1. The Field of Invention
The present invention relates to improvements in the systems and methods for non-invasively measuring one or more biologic constituent concentration values. More particularly, the present invention relates to non-invasive spectrophotometric systems and methods for quantitatively and continuously monitoring the hematocrit and other blood parameters.
2. The Prior Art
Modern medical practice utilizes a number of procedures and indicators to assess a patient's condition. One of these indicators is the patient's hematocrit. Hematocrit (often abbreviated as HCT) is the volume expressed as a percentage of the patient's blood which is occupied by red corpuscles, commonly referred to as red blood cells. The present invention is presented in the context of hematocrit. However, it is to be understood that the teachings of the present invention apply to any desired biologic constituent parameter.
Medical professionals routinely desire to know the hematocrit of a patient. In order to determine hematocrit using any of the techniques available to date, it is necessary to draw a sample of blood by puncturing a vein or invading a capillary. Then, using widely accepted techniques, the sample of blood is subjected to either high-speed centrifuge, cell counting, ultrasonic, conductometric or photometric methods of evaluating the sample of blood in a fixed container. Prior U.S. Pat. No. 5,372,136 indicates a system and methodology for determining the hematocrit non-invasively, without puncturing or invading the body, spectrophotometrically and continuously in a subject. The present invention relates to improvements upon the above cited system.
Beyond the above referenced patent, others have suggested various means of noninvasive measurement of hematocrit. Specifically, Mendelson, U.S. Pat. No. 5,277,181; Seeker, U.S. Pat. No. 5,188,108; Gonatas, U.S. Pat. No. 5,528,365; Ishikawa, U.S. Pat. No. 5,522,388; Shiga, U.S. Pat. No. 4,927,264; Tsuchiya, U.S. Pat. Nos. 5,441,054, 5,529,065, 5,517,987 and 5,477,051; and Chance, U.S. Pat. Nos. 5,353,799, 5,402,778, and 5,673,701 have attempted to define means of directly measuring desired biologic constituents such as hematocrit. Even though the various patents indicate the need to utilize multiple wavelengths measured at different detection sites and/or the need to perform differential or ratiometric operations on the detected optical signal, all fail to isolate and resolve the individual and specific scattering and absorption coefficients of the desired constituent. At best they address only bulk attenuation coefficients and/or bulk diffusion constants of the scattering media while attempting to resolve such constraints as tissue nonhomogeneity. As an example, tissue may be considered to contain a bulk absorptive coefficient due to blood, collagen, water, fibers, bone, fingernail, etc. Hence, in order to determine the absorptive coefficient of the blood itself, the bulk value of the tissue per se must be prorated by the amounts of the above constituents. Secondly, the actual absorptive coefficient of the blood must then be decoupled or isolated from its proration factor as well.
Thus, it is an object of the present invention to provide an improvement in the systems and methods for the non-invasive (transcutaneous) and continuous determination of the blood. Hematocrit in living tissue.
It is yet another object of the present invention to provide an improvement in the systems and methods for the non-invasive (transcutaneous) and continuous determination of the blood constituents, including glucose, bilirubin, cholesterol, tissue water, etc. in living tissue.
It is another object of the present invention to provide a system and method and apparatus for the display of both immediate and/or continuous visual information regarding the HCT of the subject.
It is yet another object of the present invention to provide a repeatable and reliable method and apparatus for the non-invasive determination of hematocrit transcutaneously and in real time even under varying physiological conditions.
Still another object of the present invention is to provide a method and apparatus for the instantaneous determination of the bulk absorption coefficient of the scattering media.
These and other objects and advantages of the invention will become more fully apparent from the description in the specification and claims, which follow.
In one aspect, the present invention accomplishes the transcutaneous, noninvasive, real-time and continuous measurement of the hematocrit and other blood constituents of the patient. That is, the electronic circuitry necessary is included to receive signals from a detector and to generate appropriate signals at various input sites as described in U.S. Pat. No. 5,372,136. Yet another aspect of the present invention is the ability to extract the blood absorption coefficient from the bulk tissue diffusion constant or the bulk absorption coefficient of the scattering media by requiring both physical and mathematical operations.
In a preferred embodiment of the invention, measurements are conducted using a modified version of the apparatus described in U.S. Pat. Nos. 5,456,253 and 5,372,136, both of which are incorporated herein as if reproduced in full below. Both of these patents form part of the present disclosure.
Thus, in a preferred embodiment, hematocrit is measured in living tissue located at some convenient location on the body, such as, an ear lobe, finger tip, nose or other accessible tissue sites. In a preferred embodiment the apparatus and signal manipulations described in U.S. Pat. No. 5,372,136 are utilized to measure various optical parameters that will be described hereafter. The numbered components in
In the present disclosure,
Non-invasive, transcutaneous hematocrit measurement using a spectroscopic method is described below:
I. Introduction
Earlier spectrophotometric techniques have fallen short of being able to fully characterize the individual blood absorbance coefficients. The following discussion demonstrates the method of decoupling, or isolating from the bulk tissue attenuation parameters (including the convoluted absorptive and scattering parameters) the individual blood absorptive constants. This unique method identifies, isolates and compartmentalizes each of the contributing biologic elements of the tissue media. This decoupling process can either isolate the blood absorbance of interest and/or eliminate the scattering contribution from the bulk media measurement.
From photon diffusion analysis:
where,
and where,
The light flux, or intensity, i, is given by
When evaluated at ρ=d, one solution to equation (1) is:
where A is a nontrivial function of the tissue scattering coefficient, S, the distance, d (if small), and the bulk attenuation coefficient, α. If α d>>1, then (8) becomes:
i=Ae−αd (9)
where
or (1/d2+1/αd) for 0<n<2,
where n is the power that d is raised to.
FIG. (2) shows the actual patient data plot of ln(i) vs. d, where α is determined directly from the slope of the line.
The attenuation coefficient, α, is a bulk term which encompasses the attenuation measurement sensitivity to variations in skin color, presence of bone, callous, blood and water content, etc. In addition, α expresses the optical “path lengthening” effects of both the absorption and scattering characteristics of the tissue. Therefore, since α is a function of HCT and the intensity of the transmitted light can be measured, the HCT can be calculated by manipulation of the preceding relationships.
Beginning with equation (9), the troublesome and complex tissue function, A, can be eliminated by taking the logarithm of (9) and differentiating with respect to the distance, d. Unfortunately the term Xb is not known but changes with time as a result of a patient's cardiac cycle. Therefore, by differentiating with respect to time, this parameter becomes the time rate of change of blood volume which can be obtained through several methods described below. These time and distance derivatives may be performed in either order.
[1] Taking the logarithm of (9) and differentiating with respect to the distance, d, yields:
Next the derivative of (10) with respect to time, t, gives:
[2] Alternatively, first differentiate (9) with respect to time, t, to get:
When
are negligible, and normalizing (12) by i yields:
Next differentiate (13) with respect to distance, d, to eliminate that offset term to get:
Equations (3)-(7) are now used to extract the hematocrit from α. Squaring (3) and differentiating with respect to time results in:
Substituting the derivatives of (4) and (6) into (15) and rearranging:
At S05 nm,
and K<<S so that (16) can be simplified to:
By using the 805 nm wavelength the red blood cell absorption cross-section constants are equal, σao=σar, and Kp is negligible. The hematocrit can then be determined directly from Kb as (5) simplifies to:
If KbS>>KSb, where S is approximately 1.0/mm in human tissue, then solving (17) for Kb and substituting into (17a) gives:
To rewrite in terms of measurable intensity, i, (10) and (14) are substituted into (18) to obtain:
If KbS is not >>KSb, then substituting (5) and (7) into (17a) and rearranging terms yields:
Alternatively from (13a):
Equation (18a) indicates a small nonlinearity in H may occur based on the magnitude of K for a given individual.
It should be reiterated that the change in received intensity with time is a result of the change in normalized blood volume resulting from the cardiac cycle itself as blood pulses through the examined tissue. As the intensity of the received light is measured, its time rate of change can be calculated. The change with distance can be determined by placing multiple emitters (such as 1-4 in
To examine
further, the following can be defined for the illuminated tissue:
For Reflectance (R) measurements in homogenous tissue:
Since C3′ is a function of the inter-related photon flux densities C1 and/or C2 and if Xb′1 does not equal Xb′2, then the slope C3′ will not be nulled out by the Xb′ monitors mentioned. Therefore, Xb2′ must be greater than Xb1′. Then the pressure or piezo monitors will compensate correctly. The circular pressure balloon is ideal for not only sensing the change in a pressure, but also providing a pressure against the dermis causing Xb1′ to be small. However, recognizing that the penetration depth of the 800 nm light typically extends through dermal layer 12 into the deep tissue, subcutaneous layer 12a, a different wavelength selection is appropriate. Thusly, when the photons only penetrate into the dermal layer 12, C3′ will only be a function of z1 and α1. Those selected wavelengths, as mentioned in U.S. Pat. No. 5,372,136, would be the green (570-595 nm) wavelength and 1300 nm wavelength. The green wavelengths are used as the hematocrit bearing wavelength and the 1300 nm wavelength is used as the non-hematocrit bearing, or reference wavelength. That is, for reflectance measurements the green (Gr)-1300 wavelength pair would give the hematocrit information as:
III. Methods of
Measurement
∂Xb/∂t can be measured and compensated for through the use of a number of different methods—(a) a pressure transducer, (b) a strain transducer such as piezo electric film or strain gage, (e) a different wavelength of light, such as 1300 nm, which also holds ∂Xb/∂t information, but holds little hematocrit information, or (d) other transducers. The individual methods of obtaining ∂Xb/∂t are addressed below.
A. Pressure Transducer Measurement of
Consider a pressure transducer system 36 with a gas filled bladder 38 surrounding a finger tip 10 of a patient contained within a fixed volume clam shell fixture 6, see
Vclam=Vsys+Vf (23)
where
Since ΔVf=ΔVb then from (25) we have:
As stated above, β is a constant of the pressure transducer system. However, an empirical solution for
was found to have a nonlinear relation to the pressure of the transducer system. For a given clam shell—pressure transducer embodiment a polynomial, F(p), can accurately describe
see
B. Strain Transducer (Strain Gage/Piezo Electric Film) Measurement of
Again it is assumed that ΔVb=ΔVf, and that the finger changes volume only by a change in diameter. A strain gage or piezo electric film is secured tightly around the finger (again any applicable body appendage or tissue would apply) such that a change in diameter would produce a strain in the transducer. Specifically assuming a cylindrical finger:
Normalizing with respect to Vf, yields:
A change in the length of the transducer element is related to a change in finger radius by ΔL=2πΔr, therefore:
where
at is the rate of change in the strain as a function of time. For a strain gage this value can be measured from an appropriate electrical circuit, see
For a piezo electric film the voltage produced is proportional to the strain, therefore:
where, g31 is the piezoelectric coefficient for the stretch axis, τ is the film thickness and ν(t) is the open-circuit output voltage.
C. 1300 nm Light Measurement of
The selection of the 1300 nm wavelength is based on criteria established in U.S. Pat. No. 5,372,136. The approach here is not to solve for ∂Xb/∂t and substitute into (19) but to ratiometrically eliminate ∂Xb/∂t. In the case of the 1300 nm reference wavelength, the assumptions following equation (12) are no longer valid; i.e., ∂Xs/∂t and ∂Xw/∂t are not negligible, since water absorption at 1300 nm is so large. Hence, for the 1300 nm equations (13), (14) and (15) would result in:
where, α, and the bulk and material specific K, and S are wavelength (λ) dependent. Recalling that, Xb+Xs+Xw=1, by definition, and that:
By substituting (31) into (30) and noting that Kw13=Kb13, the following is obtained:
Since,
becomes:
Therefore, to eliminate
and solve for the hematocrit, (17) is divided by (33) yielding:
Since S8 and K13 are well behaved and known (let K13/S8=G) in human tissue and the ratio
is a function of H, then rearranging (34) gives:
Where
can be measured using (11) or (14). See
D. Other ∂Xb/∂t measurements such as doppler, ultrasonic, electrical conductivity, magnetic permeability and other techniques have similar derivations. The important consideration is that ∂Xb/∂t is a normalized time varying quantity.
IV. Analytical Implementation
If hematocrit is constant over a given time interval, averaging can eliminate system noise whose frequency components have corresponding periods much shorter than the interval. In addition, by observing the data variance during the interval it may be determined that the data is invalid. In the present system, the data acquisition rate is approximately 1000 data samples per second. This means that within a typical human pulse about 1000 samples of data are available for appropriate numerical analysis, averaging and qualification. Recognizing that both the intensity of light and the pressure in the transducer system are changing in time during the influx of blood is of great importance. Since the parametric relationship of ∂α/∂t as a function of ∂P/∂t (where P is pressure) during the cardiac cycle should be linear, a multiplicity of data points facilitate qualification of the signal for accuracy and linearity. Whereas, prior techniques involving only the peak and valley values of the cardiac cycle require numerous pulses to qualify the data set. See
A. Homogeneity
Since the above derivations are based on the assumption of tissue homogeneity (i.e., ∂Xb1/∂t=∂Xb2/∂t, A1=A2, ∂A1/∂Xb=∂A2/∂Xb, α1=α2, etc.), high-speed, single-pulse, multiple parameter sampling allows for mathematical qualification of homogeneity, by requiring linearity of ln(i) vs. d and (∂i/∂t)/i vs. d. Under these constraints and when qualified as homogeneous, (∂α/∂t)/(∂P/∂t) also may be assumed to be linear over the entire pulse contour. Finally, both α and ∂α/∂t must also be linear, further assuring homogeneity in Xb, and in ∂Xb/∂t.
B. Circuitry
See U.S. Pat. No. 5,372,136 for the operational circuitry description, which allows for high speed sampling of the optical intensities. See
The circuitry shown and discussed in U.S. Pat. No. 5,372,136 is programmable by conventional techniques to solve and implement the equations and calculations presented in this application.
Referring more specifically to
A second operational amplifier, which may also be an LM 158, receives the output of the first operational amplifier at its inverting input via a 10 KΩ resistor R5. The second operational amplifier's non-inverting input is connected to several locations:
Of course, the particular choice, arrangement and values of components shown in
Referring now to
The first operational amplifier's non-inverting input is set to a value determined by the tap setting of a 1 KΩ adjustable resistor R2 that extends between VCC and VEE. The DAC input drives the first operational amplifier's inverting input via a 1 KΩ resistor R1. The first operational amplifier's feedback path includes a 50 KΩ adjustable resistor R4. The first operational amplifier drives the second operational amplifier's inverting input through an 11 KΩ resistor R3. The feedback path to the inverting input of the second operational amplifier includes a 100 Ω resistor R5.
A transducer 62, which may include a Motorola MPX20100P, has opposite terminals that drive the non-inverting inputs of the second and third operational amplifiers, respectively. The other two opposite terminals of the transducer are connected to VCC and ground, respectively.
The second operational amplifier drives the inverting input of the third operational amplifier via a 750 Ω resistor R6. The third operational amplifier's feedback path to its inverting input includes a parallel arrangement of a 93.1 KΩ resistor R10 and a 0.001 μF capacitor C1.
The third operational amplifier drives the non-inverting input of the fourth operational amplifier via a 1 KΩ resistor R7. The inverting input of the fourth operational amplifier is connected to ground via a 1 KΩ resistor R8. The feedback path to the inverting input of the fourth operational amplifier includes a 50 KΩ adjustable resistor R9. The fourth operational amplifier drives the output of the
Of course, the particular choice, arrangement and values of components shown in
C. Preferred Embodiment
Physical embodiments as shown in
The optical array 30, seen in
The pressure/balloon, strain gage, or peizo transducer system incorporated within the clam-shell fixture (see Section III, A, B, C and
High-speed sampling provides for a closer approximation of the instantaneous time, t, derivative, ∂/∂t, as opposed to peak-valley values, see FIG. 8. Therefore, the above embodiments allow for the direct measurement of ln (i) at d1, d2, d3 and d4 cotemporaneously, thereby determining the actual α of the sampled tissue. Likewise (∂i/∂t)/i can be directly measured at d1, d2, d3 and d4, cotemporaneously during the pulse which determines the instantaneous ∂α/∂t.
The above mentioned optical array can be utilized transmissively and/or reflectively provided the separation distance between the detector and first emitter (d1) is greater than 3 mm.
D. Choice of Non-Ionizing Wavelengths
Since hematocrit is an example of the desired biological constituent concentration value of interest, selection criteria of the preferred wavelength must include an understanding of equation (5). That is, a wavelength whose coefficients Ks, Kw, Kp are small compared to Kb and which are also insensitive to oxygen saturation status must be selected. Such wavelengths include 805 nm, 590 nm, 569 nm and other isobestic wavelengths with negligible water absorption. While non-isobestic wavelengths, with small water absorption, could function, a second wavelength is needed to null out the oxygen saturation effects.
If the desired biologic constituent value of interest is the blood glucose, bilirubin, cholesterol or other parameters, then a second wavelength must be chosen. The first wavelength, 805 nm, is used to measure the hematocrit, H, after which a Kp805 (the absorbance of plasma at λ=805 nm) can be determined. Then, knowing the H, a second wavelength, 570 nm, is chosen where KSp570 is less than Kp805. Similarly, if the first wavelength used to measure the H and the reference glucose, Kp (glucose) is 570 nm, the second wavelength, 1060 nm, is chosen where Kp570 is much less than Kp1060 In the case of bilirubin, the first wavelength used to measure the H and the reference bilirubin, Kp (bilirubin), is 570 nm, the second wavelength, 440 nm, is then chosen when Kp570 is much less than Kp440. The selection of these above mentioned wavelengths therefore assures uniqueness for the measurement of the desired biologic constituent.
Additionally for glucose determination, recall that the 1300 nm wavelength is not hematocrit or hemoglobin dependent but will be glucose sensitive. This is primarily due to the dependence of the scattering coefficient on the difference between the index of refraction of pure water and glucose, i.e.: recall
Sb8=H(1−H)σs8 (from equation 7) where:
σs8=8π2η02(η′8−1)2·bv/λ2
where η′8=index of refraction of the RBC hemoglobin at 800 nm relative to plasma η0 (the plasma index of refraction), and,
Sb13=H(1−H)σs13 (also from equation 7) where:
σs13=8π2η02(η′13−1)2·bv/λ2
η′13=the index of refraction of glucose at 1300 nm relative to η0. Therefore, the 8 13 ratio has both hematocrit and glucose information. Whereas the as α8·α′8/ΔP (equation 18a) ratio has only hematocrit information. Therefore the differential combination of those ratios will be a strong function of glucose only.
E. Improved Accuracy Pulse Oximeter Device
The accuracy of present day pulse oximeters suffers from 4 major problems: tissue perfusion (low Xb and low ∂Xb/∂t), d dependence (varying finger sizes), tissue nonhomogeneity (the tissue penetration depth for 660 nm light is not the same as for 940 nm light), and H dependence (see equation (5)).
All of the above mentioned deficiencies in pulse oximetry can be eliminated by understanding equation (13). Equation (13) indicates an “offset term”,
Hence, while merely dividing (αi/i)λ1 by (Δi/i)λ2 mitigates the effect of ∂Xb/∂t, the d's do not completely cancel, thereby yielding the above mentioned problems. To improve pulse oximeter accuracy, a derivative is needed as in (14), which eliminates the “offset term”. Hence, the ratio of (∂α/∂t)805/(∂α/tt)660 results in no H, d, or Xb dependence and the use of the multiple LED array and high-speed sampling as mentioned in section IV qualifies the tissue as homogeneous.
V. A Simplified Two Step Approach
(A) Determination of H and Xb
The bulk attenuation coefficient, α, can be easily measured with the optical array, at 805 nm, utilizing equation (10) and as described in Section IV(C). Notice that at 805 nm, α is a strong function of H and Xb since Ks8, Kw8, Kp8 are small, see FIG. 12.
Therefore, by knowing Xb itself, H can be determined. Xb itself can be determined using a strain gage in the following two step approach. Step One, measure the strain gage resistance when the finger is made bloodless, by squeezing finger, such as with a stepper motor. Step Two, measure the strain gage resistance when the finger is blood filled, for example by suction. Mathematically, at 805 nm and when Ks, Kp, Kw, are small, equation (3) is approximated by:
α2≈3KS (36)
or
α2≈3[KbXb][SbXb+SsXs] (37)
Substituting (5) and (7) into (37) yields:
With Xb and α measured and known, and with the σ's and Ss, Xs approximately constant, H can be solved with a quadratic formula or a polynomial fit. The strain gage determination of Xb is as follows:
Let Vo=the volume of a bloodless finger. Let Vf=the volume of blood filled finger, and again considering the finger as a cylinder:
Vo=πr2z=Vs+Vw (39)
Vf=πR2z=Vb+Vs+Vw (40)
and
From equation (20)
Substituting (41) into (42):
Where the strain gage resistances are proportional to the radius, r and R, of the finger.
(B) Determination of Tissue Water Content Xw
Choosing the wavelength of 1300 nm, where Ks and Kw are significant, the tissue water content, Xw, can be determined. Recall that 1−Xb−Xw=Xs and substituting into (3) yields:
With α13, Xb and H determined and because Kb, Ks, Kw, Sb, and Ss are known coefficient values at 1300 nm, Xw is solved with either a quadratic formula or a polynomial fit.
Results
As implied throughout, those skilled in the art will also appreciate that the methods for determining blood hematocrit values within the scope of the present invention may be adapted for determining other non-hematocrit biologic constituent values such as glucose, bilirubin, cholesterol, tissue water, etc.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. While the foregoing described embodiments are to be considered in all respects only as illustrative of the claimed invention, they are not intended to restrict the scope of the claims. The scope of the invention is, therefore, indicated by the following appended claims rather than by the foregoing description. All changes within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. application Ser. No. 09/771,596, filed Jan. 30, 2001, now U.S. Pat. No. 6,671,528 which is a continuation of U.S. application Ser. No. 09/244,756, filed Feb. 5, 1999, now U.S. Pat. No. 6,181,958, which is based on, and claims priority from U.S. Provisional Application Ser. No. 60/073,784, filed Feb. 5, 1998, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4802486 | Goodman et al. | Feb 1989 | A |
5099841 | Heinonen et al. | Mar 1992 | A |
5111817 | Clark et al. | May 1992 | A |
5372136 | Steuer et al. | Dec 1994 | A |
5499627 | Steuer et al. | Mar 1996 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5791348 | Aung et al. | Aug 1998 | A |
6181958 | Steuer et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
0 444 934 | Jan 1990 | EP |
Number | Date | Country | |
---|---|---|---|
20040127779 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60073784 | Feb 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09771596 | Jan 2001 | US |
Child | 10733236 | US | |
Parent | 09244756 | Feb 1999 | US |
Child | 09771596 | US |