The present invention pertains in general to neural networks, and more particularly, to methods for estimating the accuracy of a trained neural network model, for determining the validity of the neural network's prediction, and for training neural networks having missing data in the input pattern and generating information as to the uncertainty in the data, this uncertainty utilized to control the output of the neural network.
A common problem that is encountered in training neural networks for prediction, forecasting, pattern recognition, sensor validation and/or processing problems is that some of the training/testing patterns might be missing, corrupted, and/or incomplete. Prior systems merely discarded data with the result that some areas of the input space may not have been covered during training of the neural network. For example, if the network is utilized to learn the behavior of a chemical plant as a function of the historical sensor and control settings, these sensor readings are typically sampled electronically, entered by hand from gauge readings and/or entered by hand from laboratory results. It is a common occurrence that some or all of these readings may be missing at a given time. It is also common that the various values may be sampled on different time intervals. Additionally, any one value may be “bad” in the sense that after the value is entered, it may be determined by some method that a data item was, in fact, incorrect. Hence, if the data were plotted in a table, the result would be a partially filled-in table with intermittent missing data or “holes”, these being reminiscent of the holes in Swiss cheese. These “holes” correspond to “bad” or “missing” data. The “Swiss-cheese” data table described above occurs quite often in real-world problems.
Conventional neural network training and testing methods require complete patterns such that they are required to discard patterns with missing or bad data. The deletion of the bad data in this manner is an inefficient method for training a neural network. For example, suppose that a neural network has ten inputs and ten outputs, and also suppose that one of the inputs or outputs happens to be missing at the desired time for fifty percent or more of the training patterns. Conventional methods would discard these patterns, leading to training for those patterns during the training mode and no reliable predicted output during the run mode. This is inefficient, considering that for this case more than ninety percent of the information is still there for the patterns that conventional methods would discard. The predicted output corresponding to those certain areas will be somewhat ambiguous and erroneous. In some situations, there may be as much as a 50% reduction in the overall data after screening bad or missing data. Additionally, experimental results have shown that neural network testing performance generally increases with more training data, such that throwing away bad or incomplete data decreases the overall performance of the neural network.
If a neural network is trained on a smaller amount of data, this decreases the overall confidence that one has in the predicted output. To date, no technique exists for predicting the integrity of the training operation of the network “on the fly” during the run mode. For each input data pattern in the input space, the neural network has a training integrity. If, for example, a large number of good data points existed during the training, a high confidence level would exist when the input data occurred in that region. However, if there were a region of the input space that was sparsely populated with good data, e.g., a large amount of bad data had been thrown out from there, the confidence level in the predicted output of a network would be very low. Although some prior techniques may exist for actually checking the actual training of the network, these techniques do not operate in a real-time run mode.
The present invention disclosed and claimed herein comprises a network for estimating the error in the prediction output space of a predictive system model for a prediction input space. The network includes an input for receiving an input vector comprising a plurality of input values that occupy the prediction input space. An output is operable to output an output prediction error vector that occupies an output space corresponding to the prediction output space of the system model. A processing layer maps the input space to the output space through a representation of the prediction error in the system model to provide said output prediction error vector.
In another aspect of the present invention, a data preprocessor is provided. The data preprocessor is operable to receive an unprocessed data input vector that is associated with substantially the same input space as the input vector. The unprocessed data input vector has associated therewith errors in certain portions of the input space. The preprocessor is operable to process the unprocessed data input vector to minimize the errors therein to provide the input vector on an output. The unprocessed data input in one embodiment is comprised of data having portions thereof that are unusable. The data preprocessor is operable to reconcile the unprocessed data to replace the unusable portion with reconciled data. Additionally, the data preprocessor is operable to output an uncertainty value for each value of the reconciled data that is output as the input vector.
In a further aspect of the present invention, the system model is comprised of a non-linear model having an input for receiving the input vector within the input space and an output for outputting a predicted output vector. A mapping function is provided that maps the input layer to the output layer for a non-linear model of a system. A control circuit is provided for controlling the prediction output vector such that a change can be effected therein in accordance with predetermined criteria. A plurality of decision thresholds are provided that define predetermined threshold rates for the prediction error output. A decision processor is operable to compare the output prediction error vector with the decision thresholds and operate the output control to effect the predetermined changes whenever a predetermined relationship exists between the decision thresholds and the output prediction error vector.
In an even further aspect of the present invention, the non-linear representation of the system model is a trained representation that is trained on a finite set of input data within the input space. A validity model is provided that yields a representation of the validity of the predicted output of a system model for a given value in the input space. The validity model includes an input for receiving the input vector with an input space and an output for outputting a validity output vector corresponding to the output space. A processor is operable to generate the validity output vector in response to input of a predetermined value of the input vector and the location of the input vector within the input space. The value of the validity output vector corresponds to the relative amount of training data on which the system model was trained in the region of the input space about the value of the input vector.
In a yet further aspect of the present invention, the system model is trained by a predetermined training algorithm that utilizes a target output and a set of training data. During training, an uncertainty value is also received, representing the uncertainty of the input data. The training algorithm is modified during training as a function of the uncertainty value.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
a and 2c illustrates an overall block diagram of a method for training the system model utilizing the uncertainty generated during data reconciliation;
b illustrates an example of reconciliation and the associated uncertainty;
a-3c illustrate data patterns representing the data distribution, the prediction error and the validity level;
a illustrates a diagrammatic view of a data pattern sampled at two intervals illustrating a complete neural network pattern;
b illustrates a diagrammatic view of a data pattern illustrating time merging of data;
a and 8b illustrate examples of localized functions of the data for use with training the validity model;
In
In addition to the system model, a validity model 16 and a prediction-error model 18 are provided. The validity model 16 provides a model of the “validity” of the predicted output as a function of the “distribution” of data in the input space during the training operation. Any system model has given prediction errors associated therewith, which prediction errors are inherent in the architecture utilized. This assumes that the system model was trained with an adequate training data set. If not, then an additional source of error exists that is due to an inadequate distribution of training data at the location in the input space proximate to the input data. The validity model 16 provides a measure of this additional source of error. The prediction-error model 18 provides a model of the expected error of the predicted output.
A given system model has an associated prediction error which is a function of the architecture, which prediction error is premised upon an adequate set of training data over the entire input space. However, if there is an error or uncertainty associated with the set of training data, this error or uncertainty is additive to the inherent prediction error of the system model. The overall prediction error is distinguished from the validity in that validity is a function of the distribution of the training data over the input space and the prediction error is a function of the architecture of the system model and the associated error or uncertainty of the set of training data.
The output of the validity model 16 provides a validity output vector v(t), and the output of the prediction error model 18 provides an estimated prediction error vector e(t). These two output vectors are input to a decision processor 20, which output is used to generate a control signal for input to the output control 14. The decision processor 20 is operable to compare the output vectors v(t) and e(t) with the various decision thresholds which are input thereto from a decision threshold generator 22. Examples of the type of control that are provided are: if the accuracy is less than a control change recommendation, then no change is made. Otherwise, the controls are changed to the recommended value. Similarly, if the validity value is greater than the validity threshold, then the control recommendation is accepted. Otherwise, the control recommendation is not accepted. The output control 14 could also modify the predicted outputs. For example, in a control situation, an output control change value could be modified to result in only 50% of the change value for a given threshold, 25% of the change value for a second threshold and 0% of the change value for a third threshold.
Referring now to
The data pre-processor 10 calculates the data value x′(t) at the desired time “t” from other data values using a reconciliation technique such as linear estimate, spline-fit, box-car reconciliation or more elaborate techniques such as an auto-encoding neural network, described hereinbelow. All of these techniques are referred to as data reconciliation, with the input data x(t) reconciled with the output reconciled data x′(t). In general, x′(t) is a function of all of the raw values x(t) given at present and past times up to some maximum past time, Xmax. That is,
1(tN), x2(tN), . . . xn(tN); x1(tN−1), x1(tN−2) . . . x1(tN−1); x1(t1), x2(t1) . . . xn(t1)) (001)
where some of the values of xi(tj) may be missing or bad.
This method of finding x′(t) using past values is strictly extrapolation. Since the system only has past values available during runtime mode, the values must be reconciled. The simplest method of doing this is to take the next extrapolated value x′i(t)=xi(tN); that is, take the last value that was reported. More elaborate extrapolation algorithms may use past values xi(t−τij), j∈t(o, . . . imax). For example, linear extrapolation would use:
Polynomial, spline-fit or neural-network extrapolation techniques use Equation 1. (See eg. W. H. Press, “Numerical Recipes”, Cambridge University Press (1986), pp. 77-101) Training of the neural net would actually use interpolated values, i.e., Equation 2, wherein the case of interpolation tN>t.
Any time values are extrapolated or interpolated, these values have some inherent uncertainty, μx′(t). The uncertainty may be given by a priori measurement or information and/or by the reconciliation technique. An estimate of the uncertainty μx′(t) in a reconciled value x′(t) would be:
where μmax is the maximum uncertainty set as a parameter (such as the maximum range of data) and where:
Once the input uncertainty vector μx′(t) is determined, the missing or uncertain input values have to be treated differently than missing or uncertain output values. In this case, the error term backpropagated to each uncertain input is modified based on the input's uncertainty, whereas an error in the output affects the learning of all neuronal connections below that output. Since the uncertainty in the input is always reflected by a corresponding uncertainty in the output, this uncertainty in the output needs to be accounted for in the training of the system model 12, the overall uncertainty of the system, and the validity of the system's output.
The target output y(t) has the uncertainty thereof determined by a target preprocess block 26 which is substantially similar to the data preprocess block 10 in that it fills in bad or missing data. This generates a target input for input to a block 28, which comprises a layer that is linearly mapped to the output layer of the neural network in the system model 12. This provides the reconciled target y′(t).
Referring now to
In operation, a first forward pass is performed by controlling the summation block 30 to process only the reconciled data x′(t) to output the predicted output p(t). In a second pass, the sum of the reconciled data input x′(t) and the uncertainty input μx′(t) is provided as follows:
(t)+{right arrow over (μ)}x′(t)=(x′1+μx′
This results in the predicted output p′(t). The predicted uncertainty μp(t) is then calculated as follows:
{right arrow over (p)}′(t)−{right arrow over (p)}(t)=(p′1−p1, p′2−p2, . . . , p′m (007)
The total target error Δytotal is then set equal to the sum of the absolute values of μp(t) and μy′(t) as follows:
Δ{right arrow over (y)}total=(|μp
The output error function, the TSS error function, is then calculated with the modified uncertainty as follows:
For neural networks that do not utilize Backpropagation, similar behavior can be achieved by training the system model through multiple passes through the same data set where random noise is added to the input patterns to simulate the effects of uncertainty in these patterns. In this training method, for each x′(t) and associated μx′(t) a random vector can be chosen by choosing each x″i as x″i=x′i+ni, wherein ni is a noise term chosen from the distribution:
In this case:
{right arrow over (μ)}p(t)=f({right arrow over (x)}′)−f({right arrow over (x)}″) (012)
Where f(x(t)) is the system model producing this system predicted output p(t).
Referring now to
Referring now to
The neural network models that are utilized for time-series prediction and control require that the time-interval between successive training patterns be constant. Since the data that comes in from real-world systems is not always on the same time scale, it is desirable to time-merge the data before it can be used for training or running the neural network model. To achieve this time-merge operation, it may be necessary to extrapolate, interpolate, average or compress the data in each column over each time-region so as to give an input value x(t) that is on the appropriate time-scale. The reconciliation algorithm utilized may include linear estimates, spline-fits, boxcar algorithms, etc., or more elaborate techniques such as the auto-encoding network described hereinbelow. If the data is sampled too frequently in the time-interval, it will be necessary to smooth or average the data to get a sample on the desired time scale. This can be done by window averaging techniques, sparse-sample techniques or spline techniques.
Referring now to
Referring now to
The techniques described above involve primarily building, training and running a system model on data that may have missing parts, be on the wrong time-sale increment and/or possesses bad data points. The primary technique involves reconciliation over the bad or missing data and/or time-merging the data. However, once a model is built and trained, there are two other factors that should be taken into account before the model can be used to its full extent to solve a real-world problem. These two factors are the prediction accuracy of the model and the model validity. The model typically does not provide an accurate representation of the dynamics of the process that is modeled. Hence, the prediction output by the model will have some prediction-error e(t) associated with each input pattern x(t), where:
{right arrow over (e)}(t)={right arrow over (y)}(t)−{right arrow over (p)}(t) (013)
This provides a difference between the actual output at time “t” and the predicted output at “t”. The prediction error e(t) can be used to train a system that estimates the system-model accuracy. That is, a structure can be trained with an internal representation of the model prediction error e(t). For most applications, predicting the magnitude ∥e(t)∥ of the error (rather than the direction) is sufficient. This prediction-error model is represented hereinbelow.
Referring now to
The measurement of the validity of a model is based primarily on the historical training data distribution. In general, neural networks are mathematical models that learn behavior from data. As such, they are only valid in the regions of data for which they were trained. Once they are trained and run in a feed-forward or test mode, (in a standard neural network) there is no way to distinguish, using the current state of the model lone, between a valid data point (a point in the region where the neural network was trained) versus an invalid data point (a point in a region where there was no data). To validate the integrity of the model prediction, a mechanism must be provided for keeping track of the model's valid regions.
Referring now to
A validity measure v(x) is defined as:
where: v(x) is the validity of the point x
Referring now to
Referring now to
The Equation 14 can be difficult to compute, so it is more efficient to break the sum up into regions which are defined as follows:
where the cells are simple geometric divisions of the space, as illustrated in
In
Referring now to
In operation, the validity model 16 of
In the embodiment of
In summary, there has been provided a method for accounting for bad or missing data in an input data sequence utilized during the run mode of a neural network and in the training mode thereof. The bad or missing data is reconciled to provide a reconciled input data time series for input to the neural network that models the system. Additionally, the error that represents uncertainty of the predicted output as a function of the uncertainty of the data, or the manner in which the data behaves about a particular data point or region in the input space, is utilized to control the predicted system output. The uncertainty is modelled during the training phase in a neural network and this network utilized to provide a prediction of the uncertainty of the output. This can be utilized to control the output or modify the predicted system output value of the system model. Additionally, the relative amount of data that was present during training of the system is also utilized to provide a confidence value for the output. This validity model is operable to receive the reconciled data and the uncertainty to predict a validity value for the output of the system model. This is also used to control the output. Additionally, the uncertainty can be utilized to train the system model, such that in regions of high data uncertainty, a modification can be made to the network to modify the learning rate as a function of the desired output error during training. This output error is a function of the uncertainty of the predicted output.
Although the preferred embodiment has been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of U.S. Ser. No. 10/040,085 filed on Nov. 6, 2001, now U.S. Pat. No. 6,591,254, to issue Jul. 8, 2003, entitled “Method and Apparatus for Operating a Neural Network with Missing And/or Incomplete Data”, which is a continuation of U.S. Ser. No. 09/207,719 filed Dec. 8, 1998, now U.S. Pat. No. 6,314,414, issued Nov. 6, 2001, entitled “Method For Operating a Neural Network With Missing and/or Incomplete Data”, which is a continuation of U.S. Ser. No. 09/167,400 filed Oct. 6, 1998, now U.S. Pat. No. 6,169,980 issued Jan. 2, 2001, entitled “Method for Training and/or Testing a Neural Network on Missing and/or Incomplete Data”, which is a continuation of U.S. Ser. No. 08/724,377 filed on Oct. 1, 1996, now U.S. Pat. No. 5,819,006, issued Oct. 6, 1998, entitled “Method for Operating a Neural Network with Missing and/or Incomplete Data”, which is a continuation of U.S. Ser. No. 08/531,100 filed Sep. 20, 1995, now U.S. Pat. No. 5,613,041, issued Mar. 18, 1997, entitled “Method and Apparatus for Operating a Neural Network With Missing and/or Incomplete Data.”
Number | Name | Date | Kind |
---|---|---|---|
4802103 | Faggin et al. | Jan 1989 | A |
4813077 | Woods et al. | Mar 1989 | A |
4872122 | Altschuler et al. | Oct 1989 | A |
4910691 | Skeirik | Mar 1990 | A |
4965742 | Skeirik | Oct 1990 | A |
5006992 | Skeirik | Apr 1991 | A |
5052043 | Gaborski | Sep 1991 | A |
5081651 | Kubo | Jan 1992 | A |
5111531 | Grayson et al. | May 1992 | A |
5113483 | Keeler et al. | May 1992 | A |
5121467 | Skeirik | Jun 1992 | A |
5140523 | Frankel et al. | Aug 1992 | A |
5150313 | van den Engh et al. | Sep 1992 | A |
5175797 | Funabashi et al. | Dec 1992 | A |
5255347 | Matsuba et al. | Oct 1993 | A |
5276771 | Manukian et al. | Jan 1994 | A |
5335291 | Kramer et al. | Aug 1994 | A |
5353207 | Keeler et al. | Oct 1994 | A |
5402519 | Inoue et al. | Mar 1995 | A |
5444820 | Tzes et al. | Aug 1995 | A |
5461699 | Arbabi et al. | Oct 1995 | A |
5467428 | Ulug | Nov 1995 | A |
5479573 | Keeler et al. | Dec 1995 | A |
5559690 | Keeler et al. | Sep 1996 | A |
5581459 | Enbutsu et al. | Dec 1996 | A |
5613041 | Keeler et al. | Mar 1997 | A |
5659667 | Buescher et al. | Aug 1997 | A |
5704011 | Hansen et al. | Dec 1997 | A |
5720003 | Chiang et al. | Feb 1998 | A |
5729661 | Keeler et al. | Mar 1998 | A |
5819006 | Keeler et al. | Oct 1998 | A |
6002839 | Keeler et al. | Dec 1999 | A |
6169980 | Keeler et al. | Jan 2001 | B1 |
6314414 | Keeler et al. | Nov 2001 | B1 |
6591254 | Keeler et al. | Jul 2003 | B1 |
Number | Date | Country |
---|---|---|
0262647 | Apr 1988 | EP |
0327268 | Aug 1989 | EP |
0436916 | Jul 1991 | EP |
WO 9412948 | Jun 1994 | WO |
WO 9417482 | Aug 1994 | WO |
WO 9417489 | Aug 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20040133533 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10040085 | Nov 2001 | US |
Child | 10614335 | US | |
Parent | 09207719 | Dec 1998 | US |
Child | 10040085 | US | |
Parent | 09167400 | Oct 1998 | US |
Child | 09207719 | US | |
Parent | 08724377 | Oct 1996 | US |
Child | 09167400 | US | |
Parent | 08531100 | Sep 1995 | US |
Child | 08724377 | US |