Method and apparatus for oil recovery from tar sands

Information

  • Patent Application
  • 20100181231
  • Publication Number
    20100181231
  • Date Filed
    January 19, 2010
    15 years ago
  • Date Published
    July 22, 2010
    14 years ago
Abstract
A process for bitumen extraction from hydrocarbonaceous solids, such as tar sand or oil shale, is performed in fluidized bed of a swirl reactor. This provides active interaction of three phases: 1) liquid phase—bituminous oil with solvent; 2) solid phase—sand grains, clay; 3) gaseous phase—steam and gasses. The process also involves the step of pressure decrease inside the reactor to activate a gas desorption dissolved in bituminous sand mixture. The process of separation of the bitumen and sand combines centrifuging and discharging individual products for further processing.
Description
FIELD OF THE INVENTION

This invention relates to bitumen separation from oil sands or oil shales.


BACKGROUND OF THE INVENTION

The current industry practice for extracting bitumen from oil sands and the like is the hot water process. This process typically involves pre-crushing as-mined oil sands and conditioning the oil sands by mixing it with large amount of hydrocarbon diluent. Next step is based on heating oil sands with hot water and steam to yield a slurry. During this step bitumen flecks became less viscous. Bitumen flecks separate mainly from the surface and partially from pores of the sand grains. This process is done in a rotating kiln with continuous agitation of the raw material. Inside the kiln there are blade that while rotating agitate the sand and move it to the lower part of the kiln. The liquid bitumen slurry concentrate at the bottom of the inclined kiln. The saturated steam and raw material are both supplied to the inlet port of the kiln. The bitumen slurry is discharged from the bottom outlet port of the kiln. The typical sized of the working zone of the inclined rotating kilns are 2.5 m in diameter and up to 20 m in length. To better separate the bitumen product two or more stages of the hot water and steam treatment can be used.


The heat losses of such plants can reach up to 30% as components are supplied and discharged at partially open ports as well as significant heat losses are due to design of the working zone of the kilns.


The main reasons that prevent the usage of such technology are:


1) power requirements by this technology is 5.5-8 times higher than the ones at extracting conventional oil;


2) significant soil and ground water contamination resulting from disposal of tailing streams containing some residual amount of bitumen to large tailing ponds;


3) high emissions of combustion products such as CO2, NOx, CO, etc. at production of the technical saturated steam.


SUMMARY OF THE INVENTION

With the background in mind we have devised a new method for processing crushed as-mined oil sands in fluidized bed swirl reactor with simultaneous effect of gaseous swelling of bituminous material. The suggested method is based on the fact that mass exchange process of oil sands and working environment—the saturated steam—is performed in fluidized bed. Before supplying to the swirl reactor the crushed oil sands is mixed with the liquid hydrocarbonaceous solvent with dissolved carbon dioxide CO2. Carbon dioxide or the mix of gasses for dissolving in liquid hydrocarbonaceous solvent is exhaust gases of a steam generator. In this step the three-component “oil sand+hydrocarbonaceous solvent+CO2” mixture is prepared where CO2 is sorbed by bituminous material containing in porous sand grains. The prepared three-component mixture is then supplied through a hydraulic back-pressure valve to working zone of the swirl reactor. The saturated steam is injected at high pressure in the working zone of the reactor through tangential inlet and directed to an impeller with guiding blades that create a turbulent flow of the saturated steam. The three-component mixture supplied to the working zone is suspended in the steam flow. This significantly increases the heat transfer to the oil sand grains. Periodical pressure decrease inside the reactor up to atmospheric pressure gives additional effect to the oil sand grains, i.e. CO2 desorption from the liquid bituminous slurry. The initial centers of gas desorption are the contact surface of oil sand grains and liquid phase (bitumen). The gas, released mainly at the solid-liquid contact surface, breaks off and forces out the liquid phase, the bitumen, from the grain pores. Double effect of breaking-off and “swelling” makes it easier to separate bitumen and sand grains—allow full separation in 3 to 4 steps.


Other objects, features and advantages of the present invention will be apparent from the accompanying drawing, and from the detailed description that follows below.





BRIEF DESCRIPTION OF THE DRAWING

FIGURE shows a schematic diagram of a preferred embodiment of a separation apparatus—swirl reactor “Tornado”.





DETAIL DESCRIPTION OF THE DRAWING

The main element on this diagram is a swirl gas/liquid reactor operating at a pressure up to 35 psi. There are several zones in the reactor. The crushed oil sands from mining or drilling operation is fed into feeding zone 1 having discrete lock 2. The saturated steam is fed into impeller zone 3 through tangential inlet port. Both oil sands and steam are contacted in the swirl zone 4. Exhaust steam is removed from the reactor through axial outlet port 5. Outlet ports 6a, 6b, 6c are used to discharge separated products: solids, solids and liquid phase, liquid phase, accordingly. Check valves are provided on each of the ports for feeding and removing the steam, and discharging separated products.


In the feeding zone 1 of the swirl reactor the oil sands is mixed with a solution of hydrocarbonaceous component with exhaust gases having CO2 from a steam generator (not shown). Keeping a contact for preset time provide sorption of the CO2 by bitumen located on the surface and in the pores of the sand grains. The such prepared three-component oil mixture is then supplied to the swirl zone 4 through discrete lock 2. The saturated steam fed through the tangential inlet port is directed to the impeller zone 3. There are provided guiding tangential blades at different angles in horizontal and vertical planes. Such arrangement of the tangential impeller blades across steam flow creates space whirl flows. With preset time period three-component mixture from feeding zone is fed to the swirl zone 4. Because of the high speed steam flow the sand grains become suspended in the steam flow. The interaction with the whirl steam flows creates centrifugal forces acting on the suspended sand grains. The effect of high temperature and hydrocarbonaceous solvent make bitumen less viscous To stimulate degassing the pressure inside the reactor is periodically decreased up to atmospheric. This allow releasing CO2 dissolved on previous step in the three-component oil mixture. The initial centers of gas desorption are the contact surface of oil sand grains and liquid phase (bitumen). The gas, released mainly at the solid-liquid contact surface, breaks off and forces out the liquid phase, the bitumen, from the grain pores. Double effect of breaking-off and “swelling” makes it easier to separate bitumen and sand grains. That allow separate fractions having different density, e.g. separated bitumen and sand grains and discharge them at optimal radii of the reactor axis (ports 6a, 6b, and 6c).


To organize the steam recirculation there is provided a steam jet pump 7. The fresh steam saturated steam, e.g., from a steam generator (not shown), is directed to a high pressure inlet port 8 while recirculated exhaust steam from the swirl reactor is directed to a suction port 9 of the steam jet pump 7. To reduce heat losses the connection lines are insulated (10). Because the temperature of the exhaust steam after the swirl reactor may drop significantly a heat exchanger 11 is provided in the recirculation line.


The small size and making a process in close volume gives many advantages to this technology. Calculation and first tests of the pilot apparatus show that separation of the bitumen and sand components by the “fluidized bed” technology requires dramatically, in 4.3-5 times, less saturated steam while providing more full extraction of the final product, the bitumen, up to 98.5% with two stages of separation. There are no moving parts making this process less mechanically intensive and subsequently more economical to operate, compared to other bitumen recovery processes.


The invention is capable of other and different embodiments, and its several details are capable of modifications in various respects, all without departing from the invention. Accordingly, the drawing and description of the preferred embodiment are illustrative in nature and not restrictive.

Claims
  • 1. A method for oil product recovery from crushed raw material wherein a raw oil-containing material, e.g. the tar sand or oil shale, is mixed with a solvent, any liquid hydrocarbon material, preferably in 1:1 ratio; then the mixture is loaded by charges into an autoclave at excessive gas pressure, e.g. CO2 or a mixture of gases “CO2+air”, exposed some period of time to an excessive gas pressure and pump out from the autoclave for liquid phase (bitumen+solvent) and solid phase (mainly SiO2) separation.
  • 2. A method according to claim 1, wherein for full separation of oil product from solid phase, sand, the process is repeated in subsequent recovery cycles for each of outgoing products of 1st cycle.
  • 3. A method according to claim 1, wherein the processing a mixture of crushed oil-containing component with a liquid solvent, is performed in an autoclave, a swirl gas-liquid reactor, under an excessive pressure as a rotating and actively agitating suspension of oil-containing component in saturated steam; the steam is supplied through tangential guiding impeller, the mixture is loaded through a feeder located close to a central axis of the autoclave at upper plate of the impeller.
  • 4. A method according to claim 3, wherein the treated material, the mixture of crushed oil-containing component and solvent, is loaded through the feeder to an upper plate by discrete batches at excess gas pressure; at this step the fresh saturated steam supply and exhaust steam removal from the autoclave is stopped; during this step gases are sorbed by the liquid “bitumen+solvent” mixture.
  • 5. A method according to claim 4, wherein after the step of gas sorption the line for supplying to and removing steam are open and the mixture is loaded to the swirl zone from the upper plate of the impeller; the exhaust steam is removed through the axial channel of the reactor, at this moment the gas pressure is decreased below pressure level during the step of gas sorption by liquid mixture; in this process step with decreased pressure the gases are released from the liquid phase: gas removal inside the pores is performed mainly on the border of solid phase-liquid phase thus the liquid phase is broken off the surface of the solid phase and forced out of the pores by the gas.
  • 6. A method according to claim 5, wherein the gas desorption is combined with the liquid mixture, bitumen+solvent, and bitumen-free solid phase, SiO2, are separated due to their densities by intensively stirring cloud of suspended mixture of “bitumen+SiO2+steam+CO2+air”; the separated liquid product is unloaded at lesser radius of the autoclave axis whereas more heavier solid phase is unloaded at maximal radius of circulating cloud inside the autoclave.
  • 7. A method according to claim 4, wherein an autoclave, a swirling-type reactor, has a common heat insulated loop of recirculation steam; the exhaust steam from the autoclave goes to a steam-jet pump through an steam heater, the fresh steam from an external source is supplied to a motive nozzle of the steam-jet pump; the mixed steam flow from the steam-jet pump is directed to the impeller of the autoclave.
  • 8. A swirl reactor having working environment as a mix of gases and steam for separation of liquid phase from porous solid phase; the reactor comprises a working compartment with an active zone;an impeller with tangential blades on an upper side of the active zone, the blades are fixed on stationary upper and lower plates;the upper and lower plates are fixed on maximal diameter of the impeller and have a clearance at minimal diameter adjacent to an pipe for the exhaust steam removal;a port and adjustable lock at outer side of the upper plate for loading a mixture of crushed oil-containing component and solvent into the steam stream after it passes the impeller blades;inlet and outlet ports for steam;ports at different radii in a lower separation zone for unloading final products and tailings from the reactor.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefits of U.S. Provisional Patent Application No. 61/205,656, filed on Jan. 22, 2009.

Provisional Applications (1)
Number Date Country
61205656 Jan 2009 US