Method and apparatus for overwriting data on recording-medium and the recording medium

Information

  • Patent Grant
  • 7936648
  • Patent Number
    7,936,648
  • Date Filed
    Tuesday, February 27, 2007
    17 years ago
  • Date Issued
    Tuesday, May 3, 2011
    13 years ago
Abstract
In one embodiment, the recording medium includes a user data area on which one or more recording ranges are allocated and a management area. The method of recording on the recording medium includes receiving an overwriting command to record data on a recorded area of a recording range. Each recording range is one of an open recording range having a recordable position and a closed recording range not having a recordable position. An open recording range is selected fro recording the data from the one or more open recording ranges on the user data area, and the data is recorded starting from the recordable position of the selected open recording range.
Description
FOREIGN PRIORITY INFORMATION

This application claims the benefit of priority on Korean Application No. 10-2004-0085288, filed on Oct. 25, 2004, the contents of which are hereby incorporated by reference in their entirety.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to recording media, and methods and apparatuses associated therewith.


2. Discussion of the Related Art


A new type of high density optical disc, such as a Blu-ray RE-writable disc (BD-RE), that can record and store high definition audio and video data for a long period of time, is being developed. As shown in FIG. 1, the BD-RE has a lead-in area, a data zone, and a lead-out area. An inner spare area (ISA) and an outer spare area (OSA) are respectively allocated at a fore end and a rear end of the data zone. A recording unit of the BD-RE is a cluster. Referring to FIG. 1, whether or not a defect area exists within the data zone can be detected during the recording of the data. When a defect area is detected, replacement recording operations are performed. For example, the data that is intended to be recorded in the defect area is recorded in a spare area (e.g., the inner spare area (ISA)). Then, position information of the detected defect area and the replacement recorded spare area are recorded and stored as management information in a defect list (DFL) of a disc management area (DMA) located within the lead-in area.


During a read operation of this data, the data recorded in the spare area is read and reproduced, instead of the data of the defect area, by accessing the DFL; thereby preventing a data recording/reproducing error from occurring.


A write-once recordable blu-ray disc (BD-WO) is also under development. Unlike a rewritable disc, data can only be recorded once in the entire area of a write-once optical disc; and data cannot be physically overwritten in the write-once optical disc. Nevertheless, there may occur instances, where it would be desirable to edit or partially modify recorded data. For example, for simplicity of use of the host or the user, the virtual overwriting of the data may be desirable.


SUMMARY OF THE INVENTION

The present invention relates to a method of recording data on a recording medium.


In one embodiment, the recording medium includes a user data area on which one or more recording ranges are allocated and a management area. The method of recording on the recording medium includes receiving an overwriting command to record data on a recorded area of a recording range. Each recording range is one of an open recording range having a recordable position and a closed recording range not having a recordable position. An open recording range is selected for recording the data from the one or more open recording ranges on the user data area, and the data is recorded starting from the recordable position of the selected open recording range.


The present invention also relates to an apparatus for recording data on a recording medium.


In one embodiment, the recording medium includes a user data area on which one or more recording ranges are allocated and a management area. The apparatus for recording data on the recording medium includes a recording unit for recording the data on the recording medium, and a controller. The controller receives an overwriting command to record the data on a recorded area of a recording range. Each recording range is one of an open recording range having a recordable position and a closed recording range, which does not have a recordable position. The controller selects an open recording range for recording the data from one or more of the open recording ranges on the user data area, and controls the recording unit to record the data starting from the recordable position of the selected open recording range.


The present invention is also directed to a recording medium.


In one embodiment, the recording medium includes a user data area on which one or more recording ranges are allocated and a management area on which management information for the recording ranges is recorded. Each recording range is one of an open recording range having a recordable position and a closed recording range not having a recordable position. An open recording range for recording data is selected from one or more open recording ranges on the user data area if an overwriting command to record the data is made to a recorded area of a recording range on the user data area. The data is recorded starting from the recordable position of the selected open recording range.


The present invention is further related to a method of reproducing data recorded on a recording medium.


In one embodiment, the recording medium includes a user data on which one or more recording ranges are allocated, and a management area. The method of reproducing data recorded on the recording medium includes receiving a reproducing command to reproduce a first data recorded on an area of a first recording range. Each recording range is one or an open recording range having a recordable position and a closed recording range not having a recordable position. The method of reproducing data recorded on the recording medium also includes reproducing second data replacing the first data. The second data recorded in a second recording range is overwritten data of the first data. The relationship between the first and second range is managed by management information in the management area.


Still further, the present invention relates to an apparatus for reproducing data recorded on a recording medium.


In one embodiment, the recording medium includes a user data area on which one or more recording ranges are allocated and a management area. The apparatus for reproducing data recorded on the recording medium includes a reproducing unit and a controller. The reproducing unit reproduces the data from the recording medium. The controller receives a reproducing command to reproduce a first data recorded on an area of a first recording range. Each recording is one of an open recording range having a recordable position and a closed recording range not having a recordable position. The controller controls the reproducing unit to reproduce a second data replacing the first data.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:



FIG. 1 illustrates a structure of a general re-writable optical disc and a method for managing defects;



FIG. 2 illustrates a logical overwriting method for a write-once optical disc according to an embodiment of the present invention;



FIG. 3 illustrates an example of logical overwriting being performed on an open sequential recording range (SRR) in a write-once optical disc according to an embodiment of the present invention;



FIG. 4 illustrates an example of logical overwriting being performed on a closed SRR in a write-once recordable optical disc according to an embodiment of the present invention;



FIG. 5 illustrates a next write address (NWA) selecting method during logical overwriting in a sequential recording mode (SRM) of a write-once optical disc according to an embodiment of the present invention;



FIG. 6 illustrates a sequential recording range information (SRRI) structure for a sequential recording mode according to an embodiment of the present invention;



FIG. 7 illustrates a logical overwriting method for a random recording mode (RRM) according to an embodiment of the present invention; and



FIG. 8 illustrates a block diagram of an optical recording and reproducing apparatus according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Reference will now be made in detail to example embodiments of the present invention, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.



FIG. 2 illustrates a logical overwriting method for a write-once high density optical disc according to an embodiment of the present invention. As shown, the write-once high density optical disc includes a lead-in area, a data zone, and a lead-out area. The data zone includes an inner spare area (ISA), an outer spare area (OSA), and a user data area. The lead-in area is used as an area for recording diverse management information for recording/reproducing data on/from the optical disc. The lead-in area may be provided with a temporary disc management area (TDMA), which is an area for recording defect management information and recording management information for the optical disc. A separate additional TDMA within a spare may also be allocated for defects that may frequently occur during the use of the optical disc and for updating the recording management information.


In a write-once optical disc having the above-described structure, data recording may be categorized into two types: a sequential recording mode (SRM) type and a random recording mode (RRM) type. In the SRM type, in order to facilitate recording of data on the optical disc, the user data area in which actual user data is recorded is divided into a plurality of consecutive recording areas for recording data. Each of the divided plurality of consecutive recording areas is referred to as a Sequential Recording Range (SRR). The recording of data in a SRR is performed on a next recordable (or writable) non-recorded cluster. An address of the next recordable non-recorded cluster in an SRR is referred to as a Next Writable Address (NWA). More specifically, in the SRR, a directly subsequent unrecorded area after a recorded area becomes the NWA, and the recording of data begins from the NWA. Therefore, when sequential recording of data is performed starting from the NWA, the NWA may dynamically increase in accordance with the recording of the data.


In the above-described SRM type, a command for writing (or overwriting) data in a recorded area or portion within a SRR (SRR #n) may be given (or made) by a user or a host. In this case, due to the characteristic of the write-once optical disc, physical writing of the data can only be performed once, and so writing (or recording) of data on a recorded area is not possible. In other words, overwriting of data cannot be physically performed. According to embodiments of the present invention, in the SRM type of the recordable high density optical disc, when an overwriting command requesting data to be overwritten on a recorded area is given (or made), the data that is to be written on the recorded portion is instead recorded beginning at a NWA of the same SRR, beginning at a NWA of another SRR, or in a spare area. This is referred to as a Logical Overwrite (LOW).


For example, as shown in FIG. 2, when a writing (or recording) command for data B of a recorded data A area within an SRR (SRR #n) is transmitted, the data B that is to be recorded in the data A area is either recorded at a next writable area, which is the NWA, of the SRR including the data A area or, alternatively, recorded in a spare area (e.g., the OSA). When the data is recorded in the NWA of the SRR including the data A area, a next writable area from the SRR (SRR #n) becomes NWA′. After performing the replacement recording of the data, as described above, information on the position of the area in which data was to be overwritten (i.e., data A area) and the replacement recorded area (i.e., the data B area of the user data area or the data B area of the spare area) is recorded in the TDMA as a LOW entry. The LOW entry is broadly categorized into two types: a Re-Allocated Defect (RAD) type and a Continuous Re-allocated Defect (CRD) type.


The LOW entry of the RAD type includes information on a logical overwriting performed in a single cluster. Each entry includes a first physical sector number (PSN) of a first cluster of the area in which logical overwriting is performed, and a first physical sector number (PSN) of a first cluster of the area in which replacement recording of the logical overwriting is performed. On the other hand, the LOW entry of the CRD type includes information on a logical overwriting performed in a plurality of consecutive clusters and, therefore, uses two entries. More specifically, one of the two entries includes a first PSN of a first cluster wherein logical overwriting is performed, and a first PSN of a first cluster wherein replacement recording of the logical overwriting is performed. The other entry includes a first PSN of a last cluster wherein logical overwriting is performed, and a first PSN of a last cluster wherein replacement recording of the logical overwriting is performed.


Therefore, when the optical disc logically overwritten, as described above, is reproduced in a later process, an optical disc drive refers to the entry information recorded in the TDMA and identifies the information of the logically overwritten area and the replacement recorded area, thereby being able to reproduce the replacement recorded data B area instead of the data A area. In the SRM type, it may be preferable to perform the replacement recording of the logical overwriting in the NWA of the user data area rather than the spare area. More specifically, in the recordable optical disc, the spare area is also used for replacement recording a defect area as a method of defect management. Therefore, when the spare area is to be used for the replacement recording of the logical overwriting, there lies a problem of having to ensure, in advance, a sufficient range of spare area, the usage of which is unclear, during the initialization of the optical disc. Thus, in order to avoid such problems, it may be preferable to perform replacement recording of the logical overwriting in the NWA of the user data area. When performing logical overwriting in the user data area using the SRM type, the logical overwriting can be performed when the SRR is open and when the SRR is closed.



FIG. 3 illustrates an example of logical overwriting being performed on an open SRR in a write-once optical disc according to an embodiment of the present invention. In the SRM, an open SRR refers to a non-recorded SRR or an SRR having some recordable area (i.e., unrecorded portion) remaining. Open SRRs have an NWA. A closed SRR refers to when a recordable area in an SRR no longer remains or exists, or to an SRR changed to a closed state, even though a unrecorded area or portion does exist, but is no longer allowed due to a request from the user or host. Therefore, an NWA does not exist for a closed SRR. Referring to FIG. 3, when an overwriting command for a recorded area is received for an open SRR, the replacement recording may be performed in any of the open SRRs. In other words, when a command for overwriting data B on a recorded data A area is received for an open SRR (SRR #n), the data B that is to be recorded on the data A area is either replacement recorded beginning at the NWA of the SRR including the data A area, or replacement recorded beginning at the NWA of any other open SRR.



FIG. 4 illustrates an example of logical overwriting being performed on a closed SRR in a write-once optical disc according to an embodiment of the present invention. Referring to FIG. 4, when the writing command given (or made) by the host is an overwriting command on a recorded area in a closed SRR, since the closed SRR does not include an NWA, the replacement recording is performed in an open SRR. At this point, when overwriting data on the recorded area of the closed SRR, the replacement recording may also be performed in a spare area. More specifically, the replacement recording is performed beginning at an NWA an open SRR or in a spare area such as the OSA. For a closed SRR, the replacement recording may be specifically performed in a spare area instead of the user data area.


As described above, the logical overwriting in a write-once high density optical disc in the SRM is performed at a NWA. In one embodiment, a maximum of 16 SRRs may be allocated, and a maximum of 16 NWAs may be included, accordingly. A method for selecting an NWA according to an embodiment of the present invention will now be described in detail with reference to FIG. 5.



FIG. 5 illustrates an NWA selecting method during logical overwriting in a sequential recording mode of a write-once optical disc according to an embodiment of the present invention. Referring to FIG. 5, a plurality of sequential recording ranges (SRRs) may be allocated in the user data area of the write-once high density optical disc. And, in this embodiment, a maximum of 16 SRRs may be allocated. Each of the open SRRs includes an NWA indicating a next writable area.


According to this embodiment, for the plurality of NWAs that may exist, when a writing command requests data to be overwritten on a recorded area, replacement recording is performed in the open SRR containing the data to be overwritten. More specifically, when an NWA exists within an SRR (SRR #n) to which a data overwriting command has been given (or made), replacement recording is performed at the NWA of this open SRR (SRR #n). If the SRRs to which the overwriting command has been given (or made) is unavailable, for example, if the open SRR has been changed (or modified) to closed SRR, the replacement recording is performed at a NWA of a neighboring SRR.


Therefore, when the SRR (SRR #n) to be over-written is a closed SRR, replacement recording is performed in a previous open SRR (SRR #n−1) or a next open SRR (SRR #n+1) of the SRR (SRR #n). Also, the SRR area may be unavailable because the unrecorded portion may be inadequate and insufficient for the replacement recording. In other words, the remaining recordable area of the SRR (SRR #n) or the neighboring SRR (SRR #n+1 or SRR #n−1), may be insufficient, and so replacement recording may not be performed at a single time.


In an embodiment of the present invention, when the remaining recordable area of the SRR or the neighboring SRRs is insufficient to perform replacement recording, the replacement recording is then performed in an open SRR nearest the SRR #n having sufficient recordable (or writable) area. When replacement recording of the data is performed as described above, continuity of the replacement recorded area may be ensured. Furthermore, waste in the re-allocated defect (RAD) entry or the continuous re-allocated defect (CRD) entry, in which the addresses of the overwriting area and the replacement recording area is recorded, can be prevented.


Meanwhile, in another embodiment of the present invention, when the remaining recordable area for the SRR or the neighboring SRR is insufficient to perform replacement recording, replacement recording may be performed in the insufficient area and replacement recording of the remaining data may be continued in a next neighboring open SRR. When using the above-described method, a plurality of RAD or CRD entries may exist in order to indicate replacement recording information of a logical overwriting. Furthermore, in yet another embodiment of the present invention, replacement recording of the logical overwriting is sequentially performed starting from the first open SRR. More specifically, regardless of which SRR the logical overwriting is associated, the replacement recording is performed starting from the first open SRR.


When the optical disc drive performs replacement recording on the neighboring SRR or starting from the first open SRR, the information on the first open SRR can be obtained by referring to sequential recording range information (SRRI) that is recorded in the TDMA. This will be described in detail with reference to FIG. 6. FIG. 6 illustrates an SRRI structure according to an embodiment of the present invention. Referring to FIG. 6, the SRRI recorded in the TDMA includes a “SRRI Header” field, a “List of SRR entries” field, and a “SRRI Terminator” field.


The “SRRI Header” field includes a “SRRI identifier=‘SR’” field, a “number of SRR entries” field, a “number of Open SRRs” field, and a “List of Open SRR numbers” field. Herein, the number of SRR entries, which will be described in a later process, is recorded in the “number of SRR entries” field. The number of open SRRs is recorded in the “number of Open SRRs field”, and a number list of the open SRRs is recorded in the “List of Open SRR numbers” field. In the “List of SRR entries” field, a list of the Open SRR numbers is recorded. Herein, a number list of a maximum of 16 allocatable open SRRs is recorded. When the number of allocated open SRRs is lower than ‘16’, then ‘0’ is recorded in an unused Open SRR field. The SRR numbers are aligned by a decreasing (or descending) order. Therefore, the optical disc drive refers to the “List of Open SRR numbers” field when performing logical overwriting so as to search and find a replacement recordable SRR. More specifically, referring to FIG. 6, when the logical overwriting is to be performed in a recorded area of a 9th SRR (SRR #9), the data may be replacement recorded on the 9th SRR, or replacement recording may be performed on a neighboring (Le., the closest) SRR, which is the 8th SRR or the 10th SRR, or replacement recording may be performed starting from the 1st SRR.


A list of SRR entries is recorded in the “List of SRR entries” field, of the SRRI. Herein, the SRR entries are sequentially allocated and recorded starting from ‘1’. At this point, 8 bytes are allocated in an SRR entry, wherein certain information is recorded. The SRR entry includes a “Start PSN of the SRR #n” field, a “Session start” field, and a “LRA in the SRR #n” field. More specifically, a physical sector number (PSN) of a starting position (or area) of SRR #n is allocated in the size of 28 bits and recorded in the “Start PSN of the SRR #n” field. The “Session start” field is the size of 1 bit, and a last recorded area (LRA) of SRR #n is recorded in the “LRA in the SRR #n” field, which has a size of 28 bits.


Thus, the optical disc drive can identify the position information of a recorded area of the corresponding SRR by using the information included in the SRR entry. The NWA indicating the next writable area may be determined by using the “LRA in the SRR #n” field information. Namely, by using the physical sector number (PSN) recorded in the “LRA in the SRR #n”, the first sector of the next cluster becomes the NWA. If ‘0’ is already recorded in the “LRA in the SRR #n” field, this indicates that data is not recorded in SRR #n. Therefore, the sector recorded in the “Start PSN of the SRR #n” field becomes the NWA.


As described above, recording of data in the recordable high density optical disc can be broadly categorized into an SRM type and an RRM type. In the RRM type, the recording of data is performed randomly on all non-recorded clusters. In the above-described RRM type, information on the recorded status for the clusters in the user data area is reflected in a space bit map (SBM). More specifically, the SBM includes bits matching one-to-one with the clusters of the user data area so as to indicate the recording status of the corresponding area. The method for logical overwriting data in the RRM type will now be described with reference to FIG. 7.



FIG. 7 illustrates a logical overwriting method in an RRM type of recordable optical disc according to an embodiment of the present invention. Referring to FIG. 7, in the RRM type, when an overwriting command is transmitted from the host for overwriting data on a recorded area, the data that is intended to be recorded in the recorded area is replacement recorded in, for example, a spare area. Due to the characteristic of the RRM type, since the data is randomly recorded in the clusters in the user data area, performing replacement recording of the logical overwriting in the user data area may not beefficient. Therefore, in the RRM type, the data of the logical overwriting may be replacement recorded in the spare area such as the OSA. At this point, the spare area may also be used as a replacement area for a defect area, and so the size of the spare area may be sufficiently assigned and allocated during an initialization of the optical disc.



FIG. 8 illustrates a block diagram of an optical recording and reproducing apparatus according to the present invention. Referring to FIG. 8, the optical recording and/or reproducing apparatus includes a recording/reproducing device 10 for performing recording/reproduction on the optical disc, and a host, or controller 20 for controlling the recording/reproducing device 10. (Herein, the recording/reproducing device 10 is often referred to as an “optical disc drive”, and both terms will be used in the description of the present invention).


Basically, in the above-described optical recording and reproducing apparatus, the host 20 gives a writing or reproduction command to write or reproduce to/from a particular area of the optical disc to the recording/reproducing device 10, and the recording/reproducing device 10 performs the recording/reproduction to/from the particular area on the optical disc in response to the command from the host 20. The recording/reproducing device 10 includes an interface unit 12 for performing communication, such as exchanges of data and commands, with the host 20; a pickup unit 11 for writing/reading data to/from the optical disc directly; a data processor 13 for receiving a signal from the pickup unit 11 and recovering a desired signal value, or modulating a signal to be recorded into a signal that can be written on the optical disc; a servo unit 14 for controlling the pickup unit 11 to read a signal from the optical disc accurately, or write a signal on the optical disc accurately; a memory 15 for temporarily storing diverse information including management information and data; and a microcomputer 16 for controlling various parts of the recording/reproducing device 10.


In the optical recording and/or reproducing apparatus, process steps of an embodiment of the method for recording data on the recordable optical disc will now be described. Upon inserting the recordable optical disc into the optical recording and/or reproducing apparatus, management information is read from the optical disc and stored in the memory 15 of the recording/reproducing device 10. Herein, if the user desires to write on a particular area of the optical disc, the host 20, which responds to a writing command indicating this desire, provides information on a desired writing position to the recording/reproducing device 10, along with a set of data that is to be written.


The microcomputer 16 in the recording/reproducing device 10 receives the writing command, and determines (i) whether the area of the optical disc in which the host 20 desires to write the data is a defective area or not and/or (ii) whether the area has already been recorded on based on the management information stored in the memory 15. Then, the microcomputer 16 performs data writing according to the writing command from the host 20 on an area which is neither the defective area nor a recorded area. For example, if the area is in a closed SSR or has a starting address less than the LRA of the SSR to be written, then the area is determined as already recorded.


While performing writing of data as described above, when overwriting is to be performed in accordance with the user command, the data that is to be recorded (or written) on the overlapping (or overwriting) area is replacement recorded in another area within the data zone, such as the user data area or the spare area, as described above with respect to one of the embodiments of the present invention. Then, corresponding information including RAD and CRD entries that are created during this process are recorded in the TDMA within the lead-in area. For this, the microcomputer 16 provides the position information of the replacement recorded area and the data according to the command of the host to the servo unit 14 and the data-processor 13, so that the recording or replacement recording is completed at a desired position on the optical disc through the pickup unit 11.


Hereinafter, a method for reproducing data, which is recorded as described above, from the optical disc according to the present invention will be described in detail. When the write-once optical disc, wherein the data is recorded, is inserted into the optical recording and/or reproducing apparatus, management information is read from the optical disc and stored in the memory 15 of the recording/reproducing device 10, for use at the time of recording/reproduction data to/from the optical disc.


Herein, if the user desires to read (or reproduce) data from a particular area of the optical disc, the host 20, which responds to a reading command indicating this desire, provides information on a desired reading position to the recording/reproducing device 10. The microcomputer 16 in the recording/reproducing device 10 receives the reading command, and using the management information determines whether the area of the optical disc from which the host 20 desires to read the data from is an area that has been replaced. If so, the microcomputer 16 determines a position of the replacement area from the management information. However, when replacement recording has not been performed, the microcomputer 16 reads (or reproduces) the data of the indicated area and transmits the read information to the host 20. If replacement recording (e.g., RAD/CRD type) has been performed, the microcomputer 16 reads the data from the determined replacement area and transmits the read information to the host 20.


As described above, the method and apparatus for overwriting data on the recordable high density optical disc according to the present invention has the following advantages. By providing an efficient method for overwriting data in accordance with a recording mode of the write-once high density optical disc, when overwriting data on a recorded area within the optical disc, the write-once high density optical disc can be more efficiently managed and reproduced.


While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations there from. For example, while described with respect to a Blu-ray write-once optical disk in several instances, the present invention is not limited to this standard of write-once optical disk, to write-once recording media or to optical discs as the recording medium. It is intended that all such modifications and variations fall within the spirit and scope of the invention.

Claims
  • 1. A method of recording data on a recording medium including a user data area, on which one or more recording ranges are allocated, and a management area including management information, the method comprising: receiving an overwriting command to record the data on a recorded area of a recording range, each recording range is one of an open recording range having a recordable position and a closed recording range having no recordable position;selecting an open recording range based on a list of the open recording ranges included in the management information, for recording the data, wherein the management information further includes information indicating a number of open recording ranges within the recording medium, and the list includes one or more identification numbers, each identification number corresponding to each open recording range, and the one or more identification numbers are aligned by descending order in the list; andrecording the data starting from the recordable position of the selected open recording range,wherein the recordable position is determined by checking management information including a last recorded address (LRA) of the selected open recording range from the management area and determining the recordable position as a position of first sub-recording unit of an unrecorded recording unit following the LRA.
  • 2. The method of claim 1, wherein the data is recorded sequentially within the selected open recording range.
  • 3. The method of claim 1, further comprising: recording entry information in the management area, the entry information indicates a start address of the recorded area to which the overwriting command is made and a start address of the recordable position, from which the data is recorded, of the selected open recording range.
  • 4. The method of claim 1, wherein the selecting step selects the recording range including the recorded area as the open recording range for recording the data if the recording range including the recorded area is an open recording range.
  • 5. The method of claim 3, wherein the selecting step selects another open recording range for recording the data if the recording range including the recorded area has no unrecorded recording unit.
  • 6. The method of claim 5, wherein the another open recording range is an open recording range nearest to the recording range including the recorded area.
  • 7. The method of claim 3, wherein the selecting step selects another open recording range for recording the data if the recording range including the recorded area does not include an unrecorded area large enough for the data.
  • 8. The method of claim 1, wherein the selecting step selects a first open recording range from the open recording ranges.
  • 9. The method of claim 1, further comprising: determining a command as the overwriting command if a recording position indicated by the command is located before the recordable position of the recording range including the recorded area.
  • 10. An apparatus for recording data on a recording medium including a user data area, on which one or more recording ranges are allocated, and a management area including management information, the apparatus comprising: a pickup configured to record the data on the recording medium; anda controller, operably coupled to the pickup, configured to receive an overwriting command to record the data on a recorded area of a recording range, each recording range is one of an open recording range having a recordable position and a closed recording range having no recordable position, the controller further configured to select an open recording range based on a list of the open recording ranges included in the management information, for recording the data, and the controller further configured to control the pickup to record the data starting from the recordable position of the selected open recording range,wherein the management information further includes information indicating a number of open recording ranges within the recording medium, and the list includes one or more identification numbers, each identification number corresponding to each open recording range, and the one or more identification numbers are aligned by descending order in the list, andwherein the controller determines the recordable position by checking management information including a last recorded address (LRA) of the selected open recording range from the management area and determining the recordable position as a position of first sub-recording unit of an unrecorded recording unit following the LRA.
  • 11. The apparatus of claim 10, wherein the controller controls the pickup to record the data sequentially within the selected open recording range.
  • 12. The apparatus of claim 10, wherein the controller selects the recording range including the recorded area as the open recording range for recording the data if the recording range including the recorded area is an open recording range.
  • 13. The apparatus of claim 10, wherein the controller selects another open recording range for recording the data if the recording range including the recorded area has no unrecorded recording unit.
  • 14. The apparatus of claim 10, wherein the controls determines a command as the overwriting command if a recording position indicated by the command is located before the recordable position of the recording range including the recorded area.
  • 15. A computer-readable medium comprising: a user data area on which one or more recording ranges are allocated, each recording range is one of an open recording range having a recordable position and a closed recording range having no recordable position; anda management area on which management information for the recording ranges is recorded, wherein the management information includes a list of the open recording ranges allocated on the user data area and an open recording range for recording data is selected based on the list of the open recording ranges included in the management information if an overwriting command to record the data is made to a recorded area of a recording range on the user data area, and the data is recorded starting from the recordable position of the selected open recording range,wherein the management information further includes information indicating a number of open recording ranges within the recording medium, and the list includes one or more identification numbers, each identification number corresponding to each open recording range, and the one or more identification numbers are aligned by descending order in the list, andwherein the management information further includes a last recorded address (LRA) of the each open recording range and the recordable position is determined as a position of first sub-recording unit of an unrecorded recording unit following the LRA.
  • 16. The computer-readable medium of claim 15, wherein the recording range to which the command is made is selected as the open recording range for recording the data if the recording range to which the command is made is an open recording range.
  • 17. The computer-readable medium of claim 16, wherein another open recording range is selected if the recording range to which the command is made has no unrecorded recording unit.
  • 18. The computer-readable medium of claim 16, wherein the management area further includes entry information which indicates a start address of the recorded area to which the command is made and a start address of the recordable position, from which the data is recorded, of the selected open recording range.
Priority Claims (1)
Number Date Country Kind
10-2004-0085288 Oct 2004 KR national
DOMESTIC PRIORITY INFORMATION

This application claims the benefit of priority on U.S. Provisional Application No. 60/581,717, filed on Jun. 23, 2004, the which are hereby incorporated by reference in their entirety. This is a continuation application of Application No. 11/158,358 filed Jun. 22, 2005, now U.S. Pat. No. 7,675,829 the entire contents of which are hereby incorporated by reference.

US Referenced Citations (170)
Number Name Date Kind
4558446 Banba et al. Dec 1985 A
4733386 Shimoi Mar 1988 A
4807205 Picard Feb 1989 A
4963866 Duncan Oct 1990 A
5068842 Naito Nov 1991 A
5111444 Fukushima et al. May 1992 A
5210734 Sakurai May 1993 A
5235585 Bish et al. Aug 1993 A
5237553 Fukushima et al. Aug 1993 A
5247494 Ohno et al. Sep 1993 A
5319626 Ozaki et al. Jun 1994 A
5404357 Ito et al. Apr 1995 A
5442611 Hosaka Aug 1995 A
5448728 Takano et al. Sep 1995 A
5475820 Natrasevschi et al. Dec 1995 A
5481519 Hosoya Jan 1996 A
5495466 Dohmeier et al. Feb 1996 A
5528571 Funahashi et al. Jun 1996 A
5553045 Obata Sep 1996 A
5577194 Wells et al. Nov 1996 A
5608715 Yokogawa et al. Mar 1997 A
5715221 Ito et al. Feb 1998 A
5720030 Kamihara et al. Feb 1998 A
5740435 Yamamoto et al. Apr 1998 A
5745444 Ichikawa et al. Apr 1998 A
5799212 Ohmori Aug 1998 A
5802028 Igarashi Sep 1998 A
5805536 Gage et al. Sep 1998 A
5848038 Igarashi Dec 1998 A
5867455 Miyamoto et al. Feb 1999 A
5878020 Takahashi Mar 1999 A
5914928 Takahashi Jun 1999 A
6058085 Obata May 2000 A
6118608 Kakihara et al. Sep 2000 A
6138203 Inokuchi et al. Oct 2000 A
6160778 Ito et al. Dec 2000 A
6189118 Sasaki et al. Feb 2001 B1
6233654 Aoki et al. May 2001 B1
6292445 Ito et al. Sep 2001 B1
6341109 Kayanuma Jan 2002 B1
6341278 Yamamoto et al. Jan 2002 B1
6373800 Takahashi Apr 2002 B1
6405332 Bando et al. Jun 2002 B1
6414923 Park et al. Jul 2002 B1
6447126 Hornbeck Sep 2002 B1
6466532 Ko Oct 2002 B1
6469978 Ohata et al. Oct 2002 B1
6477126 Park et al. Nov 2002 B1
6480446 Ko Nov 2002 B1
6493301 Park Dec 2002 B1
6529458 Shin Mar 2003 B1
6542450 Park Apr 2003 B1
6564345 Kim et al. May 2003 B1
6581167 Gotoh et al. Jun 2003 B1
6606285 Ijtsma et al. Aug 2003 B1
6615363 Fukasawa Sep 2003 B1
6631106 Numata et al. Oct 2003 B1
6633724 Hasegawa et al. Oct 2003 B1
6667939 Miyamoto Dec 2003 B1
6671249 Horie Dec 2003 B2
6697306 Sako Feb 2004 B2
6714502 Ko et al. Mar 2004 B2
6724701 Ijtsma et al. Apr 2004 B2
6738341 Ohata et al. May 2004 B2
6754860 Kim et al. Jun 2004 B2
6760288 Ijtsma et al. Jul 2004 B2
6763429 Hirayama Jul 2004 B1
6766418 Alexander et al. Jul 2004 B1
6788631 Park et al. Sep 2004 B1
6795389 Nishiuchi et al. Sep 2004 B1
6804797 Ko et al. Oct 2004 B2
6826140 Brommer et al. Nov 2004 B2
6842580 Ueda et al. Jan 2005 B1
6845069 Nakahara et al. Jan 2005 B2
6883111 Yoshida et al. Apr 2005 B2
6918003 Sasaki Jul 2005 B2
6934236 Lee et al. Aug 2005 B2
6999398 Yamamoto et al. Feb 2006 B2
7002882 Takahashi Feb 2006 B2
7027059 Hux et al. Apr 2006 B2
7027373 Ueda et al. Apr 2006 B2
7042825 Yamamoto et al. May 2006 B2
7050701 Sasaki et al. May 2006 B1
7092334 Choi et al. Aug 2006 B2
7123556 Ueda et al. Oct 2006 B2
7149930 Ogawa et al. Dec 2006 B2
7161879 Hwang et al. Jan 2007 B2
7184377 Ito et al. Feb 2007 B2
7188271 Park et al. Mar 2007 B2
7233550 Park et al. Jun 2007 B2
7236687 Kato et al. Jun 2007 B2
7272086 Hwang et al. Sep 2007 B2
7289404 Park et al. Oct 2007 B2
7296178 Yoshida et al. Nov 2007 B2
7313066 Hwang et al. Dec 2007 B2
7327654 Hwang et al. Feb 2008 B2
7379402 Ko et al. May 2008 B2
7428202 Takahashi et al. Sep 2008 B2
7613874 Park Nov 2009 B2
20010009537 Park Jul 2001 A1
20010011267 Kihara et al. Aug 2001 A1
20010026511 Ueda et al. Oct 2001 A1
20010033517 Ando et al. Oct 2001 A1
20010043525 Ito et al. Nov 2001 A1
20020025138 Isobe et al. Feb 2002 A1
20020097665 Ko et al. Jul 2002 A1
20020097666 Ko et al. Jul 2002 A1
20020099950 Smith Jul 2002 A1
20020105868 Ko Aug 2002 A1
20020136118 Takahashi Sep 2002 A1
20020136134 Ito et al. Sep 2002 A1
20020136537 Takahashi Sep 2002 A1
20020159382 Ohata et al. Oct 2002 A1
20020161774 Tol et al. Oct 2002 A1
20020176341 Ko et al. Nov 2002 A1
20030072236 Hirotsune et al. Apr 2003 A1
20030095482 Hung et al. May 2003 A1
20030126527 Kim et al. Jul 2003 A1
20030135800 Kim et al. Jul 2003 A1
20030137909 Ito et al. Jul 2003 A1
20030137910 Ueda et al. Jul 2003 A1
20030142608 Yamamoto et al. Jul 2003 A1
20030149918 Takaichi Aug 2003 A1
20030173669 Shau Sep 2003 A1
20030198155 Go et al. Oct 2003 A1
20040001408 Propps et al. Jan 2004 A1
20040004917 Lee Jan 2004 A1
20040062159 Park et al. Apr 2004 A1
20040062160 Park et al. Apr 2004 A1
20040076096 Hwang et al. Apr 2004 A1
20040105363 Ko et al. Jun 2004 A1
20040114474 Park et al. Jun 2004 A1
20040120233 Park et al. Jun 2004 A1
20040125716 Ko et al. Jul 2004 A1
20040125717 Ko et al. Jul 2004 A1
20040136292 Park et al. Jul 2004 A1
20040145980 Park et al. Jul 2004 A1
20040158768 Park et al. Aug 2004 A1
20040174782 Lee et al. Sep 2004 A1
20040174785 Ueda et al. Sep 2004 A1
20040179445 Park et al. Sep 2004 A1
20040179458 Hwang et al. Sep 2004 A1
20040223427 Kim et al. Nov 2004 A1
20040246849 Hwang et al. Dec 2004 A1
20040246851 Hwang et al. Dec 2004 A1
20040246852 Hwang et al. Dec 2004 A1
20050007910 Ito et al. Jan 2005 A1
20050008346 Noguchi et al. Jan 2005 A1
20050025007 Park Feb 2005 A1
20050047294 Park Mar 2005 A1
20050050402 Koda et al. Mar 2005 A1
20050052972 Park Mar 2005 A1
20050052973 Park Mar 2005 A1
20050055500 Park Mar 2005 A1
20050060489 Park Mar 2005 A1
20050068877 Yeo Mar 2005 A1
20050083740 Kobayashi Apr 2005 A1
20050083767 Terada et al. Apr 2005 A1
20050083830 Martens et al. Apr 2005 A1
20050195716 Ko et al. Sep 2005 A1
20050207262 Terada et al. Sep 2005 A1
20050289389 Yamagami et al. Dec 2005 A1
20060077827 Takahashi Apr 2006 A1
20060195719 Ueda et al. Aug 2006 A1
20060203635 Ko et al. Sep 2006 A1
20060203638 Ko et al. Sep 2006 A1
20060203684 Ko et al. Sep 2006 A1
20060227694 Woerlee et al. Oct 2006 A1
20070294571 Park et al. Dec 2007 A1
20080046780 Shibuya et al. Feb 2008 A1
Foreign Referenced Citations (123)
Number Date Country
1134017 Oct 1996 CN
1140897 Jan 1997 CN
1227950 Sep 1999 CN
1273419 Nov 2000 CN
1675708 Sep 2005 CN
1685426 Oct 2005 CN
199 54 054 Jun 2000 DE
0 314 186 May 1989 EP
0 325 823 Aug 1989 EP
0 350 920 Jan 1990 EP
0 428 208 Nov 1990 EP
0 464 811 Jan 1992 EP
0 472 484 Feb 1992 EP
0 477 503 Apr 1992 EP
0 556 046 Aug 1993 EP
0 871 172 Oct 1998 EP
0 908 882 Apr 1999 EP
0 974 967 Jan 2000 EP
0 989 554 Mar 2000 EP
0 997 904 May 2000 EP
1 026 681 Aug 2000 EP
1 043 723 Oct 2000 EP
1 132 914 Sep 2001 EP
1 148 493 Oct 2001 EP
1 152 414 Nov 2001 EP
1 239 478 Sep 2002 EP
1 274 081 Jan 2003 EP
1 298 659 Apr 2003 EP
1 329 888 Jul 2003 EP
1 347 452 Sep 2003 EP
1 547 065 Apr 2004 EP
1 573 723 Sep 2004 EP
1 623 422 Nov 2004 EP
1 564 740 Aug 2005 EP
1 612 790 Jan 2006 EP
2 356 735 May 2001 GB
63-091842 Apr 1988 JP
1-263955 Oct 1989 JP
2-023417 Jan 1990 JP
5-46456 Feb 1993 JP
5-274814 Oct 1993 JP
6-338139 Dec 1994 JP
6-349201 Dec 1994 JP
8-096522 Apr 1996 JP
9-145634 Jun 1997 JP
09-231053 Sep 1997 JP
10-050005 Feb 1998 JP
10-050032 Feb 1998 JP
10-187356 Jul 1998 JP
10-187357 Jul 1998 JP
10-187358 Jul 1998 JP
10-187359 Jul 1998 JP
10-187360 Jul 1998 JP
10-187361 Jul 1998 JP
10-261286 Sep 1998 JP
11-110888 Apr 1999 JP
11-203792 Jul 1999 JP
2000-090588 Mar 2000 JP
2000-149449 May 2000 JP
2000-195178 Jul 2000 JP
2000-215612 Aug 2000 JP
2000-285607 Oct 2000 JP
2001-023317 Jan 2001 JP
2001-069440 Mar 2001 JP
2001-351334 Dec 2001 JP
2001-357623 Dec 2001 JP
2002-015507 Jan 2002 JP
2002-015525 Jan 2002 JP
2002-050131 Feb 2002 JP
2002-056619 Feb 2002 JP
2002-215612 Aug 2002 JP
2002-245723 Aug 2002 JP
2002-288938 Oct 2002 JP
2002-314116 Oct 2002 JP
2002-329321 Nov 2002 JP
2002-352522 Dec 2002 JP
2003-536194 Dec 2003 JP
2004-171714 Jun 2004 JP
2004-280864 Oct 2004 JP
2004-280865 Oct 2004 JP
2004-303381 Oct 2004 JP
2005-004912 Jan 2005 JP
2005-535993 Nov 2005 JP
2005-538490 Dec 2005 JP
2005-538491 Dec 2005 JP
2006-085859 Mar 2006 JP
2006-519445 Aug 2006 JP
10-2004-0094301 Nov 2004 KR
2174716 Oct 2001 RU
2005-103626 Sep 2005 RU
2005-127337 Feb 2006 RU
371752 Oct 1999 TW
413805 Dec 2000 TW
WO 8400628 Feb 1984 WO
WO 9630902 Oct 1996 WO
WO 9722182 Jun 1997 WO
WO 0054274 Sep 2000 WO
WO 0122416 Mar 2001 WO
WO 0193035 Dec 2001 WO
WO 03007296 Jan 2003 WO
WO 03025924 Mar 2003 WO
WO 03079353 Sep 2003 WO
WO 2004015707 Feb 2004 WO
WO 2004015708 Feb 2004 WO
WO 2004025648 Mar 2004 WO
WO 2004025649 Mar 2004 WO
WO 2004029668 Apr 2004 WO
WO 2004029968 Apr 2004 WO
WO 2004034396 Apr 2004 WO
WO 2004036561 Apr 2004 WO
WO 2004053872 Jun 2004 WO
WO 2004053874 Jun 2004 WO
WO 2004068476 Aug 2004 WO
WO 2004079631 Sep 2004 WO
WO 2004079731 Sep 2004 WO
WO 2004079740 Sep 2004 WO
WO 2004081926 Sep 2004 WO
WO 2004086379 Oct 2004 WO
WO 2004093035 Oct 2004 WO
WO 2004100155 Nov 2004 WO
WO 2005004123 Jan 2005 WO
WO 2005004154 Jan 2005 WO
WO 2005124768 Dec 2005 WO
Related Publications (1)
Number Date Country
20070159949 A1 Jul 2007 US
Provisional Applications (1)
Number Date Country
60581717 Jun 2004 US
Continuations (1)
Number Date Country
Parent 11158358 Jun 2005 US
Child 11711019 US