNode-Bs 140a, 140b, 140c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 142 may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular serving gateway during an initial attach of the WTRUs 102a, 102b, 102c, and the like. The MME 142 may also provide a control plane function for switching between the RAN 104 and other RANs (not shown) that employ other radio technologies, such as GSM or WCDMA.
The serving gateway 144 may be connected to each of the eNode Bs 140a, 140b, 140c in the RAN 104 via the S1 interface. The serving gateway 144 may generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The serving gateway 144 may also perform other functions, such as anchoring user planes during inter-eNode B handovers, triggering paging when downlink data is available for the WTRUs 102a, 102b, 102c, managing and storing contexts of the WTRUs 102a, 102b, 102c, and the like.
The serving gateway 144 may also be connected to the PDN gateway 146, which may provide the WTRUs 102a, 102b, 102c with access to packet-switched networks, such as the Internet 110, to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices.
The core network 106 may facilitate communications with other networks. For example, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to circuit-switched networks, such as the PSTN 108, to facilitate communications between the WTRUs 102a, 102b, 102c and traditional land-line communications devices. For example, the core network 106 may include, or may communicate with, an IP gateway (e.g., an IP multimedia subsystem (IMS) server) that serves as an interface between the core network 106 and the PSTN 108. In addition, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to the networks 112, which may include other wired or wireless networks that are owned and/or operated by other service providers.
Other network 112 may further be connected to an IEEE 802.11 based wireless local area network (WLAN) 160. The WLAN 160 may include an access router 165. The access router may contain gateway functionality. The access router 165 may be in communication with a plurality of access points (APs) 170a, 170b. The communication between access router 165 and APs 170a, 170b may be via wired Ethernet (IEEE 802.3 standards), or any type of wireless communication protocol. AP 170a is in wireless communication over an air interface with WTRU 102d.
Enhanced distributed channel access (EDCA) is an extension of the basic distributed coordination function (DCF) introduced in Institute of Electrical and Electronics Engineers (IEEE) 802.11 to support prioritized quality of service (QoS). EDCA supports contention based access of the medium. Carrier sense multiple access with collision avoidance (CSMA/CA) is an IEEE 802.11 random access protocol in which a user (e.g., wireless transmit/receive unit (WTRU) or station (STA)) attempting random access measures the channel to determine whether it is clear prior to transmitting a packet. This random access protocol enables STAs to reduce or eliminate collisions on the channel by preventing them before they occur.
The point coordination function (PCF) uses contention free channel access to support time-bounded services with the AP polling each STA in the basic service set (BSS). Using the PCF, the AP may send a polling message after waiting a PCF interframe space (PIFS). If the client has nothing to transmit, the client may return a null data frame. Hybrid coordination function (HCF) control channel access (HCCA) is an enhancement to PCF in which the AP may poll a STA during both a contention period (CP) and a contention-free period (CFP). Using HCCA, an AP may transmit multiple frames under one poll.
Mechanisms for contention-based channel access defined in current IEEE 802.11 specifications, such as EDCA and CSMA/CA, only allow one STA to access the media at one time. The rest of the STAs in a basic service set (BSS) may need to defer channel access and wait for the channel medium to be cleared. In other words, multi-user concurrent random access is not supported in current IEEE 802.11 specifications. Existing single user random access schemes are inefficient and may introduce significant system delay as compared to multi-user (MU) concurrent random access. Embodiments are described herein that provide mechanisms for MU concurrent random access.
In addition to the limitations of current IEEE 802.11 specifications with regard to single user concurrent channel access, current IEEE 802.11 specifications do not provide for high quality of service for users, for example, in high density scenarios. However, enhancements are being considered for high efficiency wireless local area network (HEW) usage scenarios for a broad spectrum of wireless users, including, for example, high-density usage scenarios, such as in the 2.4 GHz and 5 GHz band, as well as radio resource management (RRM) technologies. Potential applications for HEW include emerging usage scenarios, such as data delivery for stadium events, high user density scenarios, such as at train stations or enterprise/retail environments, and usage scenarios which evidence shows are becoming increasingly more depended upon, such video delivery and wireless services for medical applications. In scenarios where there is a dense network with many STAs, the random access procedure may break down due to all the STAs accessing the network simultaneously.
Similarly, evidence has been provided that measured traffic for a variety of applications has a large likelihood for short packets, and there are also network applications that may generate short packets. Such applications may include, for example, virtual office, transmit power control (TPC) acknowledgement (ACK) applications, video streaming ACK applications, device/controller applications (e.g., mice, keyboards, and game controls), network selection applications (e.g., probe requests and access network query protocol (ANQP)), and network management applications (e.g., control frames).
In the uplink (UL) transmission of a flood of small sized or time sensitive packets, the overhead required to identify STAs with such data and to schedule them in a typical OFDM or OFDMA transmission may result in performance degradation due to the overhead of the transmissions. Embodiments described herein may enable efficient transmission of this type of traffic using OFDMA random access channel (RACH) access. In scenarios where there are many STAs, such embodiments may also limit or eliminate OFDMA RACH collisions between the different STAs' transmissions.
More specifically, in embodiments described herein, a base station or access point (AP) may signal a trigger frame for multi-user channel access. As is described in detail below, the trigger frame may trigger a STA to transmit a UL MU physical layer convergence protocol (PLCP) protocol data unit (PPDU) (e.g., MU-multiple-input multiple-output (MIMO) or OFDMA). The UL MU PPDU may be transmitted in a set of defined resource units (RUs) on which multiple WTRUs or STAs may transmit frames of different types. In embodiments, at least some of the RUs may be designated for random access. In some embodiments, a single trigger frame may be signaled per TxOP, or a series of cascading trigger frames may be signaled per TxOP, for example, to address the scenario where many time sensitive or small sized packets are being transmitted in a network or BSS at the same time.
By way of example, for an OFDMA UL MU PDDU operating on a 20 MHz band, the building blocks for an OFDMA UL MU response transmission may be defined as 26-tone with 2 pilots, 52-tone with 4 pilot, and 106-tone with 4 pilots and with 7 DC Nulls and (6,5) guard tones, and at locations as illustrated in
A trigger frame may be used to synchronize and schedule UL MU transmissions and may serve different purposes, as mentioned above. To this end, there may be different types of trigger frames that may address different functions of the system. Further, a trigger frame may be used to trigger UL MU random access and/or a dedicated transmission. In so doing, it may also facilitate synchronization or time/frequency alignment of UL transmissions.
For scheduled access, a trigger frame may specify the STAs and their resource unit (RU) assignment and the transmission parameters per STA in the HE-SIG-B field in the preamble. The HE-SIG-B field may have a common field followed by a user-specific field. The common field may include the information for all of the designated STAs to receive the PPDU in corresponding bandwidth. The user specific field may include multiple sub-fields that do not belong to the common field, and one or multiple ones of the sub-fields may be for each designated receiving STA. An example of a user-specific field may include the Station ID (STAID). For single-user allocations in an RU, examples of user-specific fields may include a number of spatial streams (NSTS) field, a transmit beamforming (TxBF) field, a modulation and coding scheme (MCS) field, a dual sub-carrier modulation (DCM) and coding field (e.g., specifying use of low density parity check (LDCP)). For each user in a multi-user allocation in an RU, examples of user-specific fields may include spatial configuration fields, MCS fields, DCM fields and coding fields. An example HE-SIG-B field 2200 is provided in
In embodiments, a trigger frame may be a unicast frame or a broadcast/multicast frame. A unicast trigger frame may have a single dedicated receiver address. Based on the information carried in either the HE-SIG-A and/or HE-SIG-B fields, unintended STAs may not need to monitor the remaining part of the unicast trigger frame. A broadcast/multicast trigger frame may not have a single dedicated receiver address. Instead, it may have a dedicated or random group of receive STAs. The frame may carry scheduling and/or resource allocation information. All STAs in range of the transmission may need to monitor the transmission. Examples of broadcast/multicast trigger frames may include trigger frames for random access and trigger frames that may schedule UL MU transmission for one or more STAs.
In embodiments, a trigger frame may be aggregated with other data frames, control frames, or management frames in a medium access control (MAC) layer or in the format of an aggregated MAC PDU (A-MPDU). In this way, the trigger frame may use the same MCS as other frames. In order to better protect the trigger frame, the trigger frame may be allocated as the first MPDU among the first several MPDUs in an A-MPDU format or the trigger frame may be repeated in an A-MPDU. The repeated trigger frame MPDU may or may not be allocated adjacently in an A-MPDU. In embodiments, the original version and repeated version of the trigger frame may be exactly the same, and the version index may be signaled in the MPDU delimiter, or the version index may be signaled in each MPDU (e.g., using the frame control field).
A trigger frame may be transmitted with other frames any type in a DL MU mode, such as a DL OFDMA mode or a DL MU-MIMO mode. Alternatively, the trigger frame may be transmitted using a conventional single user (SU) OFDM mode.
In embodiments, a trigger frame may be the acknowledgement of the previous UL MU frame, or the trigger frame may be aggregated with an acknowledgement frame. In embodiments, the trigger frame or aggregated trigger frame may carry physical layer acknowledgements. In embodiments, a trigger frame may be allowed to trigger STAs without association identifiers (AIDs).
For both example trigger frames, the FC field 302a, 302b may be used to indicate that the frame 300A, 300B is a trigger frame. The duration field 304a, 304b may be set to an estimated time duration during which a UL transmission for an allocated STA is allowed to transmit on the RUs specified in the trigger frame. The estimated time duration may be in certain units, such as microseconds (ms). Unintended STAs receiving the trigger frame may set a NAV value for signal protection or multiple protections. The A1 field 306a, 306b may be set to the broadcast address or group address if the trigger frame is a broadcast or multicast frame or to a dedicated receiver MAC address if the trigger frame is a unicast frame. The A2 field 308a, 308b may be set to the basic service set ID (BSSID) associated with the AP, such as the MAC address of the AP.
For both of the trigger frames 300A and 300B, the common information field 310, 326 may include different types of information, such as a sequence number and/or trigger token, common transmit power control (TPC) indices, common synchronization information, upcoming SIG information, a value of a time synchronization function (TSF) associated with the trigger frame and/or beacon sequence, last trigger for PS-POLL information, and/or information related to a UL preamble of scheduled UL frames.
The sequence number and/or trigger token may be used to solicit the trigger frame and/or the upcoming UL MU transmission. Together with the RU index, this information may be used to identify a STA without using AID or other types of STA IDs. Alternatively, this information may be included in the user specific information field. In some embodiments, this information may be omitted depending on the trigger type and/or random access type being employed.
The TPC indices may indicate TPC information that may be used by the STAs for open-loop and/or closed loop TPC. For example, the indices may include the transmit power index that was used to transmit the current trigger frame and/or a desired/expected received power index at the AP by which multiple STAs may align the received power.
The common synchronization information may include timing and/or frequency offset correction information. The upcoming SIG information may include information to set the L-SIG and/or HE-SIG-A fields in the upcoming UL MU transmission.
Regarding the value of the TSF associated with the trigger frame and/or beacon sequence, the trigger frame may be used to schedule target wake time (TWT)-enabled STAs, which may not monitor a beacon to adjust their timing synchronization functions (TSFs). The TSF information may enable a STA to correct its clock drift to sync up with a future TWT. A beacon sequence may indicate that system information has changed and that STAs may need to re-read the beacon. STAs may use this information regardless of whether the STA is addressed in a later user specific information field 312, 314, 316, 328.
Regarding the last trigger for PS-Poll information, the trigger frame may be used to schedule TWT-enabled STAs, which may not monitor beacon traffic indication map (TIM) information to know whether they have downlink (DL) data buffered. A STA that has no UL data and receives a trigger frame indicating that it is the last trigger frame that schedules UL PS-Polls of the TWT service period (SP) may go to sleep for the rest of TWT SP. Alternatively, the last trigger for PS-POLL information may be included in user specific information field with the corresponding trigger type and random access type.
Regarding the information related to the UL preamble of the scheduled UL frames, all scheduled STAs may need to construct an HE-SIG-A identical to each other as there may be no OFDMA for the legacy OFDM symbols. This information may include information needed for the protection of the DL frames immediately following the UL scheduled frames, such as BA for the scheduled UL frames, or the next trigger frame in a cascading sequence. For example, the AP may dictate how RID in the UL preamble should be set based on the length of the planned DL frames immediately following the scheduled UL transmission.
The information related to the UL preamble of the scheduled UL frames may also include a traffic requirement, which may provide information about a restriction on the AP added to the random access. The traffic requirement may be one or more traffic IDs (TIDs), one or more EDCA access categories, or one or more traffic categories (TCs). This information may be included in a field that may, in an embodiment, be implemented as a hash or bitmap or combination to indicate, for example, one or more TIDs or ACs.
As mentioned above, the trigger frame 300A includes ACK/BA information in the common information field 310, which may indicate whether the trigger frame includes acknowledgements for the previously transmitted UL frames and may include MAC ACK/BA information and/or PHY ACK/BA information. MAC ACK/BA information may indicate that the one or more acknowledgements carried is the MAC ACK/BA, which may include an AID field that may be set to the AID of the STA of the corresponding data transmission that the ACK/BA acknowledges. The MAC ACK/BA information may also include ACK/BA information, which may be set as a normal ACK or BA field for a previous transmission from the STA with the AID indicated. PHY ACK/BA information may indicate that the one or more acknowledgements carried is the PHY ACK/BA, which may not include STA IDs, such as AID or MAC ID. Instead, it may indicate whether a transmission on a certain RU or RUs is successful. The PHY ACK/BA information may include an RU index, which may be used to identify the RU, and ACK information, which may indicate whether the information carried on the RU is decoded successfully. In embodiments, the PHY ACK/BA field may be a bitmap, and each bit may be an ACK/NACK corresponding to an RU.
For the trigger frame 300B, the common information field 326 includes ACK/BA information, which indicates whether the ACK/BA information field 338 is present in the trigger frame 300B. The frame 300B further includes the ACK/BA information field 338 later in the trigger frame. The ACK/BA information field 326 is shown in detail in
Each of the user information fields 312, 314, 316, 238 may include information specific to each respective STA being triggered. More or less user information fields may be included in a trigger frame than shown in
The STA ID or AID sub-field 318a, 318b may be set in a number of different ways. On a condition that a single user or STA is triggered, this field may be set to the AID or other type of STA ID of the recipient. On a condition that a single user is being triggered without an AID, such as a STA that has not yet associated with the AP or a STA that has requested a UL TxOP using a short frame that does not carry a STA ID, this sub-field may be set to a function of the RU index and a sequence number and/or trigger token. Here, the sequence number and/or trigger token may be used to identify a particular UL MU transmission in the past, and the RU index may be used to identify the RU used in that UL MU transmission. In this way, the STA that has transmitted in the RU of the UL MU transmission may be identified. For a group of users/STAs, such as where MU-MIMO is used on the assigned RU, the group may be triggered on a particular RU or multiple RUs, and this sub-field may be set to a group ID, multicast AIDs or other type of IDs that may indicate the group. On a condition that random access without restriction is being triggered, this sub-field may be set to a broadcast ID. On a condition that a random access with restriction is being triggered, this sub-field may be set to a group address, multicast AIDs or any other type of ID that may indicate a group.
The RU allocation sub-field 320a, 320b may be used to assign one or more RUs to the user/STA.
The trigger type sub-field 322a, 322b may identify the type of trigger for the particular user identified. For example, the trigger may be dedicated, which may indicate that a dedicated transmission is being triggered for the user. Here, the triggered transmission may be a data, control, or management frame transmission. As another example, the trigger may be random, which may indicate that a random access transmission is being triggered. For another example, the trigger may be inherited, which may indicate that the trigger type is inherited from another and/or previous frame type (e.g., management frame). As another example, the trigger type may be mixed, which may indicate that the trigger frame triggers transmissions that include dedicated transmissions and random access transmissions. For example, a trigger frame may explicitly trigger one or more STAs (for example, by included IDs of STAs and the allocated resources) to transmit on one or more radio bearers (RBs) or channels. In addition, the trigger frame may trigger one or more STAs to transmit using random access on one or more other RBs or channels.
For another example of a trigger type, the trigger type sub-field may indicate a null data packet (NDP) frame (preamble-only), which may indicate to a STA, or a group of STAs, that it may send an NDP frame, which may not contain any MAC body. In embodiments, this trigger type may be used to protect future trigger frames in a cascading sequence. In embodiments, the AP may decide how early in a cascading sequence to signal future trigger-frame-protection, for example, because there is a trade-off between spatial reuse and protection. Similarly, this trigger type may trigger the transmission of a common clear to send (CTS) for protection against legacy overlapping base station subsystem (OBSS) STAs.
Referring back to
On a condition that the trigger type is dedicated trigger, the trigger information sub-field 324a, 324b may include a dedicated access type, an MCS, a number of spatial streams (Nss) or spatial time streams (Nsts), transmit power control information, timing correction information, frequency correction information, maximum packet size in units (e.g., upcoming UL PPDU length in OFDM symbols or upcoming UL MPDU or A-MPDU size in bytes), coding scheme (BCC or LDPC), ACK policy, guard interval size, HE-LTF type, number of HE-LTFs in the upcoming UL transmission, and/or HE-SIG-A type. With regard to the dedicated access type, for example, any of the following dedicated access types may be defined: dedicated access for acknowledgement (D-ACK) and dedicated access for traffic poll (D-TP). The D-TP type of dedicated trigger frame may be used by the AP to poll STAs for traffic information and status. The trigger type may also be STA-specific, and the IDs of the specific STAs triggered to transmit may be explicitly or implicitly included in the trigger frame.
On a condition that the trigger type is random trigger, the trigger information sub-field 324a, 324b may include a random access type and/or a random trigger body. With regard to the random access type, for example, any of the following random access types may be defined: random access for initial link setup (R-Initial), random access for power saving STAs (R-PS), random access for traffic poll (R-TP), or random access for time sensitive small data transmission (R-SD). The R-initial random access type of trigger frame may be used to trigger STAs that may try to associate with the AP. The R-PS random access type of trigger frame may be used for STAs that may wake up from a sleep mode. The R-TP random access type of trigger frame may be used by the AP to poll STAs for traffic information and status. The R-SD random access type of trigger frame may be used by the AP to allocate a time slot for fast UL small data transmissions. The trigger body may be a sub-field that may vary in size depending on the defined random access type for the trigger frame.
The trigger frame illustrated in
In embodiments, the frame format illustrated in
A random access frame may be transmitted in response to the trigger frame that allocated at least one RU for random access. A random access frame may be a MAC frame and may have different formats depending on the trigger type and random access type indicated in the trigger frame. On a condition that the trigger type is set in the trigger frame as ‘Random’ and the random access type is set to Type=‘R-Initial,’ indicating that random access is for initial setup, the random access frame may be a probe request frame, an association request frame, a reassociation request frame or other type of initial link setup related frame. On a condition that the trigger type is set in the trigger frame as ‘Random’ and the random access type is set to Type=‘R-PS,’ indicating that random access is for power saving STAs, the random access frame may be a PS-Poll frame or other type of power saving related frame. On a condition that the trigger type is set in the trigger frame as ‘Random’ and the random access type is set to Type=‘R-TP,’ indicating that random access is for traffic poll, the random access frame may be a UL response frame or other type of frame to indicate the UL traffic status. On a condition that the trigger type is set in the trigger frame as ‘Random’ and the random access type is set to Type=‘R-SD,’ indicating that random access is for time sensitive small data transmission, the random access frame may be a UL data packet. Certain restrictions may be applied to the data packet transmission. For example, the packet size and/or traffic type may be restricted.
In embodiments, the random access frame may be a short random access (SRA) frame, which may be defined particularly for UL MU random access. The SRA frame may be a MAC frame or a PHY frame. As described above with respect to
The example SRA MAC frame 500 illustrated in
Alternatively, an existing control frame or management frame may be reused or re-interpreted as an SRA frame. For example, an RTS frame transmitted by a non-AP STA in an RU that may be allocated for UL random access may be considered as an RA frame. The AP, as a receiver of the RTS frames, may treat them as SRA frames instead of normal RTS frames.
In embodiments, a trigger frame may allocate all of the RUs for UL MU random access. In this case, an NDP or semi-NDP SRA frame may be used. The NDP or semi-NDP SRA transmission may be considered as a UL MU PPDU without a MAC body. The SIG field in the PLCP header may be over-written as an SRA frame. An NDP SRA frame may take one of a number of different forms, examples of which are provided in
The example NDP SRA frame 600A may also include HE-SIG-A1 and HE-SIG-A2 fields, 608 and 612, respectively. The HE-SIG-A1 field 608 may be the first half of the HE-SIG-A field prepared according to the instructions in the trigger frame, as described above. The HE-SIG-A1 field 608 may have the length of an integer number of OFDM symbols. Some fields in the HE-SIG-A1 field 608 may indicate that this frame is an NDP SRA frame. Not all of the non-AP STAs that transmit in the UL MU random access may have the same HE-SIG-A1 field. The HE-SIG-A2 field 612 may be the second half of the HE-SIG-A field and may be prepared according to the instructions in the trigger frame, as described above.
The UL MU random access frame may be a direct response to the trigger frame. The SRA transmission may be scheduled by the AP, and the SIG fields may be assigned (or dictated) by the AP. On a condition that the AP expects the NDP SRA frame, the STAs may not need to explicitly signal the NDP SRA frame in its UL transmission. For the example NPD SRA frame 600B, instead of having separate HE-SIG-A1 and HE-SIG-A2 fields carrying first and second halves of the HE-SIG-A field, as was the case for the example NPD SRA frame 600A, the STA may overwrite the HE-SIG-A2 field using a user specific sequence to form the HE-SIG-A field 614a. The L-STF/L-LTF and L-SIG fields may, however, be the same among all users.
For the example NDP SRA frames 600B and 600C that use user specific sequences, the sequences may be orthogonal to each other such that the AP may distinguish them even when they are transmitted concurrently using the same frequency-time resources. Each sequence may have a sequence ID associated with it. Thus, the AP may use the sequence ID to indicate the STA that successfully transmitted the SRA using that sequence. The user specific sequence may be assigned by the AP in a Beacon frame, an Association response or other type of frame. Alternatively, the STA may randomly select the sequence from a set of sequences, which may be, for example, specified in the standards.
Instead of using orthogonal sequences, an SRA frame may have an OFDMA-like format, which may be referred to as a semi-NDP SRA frame.
For example, the minimum RU size may be 26 subcarriers per OFDMA symbol. Here, then, the basic SRA field 710 may carry 26 coded or uncoded bits. In embodiments, the SRA field may be a common sequence or a user specific sequence. In other embodiments, the SRA field may be designed to carry some information, such as a compressed STA ID.
As described briefly above, acknowledgement for a UL random access frame may be included in a trigger frame, which may be used to acknowledge the previous UL transmission and trigger a new UL transmission. In embodiments, such acknowledgement may be made in the ACK/BA information field (or as ACK/BA information in the common information field) in the trigger frame, or the acknowledgement frame may be aggregated with other frames in an A-MPDU format. In embodiments, a multi-STA BA frame may be used. The acknowledgement may be a MAC layer acknowledgement or a PHY layer acknowledgement, as described above. For example, PHY ACK/BA may be more suitable for use than MAC ACK/BA when SRA is used at least because the SRA may not include any information such as MAC address, AID or other type of STA ID. For another example, PHY ACK/BA may be more suitable than MAC ACK/BA when a trigger frame is used to trigger initial link setup when the AID may not be set to the STA.
STAs and APs may indicate their capabilities to support UL MU random access. For example, the AP may include an indicator that the AP is capable of UL MU random access in its Beacon, Probe, Response, Association Response frames or other type of frame or in the MAC header or PLCP header. Similarly, STAs may indicate capability to support UL MU random access in their Probe Request, Association Request or other management, control or other type of frame or in the MAC header or PLCP header.
In embodiments, a ‘UL MU random access support’ subfield may be included in the Capability information field or in a new HE Capability information element (IE). Alternatively, several separate random access capability indicators may be defined for different uses, such as Capability of supporting random access for initial access, Capability of supporting random access in power saving mode, Capability of support random access for traffic poll and Capability of supporting random access for time sensitive small packets.
In the next DL transmission frame (a SIFS time after the UL MU transmission 812), the AP 805a may transmit A-MPDUs 832, which aggregate a block ACK (BA) response 835 and 840 to random access frame 815 and 820 on RU1 and RU2, respectively. A new trigger frame 842 may be transmitted on RU3 where the collision previously occurred. On RU4, the AP 805a may transmit a BA frame 844 to STA3, which may be aggregated with a unicast trigger frame 846 to STA3 to trigger another UL transmission from STA3.
If the trigger frame is transmitted in DL OFDMA mode, the resource allocation field in SIG-B of the DL MU PPDU that carries the trigger frame may use a broadcast/multicast (e.g., group ID, extended group ID, multicast AID) or unicast ID (e.g., PAID) to indicate that certain RUs may be assigned for trigger frame transmission. When a broadcast or multicast ID is used, the corresponding one or more potential recipients and/or STAs may need to detect the trigger frame, and unintended STAs may skip the detecting of the trigger frame.
Referring back to
A SIFS time after receiving the UL MU random access transmission, the AP may transmit one or more acknowledgement frames (930) to the STAs. The acknowledgement frames may include, for example, multi-STA BA frames, ACK frames and/or BA frames. In embodiments, the AP may cascade the acknowledgements with other DL data, control and/or MAC frames. The AP may also aggregate the ACK with a trigger frame, which may be used, for example, to trigger a new set of UL transmissions.
The WTRU may then compare R with M (M is the number of RUs that were allocated for random access in the detected trigger frame). On a condition that R≤M (1110), the WTRU may transmit on the Rth RU assigned for random access (1115). On a condition that R>M (1110), the WTRU may hold its transmission (1120), reset R=R−M (1125), and compete for the next UL MU random access opportunities using the reset offset value R (1130).
Referring back to
In embodiments, such as for dense STA deployment and/or where a large number of small sized or time sensitive packets are being transmitted in a BSS at the same time, an AP may transmit a number of trigger frames per TxOP.
The AP may send another trigger 1210 during the TxOP, scheduling dedicated UL transmissions for the users that successfully transmitted the SRA frames (STA1 and STA2 in this example) in the UL MU transmission 1220. In the example illustrated in
From the STA end, in response to receiving the trigger frame 1205, it may check whether it may transmit. On a condition that the STA determines that it may transmit a UL MU random access frame, the STA may prepare L-STF, L-LTF fields as in a normal transmission and prepare the L-SIG field following the instruction in the trigger frame 1205. The STA may prepare the HE-SIG-A1 field, which may be the first half of the HE-SIG-A field as described above with respect to
For scenarios where there may be small packets, such as traffic indication packets informing the AP that specific STAs have packets to send, or time sensitive packets, such as packets carrying VoIP or gaming control traffic, the AP may set a random access window with N different random access opportunities, which may be referred to as a continuous random access transmission opportunity (CRA TxOP).
In embodiments, an initial random access trigger frame in a series of cascading trigger frames in a random access transmission opportunity may indicate the traffic type, size and related information as well as the number of trigger frames in the CRA TxOP with a combined multi-STA block ACK/trigger frame inter-spaced between each random access opportunity (RaOP) transmission. In other embodiments, each new RaOP may be transmitted a SIFS time after the previous one ends. Here, a delayed MU-block ACK may be transmitted from the AP at the end of the TxOP. Inter-spaced trigger frames may add and/or remove random access RUs within the CRA TxOP by scheduling specific users on specific RUs on an as-needed basis. Different embodiments for cascading trigger frames are described in more detail below with respect to
To determine the number of random access RUs needed, the AP may observe the number of empty random access RUs within a transmission. This may be a function of no STAs accessing the channel and the number of collisions that occur within a resource. A feedback subframe that informs the AP of the number of random access collisions that the STA has had as well as the primary channels these collisions have occurred on may also be used to help dimension the allocation. In this case, the feedback may include both the RAB index and the RU index within the RaOP.
In embodiments, the STAs may be classified into different groups and random access may be limited to a specific group. This may be combined with cascaded OFDMA transmission to ensure that all the groups are given an opportunity to access the channel. In other embodiments, the STAs may be grouped and specific groups may access a specific set of OFDMA resources.
By way of example, in scenarios where there are many collisions, the AP may specify which groups of STAs are permitted to access a specific RaOP. For example, a first STA group (STA group 1) may be allowed to access RaOP 1, a second STA group (STA group 2) may be allowed to access RaOP 2, and so on. In this case, signaling may be needed to group the STAs and identify the random access opportunity each group may use. A STA may belong to multiple groups. RaOPs may be coordinated between overlapping BSSs to limit the effect of OBSS collisions between the BSSs.
In embodiments, the trigger frames, such as Trigger-R frame 1304 and/or the MU-BA/trigger frames 1306, may indicate which STAs are permitted to transmit in the RaOP and/or the CRA TxOP. In one example, all STAs may be permitted to access any random access resources within the CRA TxOP. In another example, the trigger frame may indicate a sequence of STA groups permitted within each RaOP. Here, the AP may divide the space into multiple random access groups, where each random access group includes STAs with some commonality (e.g., traffic size, physical proximity, and common MCS requested to reduce padding when traffic of the same size is transmitted). STAs may be allowed to access the random access channel in the RaOP they are assigned to. Some RaOP may be left for random access of the STAs at the same time. For example, RaOP 1=STA group 1, RaOP 2=STA group 2, and RaOP n=all STAs.
Further, the trigger frames, such as Trigger-R frame 1304 and/or the MU-BA/trigger frames 1306, may indicate the resources dedicated to random access. In one example, all RUs in the CRA TxOP may be allocated for random access. In another example, only a subset of the RUs in the transmission bandwidth may be allowed for random access. This subset of resources may be constant over an entire CRA TxOP or may change over the course of the CRA TxOP.
STAs may perform random access in the random access resources/RaOPs that they are permitted to access. For example, as illustrated in
The AP 1502 may receive random access or SRA frames 1512, 1516 in the UL MU frame a SIFS time after each trigger frame 1504, 1508. The AP 1502 may record the RU indices on which random access frames were successfully detected.
In one embodiment illustrated in
In embodiments, at least one trigger frame of the plurality of trigger frames in the sequence may include a last trigger indication. In embodiments, the last trigger indication may indicate, for example, that the at least one frame is the last trigger frame in a target wait time (TWT) service period (SP) that schedules UL power save polls (PS-polls). A sleep state may be entered in response to the indication in the at least one trigger frame. The trigger frame may include a field that polls for a traffic buffer status of the WTRU.
The assignment of RUs for random access in the upcoming UL OFDMA transmission may be for an integer number, M, of RUs, and the one of the RUs in the assignment of RUs for random access transmission may be selected by generating a random backoff index, R, from a range of integer values between zero and defined maximum value. On a condition that R>M, the random access transmission may be held, and the value of R may be reset to R=R−M. The reset value of R may be used to compete for the next MU random access opportunity in the TxOP. The non-AP STA or WTRU may transmit on an Rth RU of the RUs included in the assignment of RUs for random access on a condition that R≤M. The trigger frame may include a common information field that carries information to set a high efficiency (HE)-SIG-A field in the upcoming UL MU PPDU.
In embodiments, at least one of the plurality of trigger frames in the sequence may include a last trigger indication that may trigger WTRUs or STAs to enter a sleep state. In embodiments, the last trigger indication may be, for example, an indication that the trigger frame is the last trigger frame in a target wait time (TWT) service period (SP) that schedules UL power save polls (PS-polls). The trigger frame may include a field that polls for a traffic buffer status of WTRUs or STAs. In embodiments, the trigger frame may include a common information field that carries information to set an HE-SIG-A field in the UL MU PPDU.
Once a non-AP STA or WTRU has made the AP aware of its need for UL access, and after any of the UL MU random access procedures described above, or after a scheduled UL transmission of a short packet (e.g., by providing buffer status information in a PS-Poll frame per AC), a STA may still access the medium via the normal EDCA procedure or via the random access trigger frame.
In the example illustrated in
In embodiments, a NAV or a prohibitive timer may be provided in the acknowledgement frame responding to the frame carrying the buffer status report from the STA. The NAV may be set per STA per access category (AC) and may not apply to STAs that the acknowledgement frame is not addressed to. After the NAV/prohibitive timer is started in the STA, and before expiry of the timer, the per AC EDCA backoff timer may be paused. Alternatively, a timer value may be provided in a broadcast message, such as a beacon frame or other frames providing system information, such as a probe response frame.
The prohibitive timer may be stopped when the STA receives a trigger frame addressed to itself. The timer may be paused when the TxOP holder is the AP or whenever the medium is busy. When the timer expires, the EDCA procedure may be resumed to reduce the possibility of collision when multiple STAs use the same timer value.
In embodiments, the STA may disregard the timer and resume EDCA access if traffic of a higher priority AC has arrived that has not been previously reported to the AP. Further, the STA may disregard the timer if a certain portion of a DL preamble, such as HE-SIG-B, could not be decoded.
When responding to the DL traffic, an updated buffer status may be reported together with the acknowledgement, and the prohibitive timer may be restarted. For the same class of traffic, different values of the timer may apply depending on whether the frame carrying the buffer status is acknowledged (such as data) or not (such as an acknowledgement). The pause of EDCA access may not apply after sending a buffer status report, for example, if there is an on-going transmission attempt due to a previously failed EDCA access. The STA may perform a negotiation of timer values when it associates with the AP.
With UL MU random access, depending on the random access protocol, it may be possible that some RUs may not be occupied by any STAs, as is described for some of the embodiments above. In this scenario, it may need to be determined how to transmit the preamble, especially on the empty RU. Further, the preamble may be designed to enable an accurate start of packet detection, which may include AGC and time/frequency synchronization, accurate channel estimation for UL MU PPDU, backward compatibility, and unified format for both DL/UL SU/MU transmissions.
In embodiments, such as illustrated in
In OFDMA, frequency resources presented in the form of sub-channels may be assigned to different radio links, which may all be in either uplink or downlink directions. When a signal is transmitted over a sub-channel allocated on one side of the channel relative to the central frequency, it may create interference on the other side of the channel as the image of the original signal, which may be due to RF I/Q amplitude and phase imbalances.
In single BSS scenarios, in the OFDMA DL, this interference may not be significant since the transmit powers on all sub-channels are the same as are the receive (Rx) powers on these sub-channels at each STA. However, in the OFDMA UL, if there is no power control or the power control is not accurate, the interference at the image sub-channel (e.g., B in
Accordingly, in embodiments, the trigger frame that allocates RUs for random access may be designed such that symmetric random access may be used. This means that the STAs may use the RUs that are symmetrically allocated around the center frequency, as shown in the diagram 2100 of
In scenarios where different STAs have different traffic priorities, the OFDMA random access procedure may be modified to take into account the traffic priorities of the different STAs. This may allow STAs with the correct priorities to access the medium.
In embodiments, when a STA has a frame to send, it may initialize an internal OFDMA backoff (OBO) to a random value in the range of zero to OFDMA contention window (CWO). For a STA with a non-zero OBO value, it may decrement its OBO by 1 in every RU assigned to a particular AID value with the TF-R. For a STA, its OBO decrements by the value, unless OBO=0, equal to the number of RUs assigned to the particular AID value in a TF-R. OBO for any STA can only be zero once every TF-R. A STA with OBO decremented to zero may randomly select any one of the assigned RUs for random access and transmit in its frame.
In embodiments, the OFDMA back-off contention window (CWO) may be initialized to a value based on the traffic type. These may be defined as: Voice: OBO_backoff[AC_VO]; Video: OBO_backoff [AC_VI]; Best effort: OBO_backoff[AC_BE]; and Background: OBO_backoff[AC_BK], where Voice<Video<best effort<background. This may give different priorities to the different traffic types. In other embodiments, specific random access transmit opportunities or random access OFDMA resources may be reserved for specific traffic access categories, and only STAs with traffic in that access category or higher may be permitted to access the medium during that specific random access opportunity. And in other embodiments, specific random access OFDMA resources may be reserved for specific traffic access categories, and only STAs with traffic in that access category or higher may be permitted to access the medium during that specific random access opportunity.
For both cases, the following procedure may be used. The AP may send out a random access trigger to the STAs. The preamble of the random access trigger may signal the resources available and the traffic access categories allowed. The HE-SIG-B field of the preamble may be used to signal the information to the STAs, as described above. The common section of the SIG-B frame may indicate the resources that are available for transmission. This may include the bandwidth of each random access RU as well as its availability (and in some cases, the AP may desire to silence or reserve a specific RU).
In one example, the HE-SIG-B field may indicate an allocation of fixed bandwidth RUs only or a mix of different sized RUs. The user specific section of the HE-SIG-B field may indicate the STAs, groups of STAs and traffic priorities of the STAs allowed to compete for the corresponding resource or RU. In this case, it may become an RU-specific signaling field.
On a condition that there are no restrictions, a flag may be placed in the common HE-SIG-B field to indicate that all STAs may access the resources. In this case, the HE-SIG-B field may be empty. Alternatively, the user specific HE-SIG-B field may be set to a value that indicates that all STAs may compete for the resource, for example, the BSSID of the BSS. Alternatively, if a group address is not assigned to a resource, it may be inferred that all STAs may access the resource. If a traffic class is not assigned to a resource, it may be inferred that all traffic classes may access the resource. In a multiple BSSID scenario with virtual BSSs, the AP may use the common BSSID for the physical AP to ensure that all STAs in all BSSs are allowed to compete for the resources.
On a condition that there are restrictions on which STAs are allowed to compete for the random access resource, a group-ID may be used in place of the STAID or user specific ID to indicate the group of STAs allowed to compete for the resource. STAs may be grouped based on different criterion, such as traffic types, physical location (to minimize hidden nodes), and OBSS interactions (to minimize interference to/from OBSS STAs). The AP may add a STA to a group by sending a group adding frame with the address of the STA and the address of the group it belongs to. The AP may also remove a STA from a group in the same manner. The STA may send an ACK to indicate that it has been added to the group. Groups may not be mutually exclusive (i.e., a STA may belong to multiple groups).
On a condition that there are restrictions on the access categories of the traffic of the STAs allowed to compete for a resource, the specific traffic access category (AC) (or minimum traffic class allowed) may be sent in the HE-SIG-B field for that specific resource. In the event that all resources are traffic class restricted, the minimum AC may be sent in the common HE-SIG-B field. In another embodiment, all ACs that are permitted may be enumerated. Table 1 below shows a possible SIG-B structure for traffic and group restrictions.
Although features and elements are described above in particular combinations, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with the other features and elements. In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). A processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.
This application is a continuation of U.S. patent application Ser. No. 16/592,283, filed Oct. 3, 2019, which is a continuation of U.S. patent application Ser. No. 15/754,847, filed Feb. 23, 2018, which issued as U.S. Pat. No. 10,477,576 on Nov. 12, 2019, which is the U.S. National Stage, under 35 U.S.C. § 371, of International Application No. PCT/US2016/050627, filed Sep. 8, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/217,564, which was filed on Sep. 11, 2015, U.S. Provisional Patent Application No. 62/242,484, which was filed on Oct. 16, 2015, and U.S. Provisional Patent Application No. 62/278,774, which was filed on Jan. 14, 2016, the contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
8031583 | Classon et al. | Oct 2011 | B2 |
8787284 | Noh et al. | Jul 2014 | B2 |
9237521 | Seok | Jan 2016 | B2 |
10045298 | Seok et al. | Aug 2018 | B2 |
10045349 | Atefi | Aug 2018 | B2 |
10111270 | Choi et al. | Oct 2018 | B2 |
10187885 | Kim et al. | Jan 2019 | B2 |
10218555 | Li et al. | Feb 2019 | B2 |
10243714 | Gong | Mar 2019 | B2 |
10250304 | Choi | Apr 2019 | B2 |
10305647 | Seok | May 2019 | B2 |
10349288 | Ryu et al. | Jul 2019 | B2 |
10390359 | Ghosh | Aug 2019 | B2 |
10405311 | Ghosh et al. | Sep 2019 | B2 |
10433337 | Choi | Oct 2019 | B2 |
20080123575 | Jaakkola | May 2008 | A1 |
20120008572 | Gong et al. | Jan 2012 | A1 |
20120051312 | Noh et al. | Mar 2012 | A1 |
20120087358 | Zhu et al. | Apr 2012 | A1 |
20120188925 | Lee et al. | Jul 2012 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130286959 | Lou et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130301569 | Wang et al. | Nov 2013 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140286226 | Seok et al. | Sep 2014 | A1 |
20140301383 | Sohn et al. | Oct 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
20150016558 | Choi et al. | Jan 2015 | A1 |
20150029977 | Seok | Jan 2015 | A1 |
20150036572 | Seok | Feb 2015 | A1 |
20150063257 | Merlin et al. | Mar 2015 | A1 |
20150063291 | Merlin et al. | Mar 2015 | A1 |
20150124690 | Merlin et al. | May 2015 | A1 |
20150195854 | Zhu et al. | Jul 2015 | A1 |
20150282211 | Zhang et al. | Oct 2015 | A1 |
20160113034 | Seok | Apr 2016 | A1 |
20160128102 | Jauh et al. | May 2016 | A1 |
20160143006 | Ghosh et al. | May 2016 | A1 |
20160143026 | Seok | May 2016 | A1 |
20160278081 | Chun et al. | Sep 2016 | A1 |
20160302156 | Choi et al. | Oct 2016 | A1 |
20160302229 | Hedayat | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
102013959 | Apr 2011 | CN |
2540184 | Jan 2017 | GB |
2015031440 | Mar 2015 | WO |
2015081179 | Jun 2015 | WO |
2016176110 | Nov 2016 | WO |
Entry |
---|
Aboul-Magd, “802.11 HEW SG Proposed PAR,” IEEE 802.11-14/0165r0 (Jan. 22, 2014). |
Aboul-Magd, “802.11 HEW SG Proposed PAR,” IEEE 802.11-14/0165r1 (Mar. 17, 2014). |
Aboul-Magd, “IEEE 802.11 HEW SG Proposed CSD,” IEEE 802.11-14/0169r0 (Jan. 22, 2014). |
Aboul-Magd, “IEEE 802.11 HEW SG Proposed CSD,” IEEE 802.11-14/0169r1 (Mar. 18, 2014). |
Adachi et al., “Reception Status of Frames Transmitted in Random Access RUs,” IEEE 802.11-15/1341r0 (Nov. 9, 2015). |
Ahn et al., “Random access based buffer status report,” IEEE 802.11-15/1369r0 (Nov. 8, 2015). |
Asterjadhi et al., “He A-Control field,” IEEE 802.11-15/1121r0 (Sep. 12, 2015). |
Asterjadhi et al., “Scheduled Trigger frames,” IEEE 802.11-15/0880r2 (Jul. 4, 2015). |
Baron et al., “Random RU selection process upon TF-R reception,” IEEE 802.11-15/1047r0 (Sep. 2015). |
Draft Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 6: Sub 1 GHz License Exempt Operation, IEEE P802.11ah/D5.0 (Mar. 2015). |
Draft Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 6: Enhancments for High Efficiency WLAN, IEEE P802.11ax/D0.4 (Aug. 2016). |
Fang et al., “UL MU Random Access Analysis,” IEEE 802.11-15/0843r1 (Jul. 2015). |
Fang et al., “UL MU Random Access Analysis,” IEEE 802.11-15/0843r0 (Jul. 13, 2015). |
Ghosh et al., “Power Save with Random Access,” IEEE 802.11-15/1107r0 (Sep. 14, 2015). |
Ghosh et al., “Random Access with Trigger Frames using OFDMA,” IEEE 802.11-15/0875r1 (Jul. 13, 2015). |
Ghosh et al., “UL OFDMA-based Random Access Procedure,” IEEE 802.11-15/1105r0 (Sep. 14, 2015). |
Harkins, “Secure Password Ciphersuites for Transport Layer Security (TLS),” Transport Layer Security, Internet-Draft, draft-harkins-tls-dragonfly-00 (Aug. 5, 2016). |
IEEE P802.11ad-2012, IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE P802.11ad-2012 (Dec. 2012). |
IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11-2012 (Mar. 29, 2012). |
IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications; Amendment 5: Television White Spaces (TVWS) Operation, IEEE 802.11af-2013 (Dec. 11, 2013). |
IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6GHz, IEEE Std 802.11ac-2013 (Dec. 11, 2013). |
IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 5: Enhancements for Higher Throughput, IEEE Std802.11n-2009 (Sep. 2009). |
Merlin et al., “Trigger Frame Content,” IEEE 802.11-15/1344r0 (Nov. 9, 2015). |
Merlin et al., “Trigger Frame Format,” IEEE 802.11-15/0877r1 (Jul. 13, 2015). |
Park, “Specification Framework for TGah,” IEEE P802.11 Wireless LANs, IEEE 802.11-11/1137r15 (May 14, 2013).†. |
Stacey et al., “Proposed TGax draft specification,” IEEE 802.11-16/0024r1 (Mar. 2, 2016). |
Stacey, “Specification Framework for TGax,” IEEE P802.11 Wireless LANs, IEEE 802.11-15/0132r7 (Jul. 20, 2015). |
Stacey, “Specification Framework for TGax,” IEEE P802.11 Wireless LANs, IEEE 802.11-15/0132r15 (Jan. 28, 2016). |
Yang et al., “Cascading Structure,” 802.11-15/0841r1 (Jul. 2015). |
Number | Date | Country | |
---|---|---|---|
20220110154 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62278774 | Jan 2016 | US | |
62242484 | Oct 2015 | US | |
62217564 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16592283 | Oct 2019 | US |
Child | 17550789 | US | |
Parent | 15754847 | US | |
Child | 16592283 | US |