This invention in general relates to methods and apparatus for non-invasive measurement of the concentrations of analytes within human/animal blood through the skin, and in particular, for monitoring the blood glucose levels in vivo for diabetes using light scattering technology and calibrating the effects from skin and other surrounding tissue constituents.
Currently, daily blood glucose monitoring for diabetes patients can only be done through the use of invasive techniques. The invasive methods require drawing blood from patients, which is painful and inconvenient since the skin has to be lanced in order to collect the blood sample for measurement. 6-8 times a day, it is the same routine for the diabetics to prick their fingertips to produce a pinpoint-sized drop of blood. It is an unpleasant practice, but that is exactly what many diabetics have to do daily in order to measure blood glucose level to provide feedback for insulin dosing and other treatment.
Clinical research has demonstrated that frequent testing of blood glucose levels for people with diabetes results in improved disease management. Several large clinical studies have shown that tight control of blood sugar slows the progression of and development of long-term complications of diabetes, such as blindness and kidney failures. However, many people with diabetes do not test their blood glucose levels regularly due to physical pain and high material cost, as well as the risk of infections when finger was lanced. The American Diabetes Association (ADA) estimates that on average people with diagnosed diabetes only test their glucose levels slightly more than once per day. This is mainly because many barriers exist for the current monitoring methods. Accordingly, a new generation glucose monitoring device that non-invasively measures blood glucose level while providing painless and much safer sugar control is required to break down the barriers to tighten the glucose control, to counteract the progression of and development of long-term complication, and to improve the quality of life for those people who had the disease.
In the last decade, various attempts have been made to measure blood glucose level non-invasively (or in vivo), mainly using lightwave technologies in which the concentration of analytes is determined through light-matter interaction. These techniques include visible, near-infrared (IR) spectroscopy, mid-infrared (MIR) spectroscopy, infrared (IR) spectroscopy, reflectance spectroscopy, fluorescence spectroscopy, polarimetry, scatter changes, photo-acoustic spectroscopy, and Raman scattering through human eyes, etc. To date, none of these approaches has been proven to be clinically feasible. It is well known that visible and near-infrared absorption lacks the characteristic spectrum of glucose due to overtones and combination bands, leading to a flat spectrum response over this wavelength range. Further, while mid-infrared absorption detects fundamental tones of molecular vibration, the optical penetration depth over this wavelength range is extremely short, typically at the magnitude of order of the thickness of epidermis due to strong absorption of water. In recent years, the measurement of physiological glucose level using Raman spectroscopy from the aqueous humor of the eye has been researched. Unfortunately, there are some fundamental issues to be addressed: 1) laser eye safety and 2) time delay between glucose in blood and aqueous humor and correlation between ocular and artery glucose levels. These unresolved issues limit the effectiveness of this approach.
Having assessed the lightwave technologies mentioned-above, Raman scattering, discovered in 1928, also called spontaneous Raman scattering (as opposed to “stimulated Raman scattering”) has emerged as a promising technology for non-invasive measurement of blood glucose through the skin rather than from aqueous humor of eye. This is because, unlike infrared absorption, Raman scattering has “fingerprint” effect in that the scattered spectrum has a one-to-one correspondence to a scatterer molecule, such as glucose molecule. For a review and technical problems of some early work, see U.S. Pat. No. 5,553,616 by F. M. Ham et al. A. J. Berger et al. (U.S. Pat. No. 5,615,673) which described a method based on Raman spectroscopy for analysis of blood gases. Together with other inventions based on Raman scattering, these methods experience the following problems: 1) Raman scattering is quite weak, 2) biological effects from heart pulses, respiration, and body movement, etc., degrade measurement, and 3) calibration against that portion of the optical response caused by the skin and other tissue substances is difficult. The last issue is critical because the amounts of protein, fats, water, etc. In different people and different skin surface conditions such as oily and turbid fingers will seriously degrade the measurement results if not properly calibrated out.
In one of Wei Yang and Shu Zhang's inventions (U.S. Pat. No. 6,167,290), which is incorporated herein by reference, the first two problems are addressed by using a negative pressure system that can increases amount of blood to be detected and hold local tissue stationery. An improvement to this negative pressure system is disclosed herein. The subject disclosure also includes improved approaches for calibrating the blood glucose measurement against surrounding substances. The method of the present invention provides a means for continuous monitoring blood glucose level, facilitating a glucose tolerance test.
Other documents of interest include U.S. Pat. No. 6,044,285, inventors of J. Chaiken and C. M. Peterson; U.S. Pat. No. 6,151,522, inventors of R. R. Alfano and W. Wang.
This invention generally provides a method and apparatus for non-invasively measuring concentrations of analytes, preferably glucose and cholesterol but not limited thereto, from human and animal blood through the skin using a Raman lightwave technique.
It is an object of the present invention to provide a method and apparatus for monitoring blood glucose from human and animal objects without drawing blood.
It is another object of the present invention to provide a dynamic calibration method for measuring concentrations of analytes from human and animal blood through the skin using a Raman lightwave technique.
Another object of the present invention is to provide a data acquisition technique used for dynamic spectral calibration against the influence from other substances.
Still another object of the present invention is to provide a data analysis method in processing spectral data acquired from the apparatus for non-invasively measuring concentrations of analytes from human and animal blood through the skin.
Yet another object of the present invention is to provide a device that non-invasively measures blood glucose levels for home, office and hospital use. The data can be stored in memory and/or downloaded to personal computer.
Still another object is to provide an improved blood permeation unit.
Briefly, a preferred embodiment of the present invention includes an excitation laser source, an optical excitation unit, a Raman signal collection unit, a tissue permeation unit, a Raman spectrometer with a light detector array, and an electronic circuitry.
The excitation laser preferably operates in the wavelength between 750 and 1000 nm so that both excitation radiation and Raman scattered wavelength have a relatively lower absorption by the human skin and tissue and thus propagate in a longer distance. The laser is preferably a solid-state semiconductor diode laser, but not limited to such a laser. U.S. Pat. No. 6,167,290 disclosed an example of an optical excitation and collection means, and a Raman spectrometer equipped with charge-coupled device (CCD). The laser radiation can be coupled to and from the tissue directly by means of optics such as lens, mirrors, filters, etc., or via fiber optics.
The tissue permeation unit modulates tissue and blood locally. It will increase the blood amount at the beginning of the measurement so that it intensifies the Raman scattering and increases the signal-to-noise ratio, and then gradually decrease the local blood amount with time until blood depletion. In one embodiment, the unit may be made of a vacuum chamber with a transparent window and small opening or hole, which is connected with an electrically or manually driven vacuum pump that creates a negative air pressure inside the vacuum chamber. The pressure inside the chamber can be changed. The user's fingertip is placed on the hole to form a closed chamber. Under the negative air pressure, a substantial amount of blood is “sucked” into a small area of the human finger after finger is placed on the hole. As the time is increased, the blood amount will be decreased gradually.
In another embodiment, the air chamber is connected with a gas cylinder and a manually driven piston. The movement and position of the piston will determine the pressure inside the chamber.
In still another embodiment, the blood permeation unit is made of a liquid chamber that is connected with a fluid cylinder and an electrically or manually driven pump. When the liquid within the chamber is pumped out, the tissue exposed to the hole will be attracted inward and blood within capillary bed will be sucked to increase local density in the laser-blood interaction region.
Other mechanical methods can be also used for varying the level of blood in the region being measured. For example, a mechanical means can be used to press the finger and then slowly release the finger. Another example could include a variable pressure tourniquet that could slow or speed up blood flow to the region being measured. For commercial use, the approach used should be relatively low cost and not discomfort the patient.
According to one embodiment of the present invention, a series of Raman signals (spectra) are acquired with time. The first spectrum corresponds to the highest amount of blood created by the tissue permeation unit, the second spectrum corresponds to the second highest amount of blood, and so on. The last spectrum corresponds to the least amount of blood at the blood depletion. The time interval between two successive spectra may be constant or variable, depending on mechanism of tissue permeation and data processing algorithms. In these spectra, the Raman signals generated from skin and substances other than blood, referred to as “static” substances, will be unchanged during the tissue permeation. By contrast, the Raman scattering from analytes in blood will become weaker and weaker since the amount of blood is decreased with time. Thus the contribution from skin and substances other than blood can be calibrated out so that spectral difference between the two successive spectra will be independent of the presence of “static” substances. These differenced spectra will be fed into multivariate algorithms for analysis such as Principal Components Regression (PCR) or Partial Least Squares Regression (PLS) which compares the derived spectra to a calibration table of spectra associated with known blood concentrations.
In another preferred embodiment, the blood permeation unit is so controlled that the blood amount is increased at the beginning and then is decreased until blood depletion while keeping the target tissue area stationary and eliminating the effects from heart pulse, respiration and body movement during the data acquisition. The blood depletion is eventually accomplished due to the distributed tension around contact region between the skin and chamber material. In a preferred embodiment, after reaching its maximum level, the blood amount is decreased linearly with time. The measurement starts at the moment when the blood amount is at its maximum, from which the strongest Raman scattering from the blood analytes is substantially achieved. Over time, the signal intensity attributed from the blood will decrease gradually while the signal components arising from the surrounding tissues will remain relatively unchanged due to the effect of blood permeation. The so-acquired Raman spectra can be processed in various ways. In a preferred embodiment, the spectral data obtained at a given time is subtracted by the spectrum acquired when the blood is depleted, i.e., Rin=Ri−Rn with i=1, 2, 3, . . . , n−1 where Ri is the Raman spectrum obtained at time ti and Rn is the last Raman spectrum acquired at the blood depletion. R1 is the first spectrum with the strongest Raman scattering from blood substances. The direct advantage embedded in the new series of spectra over the raw data is that the spectral contributions arising from the surrounding static tissues are removed and the resulted spectra (Rin) are dominated by the contribution from the blood.
Although it is believed preferable to begin measurements when the blood concentration in the tissue has been increased and then take additional measurements as the blood concentration is reduced, the subject invention is not so limited. More specifically, it is within the scope of the subject invention to increase, over time, the amount of the blood in the region of tissue illuminated while taking measurements.
In another embodiment, the effects from the “static” substances can be minimized by the use of a confocal optical system with a backscattering geometry. This system is designed to spatially filter out the signal components that come from sites other than focused point. For working principle of the confocal Raman spectroscopy see “Handbook of Optical Biomedical Diagnostics”, edited by Valery V. Tuchin (SPIE Press, 2002) and “Practical Raman Spectroscopy” edited by D. J. Gardiner and P. R. Graves (Springer-Verlag, 1989).
The aforementioned non-invasive blood glucose measuring method and device has many applications in blood glucose level monitoring and diagnostics. Further objects and advantages of the subject invention will be apparent from the following drawings and detailed description of the preferred embodiments.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
The present invention provides a method and apparatus for non-invasive measurement of blood analytes with dynamic spectral calibration against the influence from skin and other tissues other than blood. The working principle is described based on Raman spectroscopy, but it can be applied to other lightwave methods including near-infrared spectroscopy, mid-infrared spectroscopy, infrared spectroscopy, reflectance spectroscopy, fluorescence spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, polarization changes, scatter changes, and photo-acoustic spectroscopy.
Referring now to the drawings,
As disclosed in U.S. Pat. No. 6,167,290, a vacuum pump can be used to produce negative pressure with the chamber so that the blood within the tissue can be “sucked” toward the light-matter interaction region. The excitation laser is coupled to and the Raman signal is collected from the tissue through the lens. The tissue permeation unit 160 will increase the blood amount at the beginning of the measurement so that it intensifies the Raman scattering and increases the signal-to-noise ratio. It then gradually decreases the local blood amount with time until blood depletion. It also holds the tissue stationary to eliminate the influence from body movement, respirations, pulses, etc. Depending on the size of the hole through which the part of finger exposes to the vacuum chamber, the blood amount exhibits some functional relationship to the time. We believe that when the diameter of the hole is about 6-7 mm, the variation of the magnitude of the spectral features associated with blood constituents will be relatively linear over time.
The setup shown in
A preferred confocal configuration is illustrated in
In
Another preferred embodiment of a tissue permeation unit 400 is illustrated in
The major advantage of the liquid system over the air negative pressure system is that that light energy coupling into and out of the tissue is improved and the surface scattering reduced. This result is achieved by selecting a liquid with low absorption and a refractive index close to skin's index (index-matching). In a preferred embodiment, the index of refraction of the liquid should be in the range of 1.35 to 1.6. Water would be the least expensive, but it does have some absorbing peaks at wavelengths of interest. Other possible liquids include alcohol, acetone and methanol. Further, the miscellaneous scattering light coming from the skin surface can be largely suppressed so that the signal-to-noise ratio can be enhanced. In practice, the spacing between the optical window 445 and the portion 440 of finger should be sufficiently thin to avoid light energy loss. Suitable liquids can include water, alcohol, acetone, and methanol, etc.
The optical window 445 in
The shape and size of the opening hole 435 will have a strong effect on the blood permeation. In one of embodiments, its shape is preferably circular, as shown in
In
The permeation unit 400 can be used in various manners. In a preferred configuration, the measurements can be taken at a series of moments with an equal time interval. For example, the integration time is set 10 seconds and after 5 seconds, the next measurement is taken, as shown in
The quality and magnitude of Raman spectra collected through the apparatus shown in
It is clear that the spectral contribution in the first type of signal comes from blood substances while the spectral contribution in the second type of signal originates from the static substances such as skin tissues. Finally, the spectrum in the third type is the combination of contributions from both blood and static substances. These become clearer by looking at the differenced spectra shown in
In another embodiment, an alternative data processing method is adopted to separate the two signal components responsible for blood and surrounding substances in terms of the fact that the intensity associated with blood decreases with time while the spectral contribution of the static substances is relatively unchanged with time. Thus we can differentiate the said two components by looking at the differenced signals. In one embodiment, only two spectra are acquired: the first one R1 and the last one Rn, and one differenced spectrum R1−Rn is obtained. The model calibration and validation will rely on this differenced spectrum. In another embodiment, all differenced spectra are calculated by comparison to the last spectra when the blood is depleted, i.e.,
Rin=Ri−Rn with i=1, 2, 3, . . . , n−1 where Ri is the Raman spectrum obtained at time ti and Rn is the last Raman spectrum acquired at the blood depletion. R1 is the first spectrum with the strongest Raman scattering from blood substances. This approach is useful to single out outliers in addition to identifying spectral contribution from the blood analytes. As an example,
There are a number of well-known prior art techniques for deriving information about material constituents from a Raman spectral data. It is believed that any number of these techniques can be used. The subject approach will provide improved results because the characteristics of the derived difference spectra that are used for analysis will be dominated by blood constituents rather than being contaminated by tissue information.
Some approaches for Raman spectral analysis are set forth in the Raman Spectroscopy textbooks cited above. Further information can be found in R. L. McCreery, “Raman Spectroscopy for Chemical Analysis”, John Wiely & Sons (New York, 2000), J. R. Ferrara et al., “Introductory Raman Spectroscopy”, Academic Press (Amsterdam, 2003). See also, U.S. Pat. Nos. 5,243,983; 5,615,673 and 6,151,522, each of which are incorporated by reference herein.
In a preferred approach, a plurality of spectra are obtained from samples with known characteristics. Thus, a number of patients could be tested in a clinical trial using both the subject methodology and a suitable known invasive methodology. In this way, a table can be generated which relates the spectra measured in accordance with the subject approach to specific levels of blood constituents derived from the invasive methodology. This table can be stored. In use, one or more difference spectra on a patient with unknown blood constituents is then derived in accordance with the subject methodology. The difference spectra is compared to the stored table to determine the blood concentrations. Various well known statistical fitting and/or regression methods can be used to make this determination.
In one preferred approach, the data processing can be a multivariate analysis comprising two main steps: 1) model establishment and model validation, and 2) prediction of the concentration of analytes. A general guideline is given in
Second, these spectra are preprocessed for background subtraction, spectral filtering and smoothing. Third, the data processing approach given in
To measure concentrations of analytes in blood of a patient, the Raman spectral data are acquired based on using the same setup as that described above. After data preprocessing and spectral difference, the data are then substituted into the validated model, from which the concentration of a blood analyte is predicted.
Although the present invention has been described in terms of specific embodiments it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/914,761, filed Aug. 9, 2004, the disclosure of which is incorporated in this document by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10914761 | Aug 2004 | US |
Child | 10940097 | Sep 2004 | US |